Refractive Outcomes After Cataract Surgery—The Impact of Preoperative Visual Acuity, the Intraocular Lens Model, and the Surgeon’s Experience: An Empirical Analysis of Hungarian and Kosovan Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Data Collection
2.2. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Results for the Hungarian Patients
3.3. Results for Kosovan Patients
3.4. Comparison Between Centers
4. Discussion
5. Conclusions
6. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Tang, X.; Li, Y.; Guo, L.; Jia, T.; Shi, J. Construction of Preoperative Assessment Program for Day Surgery in Geriatric Cataract Patients: An Evidence-Based Delphi Study. J. PeriAnesthesia Nurs. 2024, 1, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [PubMed]
- Khoramnia, R.; Auffarth, G.; Łabuz, G.; Pettit, G.; Suryakumar, R. Refractive Outcomes after Cataract Surgery. Diagnostics 2022, 12, 243. [Google Scholar] [CrossRef]
- Ladi, J.S. Prevention and correction of residual refractive errors after cataract surgery. J. Clin. Ophthalmol. Res. 2017, 5, 45–50. [Google Scholar] [CrossRef]
- Mojon-Azzi, S.M.; Sousa-Poza, A.; Mojon, D.S. Impact of Low Vision on Well-Being in 10 European Countries. Ophthalmologica 2008, 222, 205–212. [Google Scholar] [CrossRef]
- Murphy, C.; Tuft, S.J.; Minassian, D.C. Refractive error and visual outcome after cataract extraction. J. Cataract Refract. Surg. 2002, 28, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Abdelghany, A.A.; Alio, J.L. Surgical options for correction of refractive error following cataract surgery. Eye Vis. 2014, 1, 2. [Google Scholar] [CrossRef]
- Ladas, J.G.; Stark, W.J. Improving Cataract Surgery Refractive Outcomes. Ophthalmology 2011, 118, 1699–1700. [Google Scholar] [CrossRef] [PubMed]
- Loicq, J.; Willet, N.; Gatinel, D. Topography and longitudinal chromatic aberration characterizations of refractive–diffractive multifocal intraocular lenses. J. Cataract Refract. Surg. 2019, 45, 1650–1659. [Google Scholar] [CrossRef]
- Gatinel, D.; Pagnoulle, C.; Houbrechts, Y.; Gobin, L. Design and qualification of a diffractive trifocal optical profile for intraocular lenses. J. Cataract Refract. Surg. 2011, 37, 2060–2067. [Google Scholar] [CrossRef]
- Ruiz-Alcocer, J.; Madrid-Costa, D.; García-Lázaro, S.; Ferrer-Blasco, T.; Montés-Micó, R. Optical performance of two new trifocal intraocular lenses: Through-focus modulation transfer function and influence of pupil size. Clin. Exp. Ophthalmol. 2014, 42, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Millán, M.S.; Vega, F. Extended depth of focus intraocular lens. Chromatic performance. Biomed. Opt. Express 2017, 8, 4294–4309. [Google Scholar] [CrossRef] [PubMed]
