Can Preoperative Hounsfield Unit Measurement Help Predict Mechanical Failure in Metastatic Spinal Tumor Surgery?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Variables
2.3. Demographic Factors
2.4. Tumor-Related Factors
2.5. Radiological Assessment
2.6. Mechanical Failures
2.7. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Radiological Characteristics
3.3. Surgical Characteristics
3.4. Logistic Regression and ROC Analyses
3.5. Case Analysis
3.5.1. Case 1
3.5.2. Case 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayashi, K.; Tsuchiya, H. The role of surgery in the treatment of metastatic bone tumor. Int. J. Clin. Oncol. 2022, 27, 1238–1246. [Google Scholar] [CrossRef]
- Vrionis, F.D.; Small, J. Surgical management of metastatic spinal neoplasms. Neurosurg. Focus 2003, 15, E12. [Google Scholar] [CrossRef] [PubMed]
- Healey, J.H.; Brown, H.K. Complications of bone metastases: Surgical management. Cancer 2000, 88, 2940–2951. [Google Scholar] [CrossRef]
- Wu, X.; Ye, Z.; Pu, F.; Chen, S.; Wang, B.; Zhang, Z.; Yang, C.; Yang, S.; Shao, Z. Palliative Surgery in Treating Painful Metastases of the Upper Cervical Spine: Case Report and Review of the Literature. Medicine 2016, 95, e3558. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zhao, Y.; Tang, X.; Yang, R.; Yan, T.; Guo, W. Factors associated with spinal fixation mechanical failure after tumor resection: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2022, 17, 110. [Google Scholar] [CrossRef]
- Yee, T.J.; Saadeh, Y.S.; Strong, M.J.; Ward, A.L.; Elswick, C.M.; Srinivasan, S.; Park, P.; Oppenlander, M.E.; Spratt, D.E.; Jackson, W.C.; et al. Survival, fusion, and hardware failure after surgery for spinal metastatic disease. J. Neurosurg. Spine 2021, 34, 665–672. [Google Scholar] [CrossRef]
- Liu, J.K.; Apfelbaum, R.I.; Schmidt, M.H. Surgical management of cervical spinal metastasis: Anterior reconstruction and stabilization techniques. Neurosurg. Clin. N. Am. 2004, 15, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.U.; Park, W.T.; Chang, M.C.; Lee, G.W. Diagnostic Technology for Spine Pathology. Asian Spine J. 2022, 16, 764–775. [Google Scholar] [CrossRef]
- Kim, Y.H.; Ha, K.Y.; Kim, Y.S.; Kim, K.W.; Rhyu, K.W.; Park, J.B.; Shin, J.H.; Kim, Y.Y.; Lee, J.S.; Park, H.Y.; et al. Lumbar Interbody Fusion and Osteobiologics for Lumbar Fusion. Asian Spine J. 2022, 16, 1022–1033. [Google Scholar] [CrossRef]
- Park, S.J.; Park, J.S.; Lee, C.S.; Kang, B.J.; Jung, C.W. Trends in Survival and Surgical Methods in Patients Surgically Treated for Metastatic Spinal Tumors: 25-Year Experience in a Single Institution. Clin. Orthop. Surg. 2023, 15, 109–117. [Google Scholar] [CrossRef]
- Shin, H.K.; Kim, M.; Lee, S.; Lee, J.J.; Park, D.; Jeon, S.R.; Roh, S.W.; Park, J.H. Surgical strategy for metastatic spinal tumor patients with surgically challenging situation. Medicine 2022, 101, e29560. [Google Scholar] [CrossRef]
