Association of CHD8 Gene Polymorphic Variants with the Clinical Phenotype of Autism Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Genetic Analysis
2.3. Statistical Analysis
3. Results
3.1. Functionality Analysis of Studied Polymorphisms
3.2. Allele Transmission in an Intrafamily Model
3.3. Association of CHD8 Gene Polymorphisms with Clinical Features of ASD
3.4. The rs35057134 Polymorphism
3.5. The rs10467770 Polymorphism
3.6. The rs7148741 Polymorphism
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siu, M.T.; Butcher, D.T.; Turinsky, A.L.; Cytrynbaum, C.; Stavropoulos, D.J.; Walker, S.; Caluseriu, O.; Carter, M.; Lou, Y.; Nicolson, R.; et al. Functional DNA methylation signatures for autism spectrum disorder genomic risk loci: 16p11.2 deletions and CHD8 variants. Clin. Epigenetics 2019, 11, 103. [Google Scholar] [CrossRef]
- Rylaarsdam, L.; Guemez-Gamboa, A. Genetic Causes and Modifiers of Autism Spectrum Disorder. Front. Cell. Neurosci. 2019, 13, 385. [Google Scholar] [CrossRef]
- Weissberg, O.; Elliott, E. The Mechanisms of CHD8 in Neurodevelopment and Autism Spectrum Disorders. Genes 2021, 12, 1133. [Google Scholar] [CrossRef]
- Hoffmann, A.; Spengler, D. Chromatin Remodeler CHD8 in Autism and Brain Development. J. Clin. Med. 2021, 10, 366. [Google Scholar] [CrossRef]
- Haddad Derafshi, B.; Danko, T.; Chanda, S.; Batista, P.J.; Litzenburger, U.; Lee, Q.Y.; Ng, Y.H.; Sebin, A.; Chang, H.Y.; Südhof, T.C.; et al. The autism risk factor CHD8 is a chromatin activator in human neurons and functionally dependent on the ERK-MAPK pathway effector ELK1. Sci. Rep. 2022, 12, 22425. [Google Scholar] [CrossRef]
- Sugathan, A.; Biagioli, M.; Golzio, C.; Erdin, S.; Blumenthal, I.; Manavalan, P.; Ragavendran, A.; Brand, H.; Lucente, D.; Miles, J.; et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc. Natl. Acad. Sci. USA. 2014, 111, E4468–E4477. [Google Scholar] [CrossRef]
- Alotaibi, M.; Ramzan, K. A de novo variant of CHD8 in a patient with autism spectrum disorder. Discoveries 2020, 8, e107. [Google Scholar] [CrossRef]
- da Costa, G.E.; Fernandes, G.L.; Rodrigues, J.C.; da VB Leal, D.F.; Pastana, L.F.; Pereira, E.E.B.; Assumpção, P.P.; Burbano, R.M.R.; Dos Santos, S.E.B.; Guerreiro, J.F.; et al. Exome Evaluation of Autism-Associated Genes in Amazon American Populations. Genes 2022, 13, 368. [Google Scholar] [CrossRef]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef]
- Shiota, Y.; Nishiyama, T.; Yokoyama, S.; Yoshimura, Y.; Hasegawa, C.; Tanaka, S.; Iwasaki, S.; Kikuchi, M. Association of genetic variants with autism spectrum disorder in Japanese children revealed by targeted sequencing. Front. Genet. 2024, 15, 1352480. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, A.; Vasaghi-Gharamaleki, B.; Samadi, S.A.; Amiri-Shavaki, Y.; Alaghband-Rad, J. Working Memory Deficits and its Relationship to Autism Spectrum Disorders. Iran J. Med. Sci. 2020, 45, 100–109. [Google Scholar] [CrossRef]
- Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2013, 31, 3555–3557. [Google Scholar] [CrossRef]
- Kanne, S.M.; Randolph, J.K.; Farmer, J.E. Diagnostic and assessment findings: A bridge to academic planning for children with autism spectrum disorders. Neuropsychol. Rev. 2008, 18, 367–384. [Google Scholar] [CrossRef]
- Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef]
- Kircher, M.; Witten, D.M.; Jain, P.; O’roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M.; et al. The structure of haplotype blocks in the human genome. Science 2002, 296, 2225–2229. [Google Scholar] [CrossRef]
- Menyhart, O.; Weltz, B.; Győrffy, B. MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction. PLoS ONE 2021, 16, e0245824. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://gtexportal.org/home/ (accessed on 14 November 2024).