- Holladay, J.T.; Prager, T.C.; Ruiz, R.S.; Lewis, J.W.; Rosenthal, H. Improving the predictability of intraocular lens power calculations. Arch. Ophthalmol. 1986, 104, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Olsen, T. Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster. Acta Ophthalmol. Scand. 2007, 85, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Lundström, M.; Barry, P.; Leite, E.; Seward, H.; Stenevi, U. 1998 European Cataract Outcome Study: Report from the European Cataract Outcome Study Group. J. Cataract Refract. Surg. 2001, 27, 1176–1184. [Google Scholar] [CrossRef]
- Lundström, M.; Stenevi, U.; Thorburn, W. The Swedish National Cataract Register: A 9-year review. Acta Ophthalmol. Scand. 2002, 80, 248–257. [Google Scholar] [CrossRef]
- Daniel, C.; Tuft, S.; Ionides, A.; Bunce, C. Effect of visual acuity on biometry prediction error after cataract surgery. J. Cataract Refract. Surg. 2003, 29, 1365–1369. [Google Scholar] [CrossRef]
- Zhang, C.; Dai, G.; Pazo, E.E.; Xu, L.; Wu, X.; Zhang, H.; Lin, T.; He, W. Accuracy of intraocular lens calculation formulas in cataract patients with steep corneal curvature. PLoS ONE 2020, 15, e0241630. [Google Scholar] [CrossRef]
- Gutierrez, L.; Lim, J.S.; Foo, L.L.; Ng, W.Y.; Yip, M.; Lim, G.Y.S.; Wong, M.H.Y.; Fong, A.; Rosman, M.; Mehta, J.S.; et al. Application of artificial intelligence in cataract management: Current and future directions. Eye Vis. 2022, 9, 3. [Google Scholar] [CrossRef]
- Hipólito-Fernandes, D.; Luís, M.E.; Serras-Pereira, R.; Gil, P.; Maduro, V.; Feijão, J.; Alves, N. Anterior chamber depth, lens thickness and intraocular lens calculation formula accuracy: Nine formulas comparison. Br. J. Ophthalmol. 2022, 106, 349–355. [Google Scholar] [CrossRef]
- Stopyra, W.; Cooke, D.L.; Grzybowski, A. A Review of Intraocular Lens Power Calculation Formulas Based on Artificial Intelligence. J. Clin. Med. 2024, 13, 498. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, J.; Zhu, Y.; Xu, J.; Qiu, X.; Yang, G.; Liu, Z.; Luo, L.; Liu, Y. Accuracy of New Generation Intraocular Lens Calculation Formulas in Vitrectomized Eyes. Am. J. Ophthalmol. 2020, 217, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Wang, L.; Kane, J.X.; Li, J.; Liu, L.; Wu, M. Accuracy of Artificial Intelligence Formulas and Axial Length Adjustments for Highly Myopic Eyes. Am. J. Ophthalmol. 2021, 223, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Ding, Y.; Liu, L.; Li, J.; Liu, X.; Wu, M. Accuracy of intraocular lens power calculation in primary angle-closure disease: Comparison of 7 formulas. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 3739–3747. [Google Scholar] [CrossRef] [PubMed]
- Voytsekhivskyy, O.V.; Hoffer, K.J.; Savini, G.; Tutchenko, L.P.; Hipólito-Fernandes, D. Clinical Accuracy of 18 IOL Power Formulas in 241 Short Eyes. Curr. Eye Res. 2021, 46, 1832–1843. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M.; Waldner, D.M.; Luong, M.; Sanders, E.; Crichton, A.C.S.; Ford, B.A. Stabilization of refractive error and associated factors following small incision phacoemulsification cataract surgery. BMC Ophthalmol. 2022, 22, 13. [Google Scholar] [CrossRef]