- Rothrock, R.J.; Barzilai, O.; Reiner, A.S.; Lis, E.; Schmitt, A.M.; Higginson, D.S.; Yamada, Y.; Bilsky, M.H.; Laufer, I. Survival Trends After Surgery for Spinal Metastatic Tumors: 20-Year Cancer Center Experience. Neurosurgery 2021, 88, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Galgano, M.; Fridley, J.; Oyelese, A.; Telfian, A.; Kosztowski, T.; Choi, D.; Gokaslan, Z.L. Surgical management of spinal metastases. Expert Rev. Anticancer. Ther. 2018, 18, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Kane, L.T.; Fang, T.; Galetta, M.S.; Goyal, D.K.C.; Nicholson, K.J.; Kepler, C.K.; Vaccaro, A.R.; Schroeder, G.D. Propensity Score Matching: A Statistical Method. Clin. Spine Surg. 2020, 33, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Muheremu, A.; Sun, Z.; Zhong, W.; Jiang, S.; Li, W. Computed tomography Hounsfield unit-based prediction of pedicle screw loosening after surgery for degenerative lumbar spine disease. J. Neurosurg. Spine 2020, 32, 716–721. [Google Scholar] [CrossRef]
- Sakai, Y.; Takenaka, S.; Matsuo, Y.; Fujiwara, H.; Honda, H.; Makino, T.; Kaito, T. Hounsfield unit of screw trajectory as a predictor of pedicle screw loosening after single level lumbar interbody fusion. J. Orthop. Sci. 2018, 23, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Courtois, E.C.; Ohnmeiss, D.D.; Guyer, R.D. Assessing lumbar vertebral bone quality: A methodological evaluation of CT and MRI as alternatives to traditional DEXA. Eur. Spine J. 2023, 32, 3176–3182. [Google Scholar] [CrossRef]
- Fisher, C.G.; Schouten, R.; Versteeg, A.L.; Boriani, S.; Varga, P.P.; Rhines, L.D.; Kawahara, N.; Fourney, D.; Weir, L.; Reynolds, J.J. Reliability of the Spinal Instability Neoplastic Score (SINS) among radiation oncologists: An assessment of instability secondary to spinal metastases. Radiat. Oncol. 2014, 9, 69. [Google Scholar] [CrossRef]
- Jacobs, E.; van Royen, B.J.; van Kuijk, S.M.; Merk, J.M.; Stadhouder, A.; van Rhijn, L.W.; Willems, P.C. Prediction of mechanical complications in adult spinal deformity surgery—The GAP score versus the Schwab classification. Spine J. 2019, 19, 781–788. [Google Scholar] [CrossRef]
- Carrwik, C.; Olerud, C.; Robinson, Y. Survival after surgery for spinal metastatic disease: A nationwide multiregistry cohort study. BMJ Open 2021, 11, e049198. [Google Scholar] [CrossRef]
- Hong, S.H.; Chang, B.S.; Kim, H.; Kang, D.H.; Chang, S.Y. An Updated Review on the Treatment Strategy for Spinal Metastasis from the Spine Surgeon’s Perspective. Asian Spine J. 2022, 16, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Amankulor, N.M.; Xu, R.; Iorgulescu, J.B.; Chapman, T.; Reiner, A.S.; Riedel, E.; Lis, E.; Yamada, Y.; Bilsky, M.; Laufer, I. The incidence and patterns of hardware failure after separation surgery in patients with spinal metastatic tumors. Spine J. 2014, 14, 1850–1859. [Google Scholar] [CrossRef]