- Wang, P.; Lin, M.; Pedrosa, E.; Hrabovsky, A.; Zhang, Z.; Guo, W.; Lachman, H.M.; Zheng, D. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol. Autism 2015, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Dingemans, A.J.M.; Truijen, K.M.G.; van de Ven, S.; Bernier, R.; Bongers, E.M.H.F.; Bouman, A.; de Graaff-Herder, L.; Eichler, E.E.; Gerkes, E.H.; De Geus, C.M.; et al. The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl. Psychiatry 2022, 12, 421. [Google Scholar] [CrossRef] [PubMed]
- Douzgou, S.; Liang, H.W.; Metcalfe, K.; Somarathi, S.; Tischkowitz, M.; Mohamed, W.; Kini, U.; McKee, S.; Yates, L.; Bertoli, M.; et al. The clinical presentation caused by truncating CHD8 variants. Clin. Genet. 2019, 96, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Petkova, M.; Morales-Gonzalez, S.; Gimber, N.; Schmoranzer, J.; Meisel, A.; Böhmerle, W.; Stenzel, W.; Schuelke, M.; Schwarz, J.M. A spontaneous missense mutation in the chromodomain helicase DNA-binding protein 8 (CHD8) gene: A novel association with congenital myasthenic syndrome. Neuropathol. Appl. Neurobiol. 2020, 46, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Gabis, L.V.; Shaham, M.; Leon Attia, O.; Shefer, S.; Rosenan, R.; Gabis, T.; Daloya, M. The Weak Link: Hypotonia in Infancy and Autism Early Identification. Front. Neurol. 2021, 12, 612674. [Google Scholar] [CrossRef] [PubMed]
- Pineda, R.G.; Neil, J.; Dierker, D.; Smyser, C.D.; Wallendorf, M.; Kidokoro, H.; Reynolds, L.C.; Walker, S.; Rogers, C.; Mathur, A.M.; et al. Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. J. Pediatr. 2014, 164, 52–60.e2. [Google Scholar] [CrossRef]
- Lagercrantz, H. Are extremely preterm born children with autism the victims of too much isolation in the incubator? Acta Paediatr. 2017, 106, 1246–1247. [Google Scholar] [CrossRef]
- Aguilar-Arnal, L.; Sassone-Corsi, P. The circadian epigenome: How metabolism talks to chromatin remodeling. Curr. Opin. Cell. Biol. 2013, 25, 170–176. [Google Scholar] [CrossRef]
- Coll-Tané, M.; Gong, N.N.; Belfer, S.J.; van Renssen, L.V.; Kurtz-Nelson, E.C.; Szuperak, M.; Eidhof, I.; van Reijmersdal, B.; Terwindt, I.; Durkin, J.; et al. The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. Sci. Adv. 2021, 7, eabe2626. [Google Scholar] [CrossRef]
- Earl, R.K.; Ward, T.; Gerdts, J.; Eichler, E.E.; Bernier, R.A.; Hudac, C.M. Sleep Problems in Children with ASD and Gene Disrupting Mutations. J. Genet. Psychol. 2021, 182, 317–334. [Google Scholar] [CrossRef]
- Veatch, O.J.; Maxwell-Horn, A.C.; Malow, B.A. Sleep in Autism Spectrum Disorders. Curr. Sleep Med. Rep. 2015, 1, 131–140. [Google Scholar] [CrossRef]
- Shaffer, J.P. Multiple Hypothesis Testing. Ann. Rev. Psychol. 1995, 46, 561–584. [Google Scholar] [CrossRef]
Characteristics (n of Subjects Analyzed for Parameter) | ASD Children | Males | Females |
---|---|---|---|
mean ± SD | mean ± SD | mean ± SD | |
- age (n = 209), [months] | 87.08 ± 32.75 | 89.05 ± 32.62 | 79.89 ± 32.56 * |
- birth weight (n = 204), [kg] | 3.37 ± 0.61 | 3.42 ± 0.60 | 3.22 ± 0.59 * |
- duration of pregnancy (n = 200), [weeks] | 38.70 ± 2.17 | 38.71 ± 2.14 | 38.67 ± 2.32 |
- Apgar score (n = 201), [points] | 9.27 ± 1.40 | 9.24 ± 1.46 | 9.39 ± 1.17 |
- time of incubator use (n = 196), [h] | 28.57 ± 184.67 | 21.56 ± 106.77 | 55.07 ± 348.50 |