- Schallhorn, J.M.; Ciralsky, J.B.; Yeu, E. Resident and young physician experience with complex cataract surgery and new cataract and refractive technology: Results of the ASCRS 2016 Young Eye Surgeons survey. J. Cataract Refract. Surg. 2017, 43, 687–694. [Google Scholar] [CrossRef]
- Stopyra, W. Analysis of accuracy of twelve intraocular lens power calculation formulas for eyes with axial hyperopia. Saudi J. Ophthalmol. 2023, 37, 125–130. [Google Scholar] [CrossRef]
- Ferrara, S.; Savastano, A.; Crincoli, E.; Kilian, R.; Savastano, M.C.; Rizzo, S. Comparison of IOL power formulas in eyes with a flat cornea <42 D. AJO Int. 2024, 1, 100026. [Google Scholar] [CrossRef]
- Zeng, M.; Liu, Y.; Liu, X.; Yuan, Z.; Luo, L.; Xia, Y.; Zeng, Y. Aberration and contrast sensitivity comparison of aspherical and monofocal and multifocal intraocular lens eyes. Clin. Exp. Ophthalmol. 2007, 35, 355–360. [Google Scholar] [CrossRef]
- Vingolo, E.M.; Grenga, P.; Iacobelli, L.; Grenga, R. Visual acuity and contrast sensitivity: AcrySof ReSTOR apodized diffractive versus AcrySof SA60AT monofocal intraocular lenses. J. Cataract Refract. Surg. 2007, 33, 1244–1247. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.I.; Rocha, G.; Slomovic, A.R.; Climenhaga, H.; Gohill, J.; Grégoire, A.; Ma, J. Visual function and patient experience after bilateral implantation of toric intraocular lenses. J. Cataract Refract. Surg. 2010, 36, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Holland, E.; Lane, S.; Horn, J.D.; Ernest, P.; Arleo, R.; Miller, K.M. The AcrySof Toric intraocular lens in subjects with cataracts and corneal astigmatism: A randomized, subject-masked, parallel-group, 1-year study. Ophthalmology 2010, 117, 2104–2111. [Google Scholar] [CrossRef] [PubMed]
- Al-Mohtaseb, Z.; Steigleman, W.A.; Pantanelli, S.M.; Lin, C.C.; Hatch, K.M.; Rose-Nussbaumer, J.R.; Santhiago, M.R.; Olsen, T.W.; Kim, S.J.; Schallhorn, J.M. Toric Monofocal Intraocular Lenses for the Correction of Astigmatism during Cataract Surgery: A Report by the American Academy of Ophthalmology. Ophthalmology 2024, 131, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Scialdone, A.; De Gaetano, F.; Monaco, G. Visual performance of 2 aspheric toric intraocular lenses: Comparative study. J. Cataract Refract. Surg. 2013, 39, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Z.Z.; Popper-Sachetti, A.; Kiss, H.J. Comparison of visual and refractive outcomes between hydrophilic and hydrophobic trifocal intraocular lenses sharing the same optical design. J. Cataract Refract. Surg. 2019, 45, 553–561. [Google Scholar] [CrossRef]
- Poyales, F.; Perez, R.; Lopez-Brea, I.; Zhou, Y.; Garzon, N. First Results after Implantation of Hydrophilic and Hydrophobic Trifocal Intraocular Lenses: Visual and Optical Performance. J. Ophthalmol. 2021, 2021, 3514577. [Google Scholar] [CrossRef]