- Groenen, K.H.; Pouw, M.H.; Hannink, G.; Hosman, A.J.; van der Linden, Y.M.; Verdonschot, N.; Tanck, E. The effect of radiotherapy, and radiotherapy combined with bisphosphonates or RANK ligand inhibitors on bone quality in bone metastases. A systematic review. Radiother. Oncol. 2016, 119, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lee, K.H.; Lee, C.S.; Jung, J.Y.; Park, J.H.; Kim, G.L.; Kim, K.T. Instrumented surgical treatment for metastatic spinal tumors: Is fusion necessary? J. Neurosurg. Spine 2020, 32, 456–464. [Google Scholar] [CrossRef]
- Yao, Y.C.; Chao, H.; Kao, K.Y.; Lin, H.H.; Wang, S.T.; Chang, M.C.; Liu, C.L.; Chou, P.H. CT Hounsfield unit is a reliable parameter for screws loosening or cages subsidence in minimally invasive transforaminal lumbar interbody fusion. Sci. Rep. 2023, 13, 1620. [Google Scholar] [CrossRef]
- Shu, L.; Wang, X.; Li, L.; Aili, A.; Zhang, R.; Liu, W.; Muheremu, A. Computed Tomography-Based Prediction of Lumbar Pedicle Screw Loosening. Biomed. Res. Int. 2023, 2023, 8084597. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Sun, C.; Jiang, J.; Lu, F.; Xia, X.; Wang, H.; Zou, F.; Ma, X. A study of screw placement to obtain the optimal pull-out resistance of lumbar pedicle screws-analysis of Hounsfield units measurements based on computed tomography. BMC Musculoskelet. Disord. 2022, 23, 124. [Google Scholar] [CrossRef]
- Nishi, M.; Okano, I.; Yoshikawa, Y.; Tochio, H.; Usui, Y.; Inagaki, K. Relationship Between Acetabular Hounsfield Unit Values and Periprosthetic Fractures in Cementless Total Hip Arthroplasty: A Matched Case-Control Study. Arthroplast. Today 2022, 14, 216–222.e211. [Google Scholar] [CrossRef]
- Ishibashi, S.; Nakasa, T.; Ikuta, Y.; Kawabata, S.; Moriwaki, D.; Sakurai, S.; Adachi, N. The Hounsfield Unit Values of Talar Subchondral Bone Predict Articular Cartilage Degeneration in Patients with Ankle Osteoarthritis. Foot Ankle Int. 2024, 45, 1292–1301. [Google Scholar] [CrossRef]
- Tse, C.B.; Mandler, S.I.; Crawford, H.A.; Field, A.J.F. Risk factors for distal construct failure in posterior spinal instrumented fusion for adolescent idiopathic scoliosis: A retrospective cohort study. Spine Deform. 2023, 11, 1169–1176. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, X.; Zeng, Y.; Chen, Z.; Li, W. Incidence, Risk, and Outcome of Pedicle Screw Loosening in Degenerative Lumbar Scoliosis Patients Undergoing Long-Segment Fusion. Glob. Spine J. 2023, 13, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.A.; Tan, J.H.; Zaw, A.S.; Tan, J.Y.H.; Hey, H.W.D.; Kumar, N. Evaluation of Prognostic Factors and Proposed Changes to the Modified Tokuhashi Score in Patients with Spinal Metastases from Breast Cancer. Spine 2018, 43, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Viezens, L.; Sellenschloh, K.; Püschel, K.; Morlock, M.M.; Lehmann, W.; Huber, G.; Weiser, L. Impact of Screw Diameter on Pedicle Screw Fatigue Strength-A Biomechanical Evaluation. World Neurosurg. 2021, 152, e369–e376. [Google Scholar] [CrossRef] [PubMed]
- Moussazadeh, N.; Rubin, D.G.; McLaughlin, L.; Lis, E.; Bilsky, M.H.; Laufer, I. Short-segment percutaneous pedicle screw fixation with cement augmentation for tumor-induced spinal instability. Spine J. 2015, 15, 1609–1617. [Google Scholar] [CrossRef]