n (%) | n (%) | n (%) | |
- sex (n = 210) | 210 (100) | 165 (78.64) | 45 (21.36) |
- perinatal trauma (n = 206) | 9 (4.37) | 6 (2.91) | 3 (1.46) |
- excessively calm infant (n = 189) | 34 (17.99) | 24 (12.70) | 10 (5.29) |
- restless infant (n = 189) | 76 (40.21) | 63 (33.33) | 13 (6.88) |
- abnormal motor development (n = 193) | 82 (39.80) | 64 (33.16) | 18 (9.33) |
- muscle hypertonia (n = 196) | 38 (19.39) | 33 (16.84) | 5 (2.55) |
- muscle hypotonia (n = 193) | 69 (35.75) | 51 (26.42) | 18 (9.33) |
- regression in communication (n = 198) | 79 (39.90) | 65 (32.83) | 14 (7.07) |
- impairment in eye contact (n = 199) | 158 (79.40) | 122 (61.31) | 36 (18.09) |
- compulsive, ritualistic behavior (n = 191) | 143 (74.87) | 112 (58.64) | 31 (16.23) |
- self-aggressive behavior (n = 199) | 80 (40.20) | 59 (29.65) | 21 (10.55) |
- hearing impairments (n = 197) | 32 (16.24) | 25 (12.69) | 7 (3.55) |
- vision impairments (n = 195) | 54 (27.69) | 45 (23.08) | 9 (4.61) |
- sleep impairments (n = 200) | 97 (48.50) | 71 (35.50) | 26 (13.00) |
- falling asleep impairments (n = 195) | 60 (30.77) | 45 (23.08) | 15 (7.69) |
- mobility/vitality (n = 189) | 146 (77.25) | 119 (62.96) | 27 (14.29) * |
Genotype | Genotype Distribution, n (%) | ||
---|---|---|---|
Children | Mothers | Fathers | |
rs7148741 n | 180 | 179 | 178 |
AA | 111 (61.67) | 117 (65.36) | 120 (67.42) |
AG | 62 (34.44) | 53 (29.61) | 52 (29.21) |
GG | 7 (3.89) | 9 (5.03) | 6 (3.37) |
A | 284 (78.89) | 287 (80.17) | 292 (80.22) |
G | 76 (21.11) | 71 (19.83) | 64 (19.78) |
rs35057134 n | 183 | 182 | 183 |
AA | 81 (44.26) | 78 (42.86) | 77 (42.08) |
AD | 83 (45.35) | 77 (42.31) | 86 (48.63) |
DD | 19 (10.39) | 27 (14.83) | 20 (9.29) |
A | 245 (66.94) | 233 (64.01) | 240 (65.57 |
D | 121 (33.06) | 131 (35.99) | 126 (34.43) |
rs10467770 n | 181 | 183 | 183 |
CC | 83 (45.86) | 85 (46.45) | 86 (46.99) |
CT | 82 (45.30) | 72 (39.34) | 77 (42.08) |
TT | 16 (8.84) | 26 (14.21) | 20 (10.93) |
C | 248 (68.51) | 242 (66.12) | 249 (68.03) |
T | 114 (31.49) | 124 (33.88) | 117 (31.97) |
SNP | Allele | Transmitted n (%) | Not Transmitted n (%) | χ2; p |
---|---|---|---|---|
rs7148741 * | A | 45 (44.12) | 57 (55.88) | 1.41; 0.235 |
G | 57 (55.88) | 45 (44.12) | 1.41; 0.235 | |
rs35057134 ** | A | 85 (54.49) | 71 (45.51) | 1.26; 0.262 |
D | 71 (45.51) | 85 (54.49) | 1.26; 0.262 | |
rs10467770 *** | C | 77 (53.47) | 67 (46.53) | 0.69; 0.405 |
T | 67 (46.53) | 77 (53.47) | 0.69; 0.405 |
Characteristics (n of Subjects Analyzed for Parameter) | Genotypes | p | |||||||
---|---|---|---|---|---|---|---|---|---|
AA | AD | DD | Additive Model | Recessive/Dominant AA vs. AD/DD | |||||
n | % | n | % | n | % | ||||
The need to use an incubator (n = 180) | Yes | 15 | 75.00 | 5 | 25.00 | 0 | 0.00 | 0.008 § | 0.003 1,*,§ |
No | 64 | 40.00 | 77 | 48.13 | 19 | 11.88 | |||
Sleep disorders (n = 174) | Yes | 44 | 42.38 | 35 | 41.67 | 5 | 5.95 | 0.037 | 0.032 2 |
No | 33 | 36.26 | 44 | 48.35 | 13 | 15.38 | |||
Heart rate fluctuations (n = 173) | Yes | 13 | 72.22 | 4 | 22.22 | 1 | 5.56 | 0.044 | 0.012 3,*,§ |
No | 64 | 41.29 | 73 | 47.10 | 18 | 11.61 | |||
Hospitalization (n = 150) | Yes | 53 | 50.48 | 38 | 36.19 | 14 | 13.33 | 0.017 § | 0.034 4 |
No | 22 | 33.85 | 38 | 58.46 | 5 | 7.69 | |||
Mean | ±SD | Mean | ±SD | Mean | ±SD | AA/AD vs. DD | |||