- Poyales, F.; Pérez, R.; López-Brea, I.; Zhou, Y.; Rico, L.; Garzón, N. Comparison of Visual Performance and Patient Satisfaction Outcomes with Two Trifocal IOLs with Similar Optical Design but Different Materials. Clin. Ophthalmol. 2020, 14, 3237–3247. [Google Scholar] [CrossRef]
- Ang, R.E.T. Long Term Clinical Outcomes of Hydrophilic and Hydrophobic Versions of a Trifocal IOL with the Same Optical Design. Clin. Ophthalmol. 2023, 17, 623–632. [Google Scholar] [CrossRef]
- Ton Van, C.; Tran, T.H.C. Incidence of posterior capsular opacification requiring Nd:YAG capsulotomy after cataract surgery and implantation of enVista® MX60 IOL. J. Français D’ophtalmol. 2018, 41, 899–903. [Google Scholar] [CrossRef]
- Li, Z.; Song, Z.; Wu, S.; Xu, K.; Jin, D.; Wang, H.; Liu, P. Outcomes and Barriers to Uptake of Cataract Surgery in Rural Northern China: The Heilongjiang Eye Study. Ophthalmic Epidemiol. 2014, 21, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Kugelberg, M.; Lundström, M. Factors related to the degree of success in achieving target refraction in cataract surgery: Swedish National Cataract Register study. J. Cataract Refract. Surg. 2008, 34, 1935–1939. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, J.M.; Taylor, H.; Qureshi, K.; Smith, R.; Johnston, R.L. The cataract national data set electronic multi-centre audit of 55,567 operations: Case-mix adjusted surgeon’s outcomes for posterior capsule rupture. Eye 2011, 25, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Z.; Patel, D.V.; Sherwin, T.; McGhee, C.N.J. The Auckland Cataract Study: Assessing Preoperative Risk Stratification Systems for Phacoemulsification Surgery in a Teaching Hospital. Am. J. Ophthalmol. 2016, 171, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Johansson, B.; Lundström, M.; Montan, P.; Stenevi, U.; Behndig, A. Capsule complication during cataract surgery: Long-term outcomes: Swedish Capsule Rupture Study Group report 3. J. Cataract Refract. Surg. 2009, 35, 1694–1698. [Google Scholar] [CrossRef]
- Sparrow, J.M.; Taylor, H.; Qureshi, K.; Smith, R.; Birnie, K.; Johnston, R.L. The Cataract National Dataset electronic multi-centre audit of 55,567 operations: Risk indicators for monocular visual acuity outcomes. Eye 2012, 26, 821–826. [Google Scholar] [CrossRef]
- Lundström, M.; Barry, P.; Henry, Y.; Rosen, P.; Stenevi, U. Visual outcome of cataract surgery; Study from the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J. Cataract Refract. Surg. 2013, 39, 673–679. [Google Scholar] [CrossRef]
- Haripriya, A.; Chang, D.F.; Reena, M.; Shekhar, M. Complication rates of phacoemulsification and manual small-incision cataract surgery at Aravind Eye Hospital. J. Cataract Refract. Surg. 2012, 38, 1360–1369. [Google Scholar] [CrossRef]
Country | Sample Size | |
---|---|---|
n | % | |
Hungary | 1001 | 70.64 |
Kosovo | 416 | 29.36 |
Total | 1417 | 100 |
Surgery | Hungary | Kosovo | Total | ||
---|---|---|---|---|---|
