Correlation of Functional and Structural Outcomes with Serum Antibody Profiles in Patients with Neovascular Age-Related Macular Degeneration Treated with Ranibizumab and Healthy Subjects: A Prospective, Controlled Monocenter Trial
Abstract
:1. Background
2. Methods
2.1. Trial Design
2.2. Objectives
2.3. Patients
2.4. Microarray Antibodies
2.5. Study Endpoints and Statistical Analysis
3. Results
3.1. Changes in ETDRS Score
3.2. Changes in Central Retinal Thickness
3.3. Number of Ranibizumab Injections
3.4. Exploratory Analysis Results
3.5. Safety and Adverse Events (AEs)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Enrollment Criteria
- Inclusion criteria
- Patients:
- Male or female;
- Age ≥ 50 years;
- Subfoveal, juxtafoveal and/or extrafoveal choroidal neovascularisation due to neovascular age-related macular degeneration in the study eye;
- Visual acuity of 20/400 (ETDRS charts) or better in the study eye;
- Ability of subject to understand character and individual consequences of the clinical trial.
- The criteria for healthy volunteers include the following:
- Male or female;
- Age ≥ 50 years.
- Exclusion criteria
- Patients presenting with any of the following criteria will not be included in the trial:
- Inability to obtain fluorescein angiography;
- Ophthalmic surgery or laser < 3 months before enrolment in one or both eyes;
- Any history of intravitreal steroids in one or both eyes;
- Systemic and/or intravitreal anti-VEGF treatment < 3 months before enrolment in one or both eyes;
- Patients with hypersensitivity against ranibizumab;
- Ocular inflammation (including trace or above) or external ocular inflammation in the study eye;
- Inability to give informed consent to participate in the study;
- Pregnancy and lactation, including women who are of childbearing age and not using medically acceptable effective contraception;
- Medical or psychological condition that would not permit the completion of the trial or signing of informed consent (legal representative accepted);
- Participation in other clinical trials including an investigational drug or device during the present clinical trial or within the last 4 weeks.
- The criteria for healthy volunteers include the following:
- Ophthalmic surgery or laser < 3 months before enrolment;
- Relevant eye diseases except age-related cataract in one or both eyes;
- Inability to give informed consent to participate in the study;
- Pregnancy and lactation, including women who are of childbearing age and not using medically acceptable effective contraception;
- Medical or psychological condition that would not permit the completion of the trial or signing of informed consent (legal representative accepted);
- Participation in other clinical trials including an investigational drug or device during the present clinical trial or within the last 4 weeks.
Visit | Visit 1 (Baseline) | Visit 2 | Visit 3 | Visit 4 | Visit 5 | Visit 6 | Visit 7 | |
---|---|---|---|---|---|---|---|---|
Action | ||||||||
Trial day | 1 | 28 + 7 * | 56 + 7 * | 84 + 7 * | 112 + 7 * | 140 + 7 * | 168 + 7 * | |
Trial week | 0 | 4 | 8 | 12 | 16 | 20 | 24 | |
Patient information and informed consent | X | |||||||
Medical history | X | |||||||
Demographics (e.g., sex, age and race) | X | |||||||
Inclusion/exclusion criteria | X | |||||||
Subjects with AMD | ||||||||
Refraction | X | X | X | X | X | X | X | |
Best-corrected visual acuity (ETDRS chart) | X | X | X | X | X | X | X | |
Slit-lamp examination | X | X | X | X | X | X | X | |
Goldmann Applanation Tonometry | X | X | X | X | X | X | X | |
Indirect Ophthalmoscopy | X | X | X | X | X | X | X | |
Optical coherence tomography (OCT) | X | X | X | X | X | X | X | |
Blood sample collection | X | X | X | X | X | X | X | |
Urine Pregnancy Test (if applicable) | X | |||||||