Apgar score [points] (n = 176) | 9.00 | 1.56 | 9.25 | 1.49 | 9.89 | 0.32 | 0.017 § | 0.009 § | |
AA vs. AD/DD | |||||||||
Incubator use [h] (n = 172) | 33.90 | 137.28 | 34.41 | 255.11 | 0.00 | 0.00 | 0.035 | 0.033 |
Sex (n of Subjects Analyzed for Parameter) | Muscle Hypotonia | Genotypes | χ2; p | |||
---|---|---|---|---|---|---|
AA | AD/DD | Recessive/Dominant AA vs. AD/DD | ||||
n | % | n | % | |||
Males (n = 133) | Yes | 25 | 62.50 | 15 | 37.50 | 5.25; 0.022 1 |
No | 38 | 40.86 | 55 | 59.14 | ||
Females (n = 35) | Yes | 5 | 41.67 | 10 | 58.33 | 0.07; 0.797 |
No | 7 | 43.48 | 13 | 56.52 |
Characteristics (n of Subjects Analyzed for Parameter) | Genotypes | p | |||||||
---|---|---|---|---|---|---|---|---|---|
CC | CT | TT | Additive Model | Recessive/Dominant CC vs. CT/TT | |||||
n | % | n | % | n | % | ||||
The need to use an incubator (n = 178) | Yes | 14 | 73.68 | 5 | 26.32 | 0 | 0.00 | 0.025 | 0.009 1,*,§ |
No | 67 | 42.14 | 76 | 47.80 | 16 | 10.06 | |||
Hospitalization (n = 169) | Yes | 54 | 51.92 | 38 | 36.54 | 12 | 11.54 | 0.019 § | 0.036 2 |
No | 23 | 35.38 | 38 | 58.46 | 4 | 6.15 | |||
Mean | ±SD | Mean | ±SD | Mean | ±SD | CC/CT vs. TT | |||
Apgar score [points] (n = 178) | 8.97 | 1.56 | 9.31 | 1.46 | 9.87 | 0.34 | 0.023 | 0.026 § | |
Duration of pregnancy [weeks] (n = 175) | 38.59 | 2.30 | 38.62 | 2.30 | 39.73 | 1.03 | - | 0.039 |
Characteristics (n of Subjects Analyzed for Parameter) | Genotypes | p | |||||||
---|---|---|---|---|---|---|---|---|---|
AA | AG | GG | Additive Model | Recessive/Dominant AG/GG vs. AA | |||||
n | % | n | % | n | % | ||||
Muscle hypotonia | Yes | 26 | 48.15 | 25 | 46.30 | 3 | 5.55 | 0.040 | 0.016 § |
(n = 165) | No | 75 | 67.57 | 34 | 30.63 | 2 | 1.80 | ||
Mean | ±SD | Mean | ±SD | Mean | ±SD | AG/GG vs. AA | |||
Birth weight [kg] (n = 175) | 3.42 | 0.63 | 3.24 | 0.60 | 3.17 | 0.50 | - | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwanicki, T.; Iwanicka, J.; Balcerzyk-Matić, A.; Jarosz, A.; Nowak, T.; Emich-Widera, E.; Kazek, B.; Kapinos-Gorczyca, A.; Kapinos, M.; Gawron, K.; et al. Association of CHD8 Gene Polymorphic Variants with the Clinical Phenotype of Autism Spectrum Disorder. J. Clin. Med. 2024, 13, 7019. https://doi.org/10.3390/jcm13237019
Iwanicki T, Iwanicka J, Balcerzyk-Matić A, Jarosz A, Nowak T, Emich-Widera E, Kazek B, Kapinos-Gorczyca A, Kapinos M, Gawron K, et al. Association of CHD8 Gene Polymorphic Variants with the Clinical Phenotype of Autism Spectrum Disorder. Journal of Clinical Medicine. 2024; 13(23):7019. https://doi.org/10.3390/jcm13237019
Chicago/Turabian StyleIwanicki, Tomasz, Joanna Iwanicka, Anna Balcerzyk-Matić, Alicja Jarosz, Tomasz Nowak, Ewa Emich-Widera, Beata Kazek, Agnieszka Kapinos-Gorczyca, Maciej Kapinos, Katarzyna Gawron, and et al. 2024. "Association of CHD8 Gene Polymorphic Variants with the Clinical Phenotype of Autism Spectrum Disorder" Journal of Clinical Medicine 13, no. 23: 7019. https://doi.org/10.3390/jcm13237019
APA StyleIwanicki, T., Iwanicka, J., Balcerzyk-Matić, A., Jarosz, A., Nowak, T., Emich-Widera, E., Kazek, B., Kapinos-Gorczyca, A., Kapinos, M., Gawron, K., Auguściak-Duma, A., Likus, W., & Niemiec, P. (2024). Association of CHD8 Gene Polymorphic Variants with the Clinical Phenotype of Autism Spectrum Disorder. Journal of Clinical Medicine, 13(23), 7019. https://doi.org/10.3390/jcm13237019