n | % | n | % | n | |
Right Eye | 513 | 51.35 | 218 | 52.4 | 731 |
Left Eye | 486 | 48.65 | 198 | 47.6 | 684 |
Total | 999 | 100 | 416 | 100 | 1415 |
BCDVA Preop. | Coef | St.Err. | t-Value | p-Value | [95% Conf] | [Interval] | Sig |
---|---|---|---|---|---|---|---|
Hyperopic correction | 0.01 | 0.005 | 3.03 | 0.006 | −0.01 | 0.011 | *** |
Myopic correction | 0.01 | 0.002 | 0.57 | 0.571 | −0.006 | 0.003 | |
Hyperopic astigmatism | 0.02 | 0.02 | 0.12 | 0.903 | −0.038 | 0.043 | |
Myopic astigmatism | 0.12 | 0.012 | 2.45 | 0.017 | −0.036 | 0.012 | ** |
Constant | 0.562 | 0.04 | 14.07 | 0 | 0.484 | 0.641 | *** |
Mean dependent var | 0.543 | SD dependent var | 0.291 | ||||
R-squared | 0.332 | Number of obs | 820 | ||||
F-test | 5.369 | Prob > F | 0.001 | ||||
Akaike crit. (AIC) | 310.429 | Bayesian crit. (BIC) | 333.976 |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
UDVA preop. | 911 | 0.247 | 0.22 | 0 | 0.9 |
BCDVA preop. | 828 | 0.544 | 0.291 | 0.1 | 1 |
UDVA 1 month postop. | 936 | 0.779 | 0.286 | 0.1 | 1 |
BCDVA 1 month postop. | 948 | 0.852 | 0.258 | 0.1 | 1 |
Variables | UDVA Preop. | BCVA Preop. | BCVA 1 m Postop. | Lens Thickness | Lens Type | |
---|---|---|---|---|---|---|
UDVA preop. | Cor | 1 | 0477 ** | 0.334 ** | 0.019 | 0.084 * |
Sig | 0.000 | 0.000 | 0.565 | 0.012 | ||
N | 911 | 763 | 881 | 911 | 911 | |
BCDVA preop. | Cor | 0.477 ** | 1 | 0.402 ** | −0.038 | 0.162 ** |
Sig | 0.000 | 0.000 | 0.273 | 0.000 | ||
N | 763 | 828 | 816 | 828 | 828 | |
BCDVA 1 month postop. | Cor | 0.334 ** | 0.402 ** | 1 | −0.096 ** | 0.033 |
Sig | 0.000 | 0.000 | 0.003 | 0.308 | ||
N | 881 | 816 | 948 | 948 | 948 | |
Lens thickness | Cor | 0.019 | −0.038 | −0.096 ** | 1 | −0.048 |
Sig | 0.565 | 0.273 | 0.003 | 0.129 | ||
N | 911 | 828 | 948 | 1001 | 1001 | |
IOL model | Cor | 0.084 * | 0.162 ** | 0.033 | −0.048 | 1 |
Sig | 0.012 | 0.000 | 0.308 | 0.129 | ||
N | 911 | 828 | 948 | 1001 | 1001 |
Lens Type | UDVA 1 m postop. | BCDVA 1 m postop. | UDVA 1 m postop. | BCDVA 1 m postop. | UDVA 1 m postop. | BCDVA 1 m postop. | UDVA 1 m postop. | BCDVA 1 m postop. |
---|---|---|---|---|---|---|---|---|
0–33 * (Hand Movement—0.33) | 34–66 * (0.34–0.66) | 67–100 * (0.67–1.0) | Total | Total | ||||
SN6AT | 0.034 ** | 0.032 | 0.043 ** | 0.03 ** | 0.008 *** | 0.002 ** | 0.16 ** | 0.014 ** |
(2.67) | (1.14) | (2.12) | (2.22) | (4.53) | (1.99) | (2.14) | (2.85) | |
MX60 | 0.0428 | 0.0168 | 0.136 | 0.0521 | 0.115 | 0.0594 | 0.0411 | 0.0245 |
(1.38) | (0.58) | (1.38) | (0.51) | (1.97) | (1.03) | (1.81) | (1.19) | |
MA60AC | −0.177 *** | −0.0924 * | −0.177 | −0.0255 | −0.223 ** | −0.08 | −0.169 *** | −0.0852 ** |
(−4.41) | (−2.44) | (−1.77) | (−0.25) | (−3.24) | (−1.20) | (−5.44) | (−3.04) | |
SN60WF | −0.0564 | −0.0736 | 0.323 | 0.233 | 0.133 | 0.111 | −0.073 | −0.0658 |
(−0.88) | (−1.24) | (1.62) | (1.1) | (1.4) | (1.18) | (−1.51) | (−1.51) | |
PODFGF PHYSIOL | 0.164 ** | 0.117 * | 0.323 * | 0.233 | 0.175 * | 0.121 | 0.133 *** | 0.0914 ** |