Adverse events (AEs) | X | X | X | X | X | X | X | |
Study Medication/Injection | X | X | X | PRN | PRN | PRN | PRN | |
Goldmann Applanation Tonometry ** | X | X | X | (X) | (X) | (X) | (X) | |
Safety call (1–2 days after injection) | X | X | X | (X) | (X) | (X) | (X) | |
End of trial (final visit) | X | |||||||
Healthy volunteers | ||||||||
Blood sample collection | X | |||||||
End of trial | X |
Antigen (Abbreviation) | Protein Name |
---|---|
MBP | Myelin basic protein |
ACTA1 | Actin, alpha skeletal muscle |
SERPINA1 | Alpha-1-antitrypsin |
IGLL1 | Immunoglobulin lambda-like polypeptide 1 |
ALB | Serum albumin |
EIF4A1 | Eukaryotic initiation factor 4A-I |
MAPK3 | Mitogen-activated protein kinase 3 |
HSPD1 | 60 kDa heat shock protein, mitochondrial |
CKB | Creatine kinase B-type |
SFN | 14-3-3 protein sigma |
GLUL | Glutamine synthetase |
PEBP1 | Phosphatidylethanolamine-binding protein 1 |
PKC | Protein kinase C |
FN1 | Fibronectin |
USP10 | Ubiquitin carboxyl-terminal hydrolase 10 |
TG | Thyroglobulin |
groEL2 | 60 kDa chaperonin 2 |
PRKCSH | Glucosidase 2 subunit beta |
TNNI3 | Troponin I, cardiac muscle |
HARS | Histidine--tRNA ligase, cytoplasmic |
PPIA | Peptidyl-prolyl cis-trans isomerase A |
Dermcidin | Dermcidin |
TF | Serotransferrin |
TTR | Transthyretin |
ANXA5 | Annexin A5 |
SPTA1 | Spectrin alpha chain, erythrocytic 1 |
LYZ | Lysozyme C |
CLUS | Clusterin |
LPPR3 | Phospholipid phosphatase-related protein type 3 |
DPYSL2 | Dihydropyrimidinase-related protein 2 |
NTF3 | Neurotrophin-3 |
CA2 | Carbonic anhydrase 2 |
OGFR | Opioid growth factor receptor |
Mucin 5B | Mucin-5B |
BDNF | Brain-derived neurotrophic factor |
HSPA1A | Heat shock 70 kDa protein 1A |
SOD | Super oxid dismutase |
INS | Insulin |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
CALR | Calreticulin |
GNB1 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 |
UCHL1 | Ubiquitin carboxyl-terminal hydrolase isozyme L1 |
TOP1 | DNA topoisomerase 1 |
PDIA3 | Protein disulfide-isomerase A3 |
VEGF | Vascular endothelial growth factor |
GST | Glutathione S-transferase |
SNCG | Gamma-synuclein |
B-L-CRYS | Beta-L-Crystallin |
TNF | Tumor necrosis factor |
APOA1 | Apolipoprotein A-I |
SCFD1 | Sec1 family domain-containing protein 1 |
ACO2 | Aconitate hydratase, mitochondrial |
HSPE1 | 10 kDa heat shock protein, mitochondrial |
NTF4 | Neurotrophin-4 |
GFAP | Glial fibrillary acidic protein |
ENO2 | Gamma-enolase |
GPX4 | Phospholipid hydroperoxide glutathione peroxidase, mitochondrial |
SNCA | Alpha-synuclein |
References
- Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-related macular degeneration. Lancet 2018, 392, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Dumonde, D.C.; Kasp-Grochowska, E.; Graham, E.; Sanders, M.D.; Faure, J.P.; de Kozak, Y.; Van Tuyen, V. Anti-retinal autoimmunity and circulating immune complexes in patients with retinal vasculitis. Lancet 1982, 2, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Heckenlively, J.R.; Fawzi, A.A.; Oversier, J.; Jordan, B.L.; Aptsiauri, N. Autoimmune retinopathy: Patients with antirecoverin immunoreactivity and panretinal degeneration. Arch. Ophthalmol. 2000, 118, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Adamus, G.; Ren, G.; Weleber, R.G. Autoantibodies against retinal proteins in paraneoplastic and autoimmune retinopathy. BMC Ophthalmol. 2004, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Adamus, G.; Champaigne, R.; Yang, S. Occurrence of major anti-retinal autoantibodies associated with paraneoplastic autoimmune retinopathy. Clin. Immunol. 2020, 210, 108317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Galbraith, G.M.; Emerson, D.; Fudenberg, H.H.; Gibbs, C.J.; Gajdusek, D.C. Antibodies to neurofilament protein in retinitis pigmentosa. J. Clin. Investig. 