- Barzilai, O.; McLaughlin, L.; Lis, E.; Reiner, A.S.; Bilsky, M.H.; Laufer, I. Utility of Cement Augmentation via Percutaneous Fenestrated Pedicle Screws for Stabilization of Cancer-Related Spinal Instability. Oper. Neurosurg. 2019, 16, 593–599. [Google Scholar] [CrossRef]
- Elder, B.D.; Lo, S.F.; Holmes, C.; Goodwin, C.R.; Kosztowski, T.A.; Lina, I.A.; Locke, J.E.; Witham, T.F. The biomechanics of pedicle screw augmentation with cement. Spine J. 2015, 15, 1432–1445. [Google Scholar] [CrossRef]
- Morimoto, T.; Kobayashi, T.; Hirata, H.; Tsukamoto, M.; Yoshihara, T.; Toda, Y.; Mawatari, M. Cardiopulmonary Cement Embolism Following Cement-Augmented Pedicle Screw Fixation: A Narrative Review. Medicina 2023, 59, 407. [Google Scholar] [CrossRef]
- Kulkarni, A.G.; Thonangi, Y.; Pathan, S.; Gunjotikar, S.; Goparaju, P.; Talwar, I.; Jaggi, S.; Shah, S.; Shah, N.; Kursija, G. Should Q-CT Be the Gold Standard for Detecting Spinal Osteoporosis? Spine 2022, 47, E258–E264. [Google Scholar] [CrossRef]
- Lee, Y.S.; Hong, N.; Witanto, J.N.; Choi, Y.R.; Park, J.; Decazes, P.; Eude, F.; Kim, C.O.; Chang Kim, H.; Goo, J.M.; et al. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment. Clin. Nutr. 2021, 40, 5038–5046. [Google Scholar] [CrossRef]
Non-F Group | F Group | p | |
---|---|---|---|
(n = 72) | (n = 24) | ||
Age | 58.4 ± 12.9 | 57.8 ± 13.1 | 0.856 |
Sex | 1 | ||
Male | 44 (61.1%) | 14 (58.3%) | |
Female | 28 (38.9%) | 10 (41.7%) | |
Height | 164.8 ± 9.5 | 166.6 ± 8.6 | 0.404 |
Weight | 61.9 ± 10.3 | 64.7 ± 11.1 | 0.275 |
BMI | 23.9 ± 6.5 | 23.3 ± 3.9 | 0.630 |
BMD | −1.9 ± 1.5 | −2.1 ± 1.9 | 0.721 |
Follow-up period (months) | 15.4 ± 15.8 | 21.6 ± 18.8 | 0.121 |
Involved vertebral bodies | 0.731 | ||
1 | 27 (36.1%) | 8 (33.3%) | |
2 | 9 (12.5%) | 5 (20.8%) | |
≥3 | 36 (50.0%) | 11 (45.8%) | |
Pathologic fracture | 53 (73.6%) | 19 (79.2%) | 0.785 |
Number of other bone lesions | 1.1 ± 1.9 | 1.5 ± 3.5 | 0.551 |
Major organ metastasis | 44 (61.1%) | 17 (70.9%) | 0.529 |
Mode of surgery | 0.701 | ||
Fixation only | 5 (6.9%) | 1 (4.2%) | |
Decompression and fixation | 46 (63.9%) | 14 (58.3%) | |
Corpectomy and fixation | 21 (29.2%) | 9 (37.5%) | |
PreopRT | 24 (33.3%) | 13 (54.2%) | 0.115 |
PostopRT | 50 (69.4%) | 18 (75.0%) | 0.795 |
Case No. | Sex/Age | Tumor Origin | Location | Mode of Surgery | No. of Laminectomy | Fixation Levels | Screws in Tumor | Failure Type | Time for Failure (Months) | Reoperation |
---|---|---|---|---|---|---|---|---|---|---|
1 | M/50 | Kidney | T5 | Decompression and fixation | 1 | 4 | 0 | Failure c tumor recur | 12 | Yes |
2 | F/36 | Breast | T12–L1 | Fixation only | 0 | 6 | 12 | Failure | 6 | Yes |
3 | F/59 | Lung | T12 | Decompression and fixation | 2 | 5 | 6 | Failure c tumor recur | 27 | Yes |
4 | F/48 | Kidney | T4 | Corpectomy and fixation | 1 | 4 | 0 | Failure c tumor recur | 17 | Yes |