(3.24) | (2.44) | (2.33) | (1.6) | (2.49) | (1.71) | (3.91) | (2.93) | |
JOHNSON JOHNSON TECNIS EYEHANCE ICB 00 | −0.0184 | 0.188 | 0.323 | 0.233 | 0.204 | 0.14 | 0.145 | 0.146 |
(−0.06) | (0.67) | (1.62) | (1.1) | (1.26) | (0.86) | (1.1) | (1.21) | |
MA60MA | −0.335 ** | −0.345 ** | −0.397 *** | −0.388 *** | ||||
(−2.74) | (−2.97) | (−3.69) | (−3.94) | |||||
677MTY | 0.219 ** | 0.182 * | 0.256 | 0.217 | 0.16 | 0.129 | 0.179 *** | 0.139 ** |
(2.83) | (2.47) | (1.97) | (1.59) | (1.85) | (1.5) | (3.62) | (3.09) | |
VERI SYSTEM AMO | −0.0184 | |||||||
(−0.06) | ||||||||
LUX SMART | 0.0482 | −0.0454 | 0.223 | 0.233 | 0.144 | 0.12 | 0.184 * | 0.139 * |
(0.28) | (−0.28) | (1.12) | (1.1) | (1.33) | (1.11) | (2.56) | (2.11) | |
VIVITY | 0.182 | 0.088 | 0.12 | 0.0457 | ||||
(1.22) | (0.62) | (0.91) | (0.38) | |||||
VIVINEX | −0.0851 | −0.0787 | −0.527 | −0.167 | −0.646 ** | −0.26 | −0.0442 | −0.0385 |
(−0.84) | (−0.82) | (−1.93) | (−0.78) | (−2.88) | (−1.60) | (−0.69) | (−0.68) | |
621P ZEISS | −0.312 | −0.28 | −0.354 * | |||||
(−1.92) | (−1.85) | (−2.56) | ||||||
SA60AT | −0.218 | −0.18 | −0.254 | |||||
(−1.28) | (−0.69) | (−1.07) | ||||||
Cons | 0.718 *** | 0.812 *** | 0.677 *** | 0.767 *** | 0.796 *** | 0.860 *** | 0.780 *** | 0.854 *** |
(28.27) | (34.14) | (9.28) | (10.5) | (17.4) | (19.42) | (42.55) | (51.8) | |
N | 612 | 619 | 62 | 67 | 118 | 122 | 883 | 895 |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Visual acuity preop. | 407 | 0.15 | 0.424 | 0 | 8 |
UDVA 1 month postop. | 397 | 0.44 | 0.216 | 0.1 | 1 |
BCDVA 1 month postop. | 397 | 0.496 | 0.229 | 0.1 | 1 |
Variables | UDVA Preop. | UDVA 1-Month Postop. | Lens Thickness | Lens Type | |
---|---|---|---|---|---|
Visual acuity preop. | Cor | 1 | 0.608 ** | 0.076 | −0.051 |
Sig | 0.000 | 0.126 | 0.305 | ||
N | 407 | 389 | 407 | 407 | |
Visual acuity 1 month postop. | Cor | 0.608 ** | 1 | 0.030 | −0.067 |
Sig | 0.000 | 0.556 | 0.184 | ||
N | 389 | 397 | 397 | 397 | |
LT | Cor | 0.076 | 0.030 | 1 | 0.076 |
Sig | 0.126 | 0.556 | 0.124 | ||
N | 407 | 397 | 416 | 416 | |
Lens type | Cor | −0.051 | −0.067 | 0.076 | 1 |
Sig | 0.305 | 0.184 | 0.124 | ||
N | 407 | 397 | 416 | 416 |
Lens Type | UDVA 1 Month Postop. | UDVA 1 Month Postop. | UDVA 1 Month Postop. | UDVA 1 Month Postop. |
---|---|---|---|---|
0–33 ** (Hand Movement-0.33) | 34–66 ** (0.34–0.66) | 67–100 ** (0.67–1.0) | Total | |
AcrySof SA60AT | 0.0152 | 0.321 * | 0.101 | 0.0242 |
(1.78) | (1.81) | (0.53) | (1.14) | |
Akreos ADAPT AO | 0.0262 | 0.408 ** | 0.11 | 0.0309 |
(1.30) | (2.20) | (0.62) | (1.37) | |
Cons | 0.415 *** | 0.575 ** | 0.743 *** | 0.459 *** |
−25.74 | −4.74 | −5.58 | −25.57 | |
N | 344 | 7 | 16 | 397 |
Lens Thickness | Posterior | 95% Credible Interval | |||||
---|---|---|---|---|---|---|---|
Mode | Mean | Variance | Lower Bound | Upper Bound | F | Sig. | |
Hungary | 4.40 | 4.400 | 0.000 | 4.36 | 4.43 | 10.13 | 0.001 |