1986, 78, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.S.; Wong, C.W.; Hoang, Q.V.; Lee, S.Y.; Wong, T.Y.; Cheung, C.M.G. Anti-retinal autoantibodies in myopic macular degeneration: A pilot study. Eye 2021, 35, 2254–2259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Penfold, P.L.; Provis, J.M.; Furby, J.H.; Gatenby, P.A.; Billson, F.A. Autoantibodies to retinal astrocytes associated with age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 1990, 228, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Gurne, D.H.; Tso, M.O.; Edward, D.P.; Ripps, H. Antiretinal antibodies in serum of patients with age-related macular degeneration. Ophthalmology 1991, 98, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wu, L.; Pan, S.; Wu, D.Z. An immunologic study on age-related macular degeneration. Yan Ke Xue Bao 1993, 9, 113–120. [Google Scholar] [PubMed]
- Cherepanoff, S.; Mitchell, P.; Wang, J.J.; Gillies, M.C. Retinal autoantibody profile in early age-related macular degeneration: Preliminary findings from the Blue Mountains Eye Study. Clin. Exp. Ophthalmol. 2006, 34, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Adamus, G.; Chew, E.Y.; Ferris, F.L.; Klein, M.L. Prevalence of anti-retinal autoantibodies in different stages of Age-related macular degeneration. BMC Ophthalmol. 2014, 14, 154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morohoshi, K.; Ohbayashi, M.; Patel, N.; Chong, V.; Bird, A.C.; Ono, S.J. Identification of anti-retinal antibodies in patients with age-related macular degeneration. Exp. Mol. Pathol. 2012, 93, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, A.; Giorgianni, F.; New, D.D.; Hollingsworth, T.J.; Umfress, A.; Alhatem, A.H.; Neeli, I.; Lenchik, N.I.; Jennings, B.J.; Calzada, J.I.; et al. Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis. PLoS ONE 2015, 10, e0145323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joachim, S.C.; Bruns, K.; Lackner, K.J.; Pfeiffer, N.; Grus, F.H. Analysis of IgG antibody patterns against retinal antigens and antibodies to α-crystallin, GFAP, and α-enolase in sera of patients with “wet” age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Korb, C.A.; Beck, S.; Wolters, D.; Lorenz, K.; Pfeiffer, N.; Grus, F.H. Serum Autoantibodies in Patients with Dry and Wet Age-Related Macular Degeneration. J. Clin. Med. 2023, 12, 1590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grus, F.H.; Kramann, C.; Bozkurt, N.; Wiegel, N.; Bruns, K.; Lackner, N.; Pfeiffer, N. Effects of multipurpose contact lens solutions on the protein composition of the tear film. Contact Lens Anterior Eye 2005, 28, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Photocoagulation for Diabetic Macular Edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch. Ophthalmol. 1985, 103, 1796–1806. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Kaiser, P.K.; Michels, M.; Soubrane, G.; Heier, J.S.; Kim, R.Y.; Sy, J.P.; Schneider, S. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1432–1444. [Google Scholar] [CrossRef] [PubMed]
- Amoaku, W.M.; Chakravarthy, U.; Gale, R.; Gavin, M.; Ghanchi, F.; Gibson, J.; Harding, S.; Johnston, R.L.; Kelly, S.P.; Lotery, A.; et al. Defining response to anti-VEGF therapies in neovascular AMD. Eye 2015, 29, 721–731. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chin-Yee, D.; Eck, T.; Fowler, S.; Hardi, A.; Apte, R.S. A systematic review of as needed versus treat and extend ranibizumab or bevacizumab treatment regimens for neovascular age-related macular degeneration. Br. J. Ophthalmol. 2016, 100, 914–917. [Google Scholar] [CrossRef] [PubMed]