5 | M/57 | Liver | C2 | Decompression and fixation | 1 | 2 | 0 | Failure | 1 | Yes |
6 | M/71 | Chondrosarcoma | T11 | Corpectomy and fixation | 2 | 4 | 1 | Failure c tumor recur | 1 | Yes |
7 | M/72 | Bladder | L3 | Corpectomy and fixation | 3 | 2.5 | 3 | Failure c fracture | 1 | No |
8 | F/71 | Kidney | T6 | Corpectomy and fixation | 1 | 4 | 0 | Failure | 2 | Yes |
9 | M/71 | MUO | L3–4 | Decompression and fixation | 3 | 4 | 0 | Failure c tumor recur | 10 | Yes |
10 | F/27 | Chondrosarcoma | T9 | Decompression and fixation | 5 | 2.5 | 0 | Failure c fracture | 0.25 | Yes |
11 | F/47 | Breast | L1 | Decompression and fixation | 1 | 2.5 | 3 | Failure c tumor recur | 2 | No |
12 | F/56 | Lung | L2,3 | Decompression and fixation | 3 | 3 | 1 | Failure c fracture | 2 | Yes |
13 | M/75 | Lung | L4 | Decompression and fixation | 2 | 2.5 | 1 | Failure | 3 | No |
14 | F/60 | Lung | L2–3 | Decompression and fixation | 2 | 5 | 5 | Failure c tumor recur | 14 | Yes |
15 | F/72 | Lung | T11–L1 | Corpectomy and fixation | 4 | 6 | 2 | Failure | 6 | No |
16 | M/69 | HCC | T11 | Corpectomy and fixation | 0 | 2 | 0 | Failure c tumor recur | 5 | Yes |
17 | M/49 | Lung | T8–9 | Decompression and fixation | 3 | 5 | 2 | Failure c fracture | 3 | Yes |
18 | M/70 | Liver | T10 | Corpectomy and fixation | 2 | 4 | 0 | Failure c fracture | 14 | No |
19 | F/40 | Breast | L4 | Decompression and fixation | 2 | 6 | 4 | Failure | 6 | Yes |
20 | M/44 | Thymus | T9 | Corpectomy and fixation | 3 | 5 | 0 | Failure c fracture | 18 | Yes |
21 | M/63 | Kidney | L4 | Decompression and fixation | 1 | 4 | 0 | Rod breakage | 14 | Yes |
22 | M/70 | Lung | L5 | Decompression and fixation | 1 | 4.5 | 3 | Failure | 5 | Yes |
23 | M/56 | Prostate | L3 | Decompression and fixation | 1 | 6 | 4 | Failure | 3 | Yes |
24 | M/55 | Lung | L1 | Corpectomy and fixation | 1 | 4 | 0 | Rod breakage | 26 | Yes |
Non-F Group | F Group | p | |
---|---|---|---|
(n = 72) | (n = 24) | ||
Bilsky grade | 0.312 | ||
0 | 2 (2.8%) | 3 (12.5%) | |
1 | 8 (11.1%) | 3 (12.5%) | |
2 | 20 (27.8%) | 6 (25.0%) | |
3 | 42 (58.3%) | 12 (50.0%) | |
SINS | 10.3 ± 3.5 | 11.4 ± 3.0 | 0.208 |
Location | 0.21 | ||
Semi-rigid | 29 (40.3%) | 7 (29.2%) | |
Mobile spine | 12 (16.7%) | 8 (33.3%) | |
Junctional | 31 (43.1%) | 9 (37.5%) | |
Pain | 0.699 | ||
Pain-free | 7 (9.7%) | 1 (4.3%) | |
Occasional but not mechanical | 16 (22.2%) | 6 (26.1%) | |
Yes | 49 (68.1%) | 16 (69.6%) | |
Bone lesion | 0.813 | ||
Blastic | 10 (13.9%) | 2 (8.3%) | |
Mixed | 7 (9.7%) | 3 (12.5%) | |
Lytic | 55 (76.0%) | 19 (79.2%) | |
Alignment | 0.627 | ||
Normal alignment | 42 (58.3%) | 13 (54.2%) | |
De novo deformity | 28 (38.9%) | 11 (45.8%) | |
Subluxation/translation | 2 (2.8%) | 0 (0.0%) | |
VB collapse | 0.652 | ||
None | 11 (15.3%) | 3 (12.5%) | |
No collapse with >50% body involved | 14 (19.4%) | 4 (16.7%) | |
<50% collapse | 27 (37.5%) | 7 (29.2%) | |
>50% collapse | 20 (27.8%) | 10 (41.7%) | |
Posterolateral involvement | 0.82 | ||
None | 8 (11.1%) | 2 (8.3%) | |