Kosovo | 4.30 | 4.302 | 0.001 | 4.25 | 4.35 |
Country | Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
Hungary | UDVA preop. | 911 | 0.247 | 0.22 | 0 | 0.9 |
Kosovo | 407 | 0.15 | 0.424 | 0 | 8 | |
Hungary | UDVA 1-month postop. | 936 | 0.7792 | 0.28673 | 0.10 | 1.00 |
Kosovo | 397 | 0.4397 | 0.21586 | 0.10 | 1.00 | |
Hungary | BCDVA 1-month postop. | 948 | 0.8521 | 0.25827 | 0.10 | 1.00 |
Kosovo | 397 | 0.4957 | 0.22920 | 0.10 | 1.00 |
Country | BCVA | Mode | Mean | df | F | Sig. |
---|---|---|---|---|---|---|
Hungary | Between Groups | 0.852 | 0.852 | 2 | 568.26 | 0.001 |
Kosovo | Within Groups | 0.496 | 0.496 | 1343 |
UDVA Preop. | Posterior | 95% Credible Interval | Significant Differences | |||
---|---|---|---|---|---|---|
Mode | Mean | Variance | Lower Bound | Upper Bound | ||
11 Years Experience | 0.150 | 0.150 | 0.000 | 0.121 | 0.180 | p = 0.000 |
24 Years Experience | 0.247 | 0.247 | 0.000 | 0.227 | 0.266 | |
UDVA 1 month postop. | Posterior | 95% Credible Interval | Significant Differences | |||
Mode | Mean | Variance | Lower Bound | Upper Bound | ||
11 Years Experience | 0.440 | 0.440 | 0.000 | 0.414 | 0.467 | p = 0.000 |
24 Years Experience | 0.779 | 0.779 | 0.000 | 0.762 | 0.796 | |
BCDVA 1 month postop. | Posterior | 95% Credible Interval | Significant Differences | |||
Mode | Mean | Variance | Lower Bound | Upper Bound | ||
11 Years Experience | 0.496 | 0.496 | 0.000 | 0.472 | 0.521 | p = 0.000 |
24 Years Experience | 0.852 | 0.852 | 0.000 | 0.836 | 0.868 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoshi, F.; Shoshi, F.; Xhafa, A.; Nagy, Z.Z. Refractive Outcomes After Cataract Surgery—The Impact of Preoperative Visual Acuity, the Intraocular Lens Model, and the Surgeon’s Experience: An Empirical Analysis of Hungarian and Kosovan Patients. J. Clin. Med. 2024, 13, 7013. https://doi.org/10.3390/jcm13237013
Shoshi F, Shoshi F, Xhafa A, Nagy ZZ. Refractive Outcomes After Cataract Surgery—The Impact of Preoperative Visual Acuity, the Intraocular Lens Model, and the Surgeon’s Experience: An Empirical Analysis of Hungarian and Kosovan Patients. Journal of Clinical Medicine. 2024; 13(23):7013. https://doi.org/10.3390/jcm13237013
Chicago/Turabian StyleShoshi, Flaka, Fitore Shoshi, Agim Xhafa, and Zoltán Zsolt Nagy. 2024. "Refractive Outcomes After Cataract Surgery—The Impact of Preoperative Visual Acuity, the Intraocular Lens Model, and the Surgeon’s Experience: An Empirical Analysis of Hungarian and Kosovan Patients" Journal of Clinical Medicine 13, no. 23: 7013. https://doi.org/10.3390/jcm13237013
APA StyleShoshi, F., Shoshi, F., Xhafa, A., & Nagy, Z. Z. (2024). Refractive Outcomes After Cataract Surgery—The Impact of Preoperative Visual Acuity, the Intraocular Lens Model, and the Surgeon’s Experience: An Empirical Analysis of Hungarian and Kosovan Patients. Journal of Clinical Medicine, 13(23), 7013. https://doi.org/10.3390/jcm13237013