Unilateral | 21 (29.2%) | 9 (37.5%) | |
Bilateral | 43 (58.3%) | 13 (54.2%) | |
UIV HUs | 191.1 ± 79.2 | 161.0 ± 58.5 | 0.115 |
LIV HUs | 178.9 ± 84.5 | 142.2 ± 62.2 | 0.042 * |
Non-F Group | F Group | p | |
---|---|---|---|
(n = 72) | (n = 24) | ||
Laminectomy levels | 1.7 ± 1.2 | 1.9 ± 1.2 | 0.629 |
Fixation levels | 3.7 ± 1.3 | 4.1 ± 1.3 | 0.279 |
Screws in tumor | 1.0 ± 2.0 | 2.0 ± 2.8 | 0.139 |
No. of rods | 2.0 ± 0.3 | 1.9 ± 0.2 | 0.503 |
No. of cemented screws | 0.05 ± 0.4 | 0.2 ± 1.0 | 0.251 |
Symptomatic local recurrence | 20 (27.8%) | 12 (50.0%) | 0.08 |
Time for symptomatic local recurrence | 6.0 ± 8.4 | 9.6 ± 8.6 | 0.254 |
Reoperation | 24 (33.3%) | 19 (79.2%) | <0.001 * |
Estimate | Std. Error | z Value | Pr (>|z|) | OR | lcl | ucl | |
---|---|---|---|---|---|---|---|
Age | 0.001 | 0.0178 | 0.06 | 0.956 | 1 | 0.97 | 1.04 |
BMI | −0.0178 | 0.0463 | −0.39 | 0.7 | 0.98 | 0.88 | 1.06 |
PreopRT | 0.8408 | 0.4753 | 1.77 | 0.077 | 2.32 | 0.92 | 5.99 |
Bilsky grade | −0.3424 | 0.2543 | −1.35 | 0.178 | 0.71 | 0.43 | 1.18 |
SINS | 0.0906 | 0.0759 | 1.19 | 0.233 | 1.09 | 0.95 | 1.28 |
Mode of surgery | 0.3228 | 0.4231 | 0.76 | 0.445 | 1.38 | 0.6 | 3.21 |
Laminectomy levels | 0.1114 | 0.1921 | 0.58 | 0.562 | 1.12 | 0.76 | 1.62 |
Fixation levels | 0.1943 | 0.1765 | 1.1 | 0.271 | 1.21 | 0.86 | 1.73 |
No. of cemented screws | 0.3574 | 0.3414 | 1.05 | 0.295 | 1.43 | 0.7 | 3.37 |
No. of rods | −0.5444 | 0.8247 | −0.66 | 0.509 | 0.58 | 0.09 | 3.42 |
Screws in tumor | 0.1778 | 0.0976 | 1.82 | 0.068 | 1.19 | 0.99 | 1.46 |
UIV HUs | −0.0059 | 0.0038 | −1.54 | 0.124 | 0.99 | 0.99 | 1 |
LIV HUs | −0.0051 | 0.0036 | −1.43 | 0.153 | 0.99 | 0.99 | 1 |
(Intercept) | 1.3423 | 0.9957 | 1.35 | 0.178 | 3.83 | 0.58 | 30.49 |
Bilsky grade | −0.4757 | 0.2865 | −1.66 | 0.097 | 0.62 | 0.35 | 1.09 |
LIV HUs | −0.01 | 0.0048 | −2.08 | 0.037 * | 0.99 | 0.98 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.R.; Cho, J.H.; Seok, S.Y.; Kim, S.; Cho, D.W.; Yang, J.H. Can Preoperative Hounsfield Unit Measurement Help Predict Mechanical Failure in Metastatic Spinal Tumor Surgery? J. Clin. Med. 2024, 13, 7017. https://doi.org/10.3390/jcm13237017
Lee HR, Cho JH, Seok SY, Kim S, Cho DW, Yang JH. Can Preoperative Hounsfield Unit Measurement Help Predict Mechanical Failure in Metastatic Spinal Tumor Surgery? Journal of Clinical Medicine. 2024; 13(23):7017. https://doi.org/10.3390/jcm13237017
Chicago/Turabian StyleLee, Hyung Rae, Jae Hwan Cho, Sang Yun Seok, San Kim, Dae Wi Cho, and Jae Hyuk Yang. 2024. "Can Preoperative Hounsfield Unit Measurement Help Predict Mechanical Failure in Metastatic Spinal Tumor Surgery?" Journal of Clinical Medicine 13, no. 23: 7017. https://doi.org/10.3390/jcm13237017
APA StyleLee, H. R., Cho, J. H., Seok, S. Y., Kim, S., Cho, D. W., & Yang, J. H. (2024). Can Preoperative Hounsfield Unit Measurement Help Predict Mechanical Failure in Metastatic Spinal Tumor Surgery? Journal of Clinical Medicine, 13(23), 7017. https://doi.org/10.3390/jcm13237017