- Wecker, T.; Grundel, B.; Reichl, S.; Stech, M.; Lange, C.; Agostini, H.; Böhringer, D.; Stahl, A. Anti-VEGF injection frequency correlates with visual acuity outcomes in pro re nata neovascular AMD treatment. Sci. Rep. 2019, 9, 3301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin, D.F.; Maguire, M.G.; Fine, S.L.; Ying, G.S.; Jaffe, G.J.; Grunwald, J.E.; Toth, C.; Redford, M.; Ferris, F.L. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: Two-year results. Ophthalmology 2012, 119, 1388–1398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mones, J.; Singh, R.P.; Bandello, F.; Souied, E.; Liu, X.; Gale, R. Undertreatment of Neovascular Age-Related Macular Degeneration after 10 Years of Anti-Vascular Endothelial Growth Factor Therapy in the Real World: The Need for A Change of Mindset. Ophthalmologica 2020, 243, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fung, A.E.; Lalwani, G.A.; Rosenfeld, P.J.; Dubovy, S.R.; Michels, S.; Feuer, W.J.; Puliafito, C.A.; Davis, J.L.; Flynn, H.W., Jr.; Esquiabro, M. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. Am. J. Ophthalmol. 2007, 143, 566–583.e2. [Google Scholar] [CrossRef] [PubMed]
- Lalwani, G.A.; Rosenfeld, P.J.; Fung, A.E.; Dubovy, S.R.; Michels, S.; Feuer, W.; Davis, J.L.; Flynn, H.W.; Esquiabro, M. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: Year 2 of the PrONTO Study. Am. J. Ophthalmol. 2009, 148, 43–58.e1. [Google Scholar] [CrossRef] [PubMed]
- Chowers, I.; Wong, R.; Dentchev, T.; Farkas, R.H.; Iacovelli, J.; Gunatilaka, T.L.; Medeiros, N.E.; Presley, J.B.; Campochiaro, P.A.; Curcio, C.A.; et al. The iron carrier transferrin is upregulated in retinas from patients with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2135–2140. [Google Scholar] [CrossRef] [PubMed]
- Wysokinski, D.; Danisz, K.; Pawlowska, E.; Dorecka, M.; Romaniuk, D.; Robaszkiewicz, J.; Szaflik, M.; Szaflik, J.; Blasiak, J.; Szaflik, J.P. Transferrin receptor levels and polymorphism of its gene in age-related macular degeneration. Acta Biochim. Pol. 2015, 62, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, M.A.; Rabena, M.D.; Maia, M.; et al. Systemic Pharmacokinetics and Pharmacodynamics of Intravitreal Aflibercept, Bevacizumab, and Ranibizumab. Retina 2017, 37, 1847–1858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrara, N.; Damico, L.; Shams, N.; Lowman, H.; Kim, R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006, 26, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lu, T.; Tuomi, L.; Jumbe, N.; Lu, J.; Eppler, S.; Kuebler, P.; Damico-Beyer, L.A.; Joshi, A. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: A population approach. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Yu, X.; Dai, H. Intravitreal injection of ranibizumab for treatment of age-related macular degeneration: Effects on serum VEGF concentration. Curr. Eye Res. 2014, 39, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Bressler, N.M.; Kim, T.; Oh, I.; Russo, P.; Kim, M.Y.; Woo, S.J. Immunogenicity With Ranibizumab Biosimilar SB11 (Byooviz) and Reference Product Lucentis and Association with Efficacy, Safety, and Pharmacokinetics: A Post Hoc Analysis of a Phase 3 Randomized Clinical Trial. JAMA Ophthalmol. 2023, 141, 117–127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, K.; Lee, S.; Jung, S.; Chin, H.S. Analysis of ocular fluid in patients with ranibizumab-recalcitrant neovascular age-related macular degeneration who have serum anti-ranibizumab antibodies. Graefes. Arch. Clin. Exp. Ophthalmol. 2023, 261, 3581–3587. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Boyer, D.S.; Ciulla, T.A.; Ferrone, P.J.; Jumper, J.M.; Gentile, R.C.; Kotlovker, D.; Chung, C.Y.; Kim, R.Y. Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration: Year 1 results of the FOCUS Study. Arch. Ophthalmol. 2006, 124, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Mettu, P.S.; Allingham, M.J.; Cousins, S.W. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog. Retin. Eye Res. 2021, 82, 100906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McLaughlin, P.J.; Sassani, J.W.; Zagon, I.S. Dysregulation of the OGF-OGFr pathway and associated diabetic complications. J. Diabetes Clin. Res. 2021, 3, 64–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blebea, J.; Mazo, J.E.; Kihara, T.K.; Vu, J.H.; McLaughlin, P.J.; Atnip, R.G.; Zagon, I.S. Opioid growth factor modulates angiogenesis. J. Vasc. Surg. 2000, 32, 364–373. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, P.J.; Zagon, I.S. Duration of opioid receptor blockade determines biotherapeutic response. Biochem. Pharmacol. 2015, 97, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Cao, X.; Zhao, L.; Tuo, J.; Wong, W.T.; Chan, C.C. Naloxone ameliorates retinal lesions in Ccl2/Cx3cr1 double-deficient mice via modulation of microglia. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2897–2904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Husain, S.; Liou, G.I.; Crosson, C.E. Opioid receptor activation: Suppression of ischemia/reperfusion-induced production of TNF-α in the retina. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2577–2583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iaccarino, L.; Ghirardello, A.; Canova, M.; Zen, M.; Bettio, S.; Nalotto, L.; Punzi, L.; Doria, A. Anti-annexins autoantibodies: Their role as biomarkers of autoimmune diseases. Autoimmun. Rev. 2011, 10, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Munoz, L.E.; Mallavarapu, M.; Herrmann, M.; Finnemann, S.C. Annexin A5 regulates surface αvβ5 integrin for retinal clearance phagocytosis. J. Cell Sci. 2019, 132, jcs232439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lederman, M.; Weiss, A.; Chowers, I. Association of neovascular age-related macular degeneration with specific gene expression patterns in peripheral white blood cells. Investig. Ophthalmol. Vis. Sci. 2010, 51, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Hui, Q.; Zheng, F.; Qin, L.; Pei, C. Annexin A1 Promotes Reparative Angiogenesis and Ameliorates Neuronal Injury in Ischemic Retinopathy. Curr. Eye Res. 2022, 47, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Navarrete, G.C.; Martin-Nieto, J.; Esteve-Rudd, J.; Angulo, A.; Cuenca, N. Alpha synuclein gene expression profile in the retina of vertebrates. Mol. Vis. 2007, 13, 949–961. [Google Scholar] [PubMed] [PubMed Central]
- Pfeiffer, R.L.; Marc, R.E.; Jones, B.W. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog. Retin. Eye Res. 2020, 74, 100771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, Y.; Tapia, M.L.; Yeh, J.; He, R.C.; Pomerleu, D.; Lee, R.K. Differential Gamma-Synuclein Expression in Acute and Chronic Retinal Ganglion Cell Death in the Retina and Optic Nerve. Mol. Neurobiol. 2020, 57, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.B.; de Lemos, L.; Sousa, L.; Bitoque, D.B.; Silva, G.A.; Seabra, M.C.; Tenreiro, S. Age-Related Changes of the Synucleins Profile in the Mouse Retina. Biomolecules 2023, 13, 180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosenfeld, P.J.; Shapiro, H.; Tuomi, L.; Webster, M.; Elledge, J.; Blodi, B. Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology 2011, 118, 523–530. [Google Scholar] [CrossRef] [PubMed]
Variable | CTRL | AMD | Total |
---|---|---|---|
N | 20 | 49 | 69 |
Age [years]; mean (SD) | 71.05 (9.37) | 78.48 (8.51) | 76.36 (9.33) |
Female | 15 (75.00%) | 26 (52.0%) | 41 (58.57%) |
Male | 5 (25.00%) | 24 (48.0%) | 29 (41.43%) |
Treatment-naïve | 38 (77.0%) | 38 (77.0%) | |
Pretreated | 11 (33.0%) | 11 (33.0%) | |
Responder: initial | 33 (67.35%) | 33 (67.35%) | |
Responder: deferred | 16 (32.65%) | 16 (32.65%) |
CTRL (n = 20) |
AMD V1 (n = 51) |
AMD V7 (n = 45) | CTRL vs. AMD V1 | CTRL vs. AMD V7 | AMD V1 vs. AMD V7 | |
---|---|---|---|---|---|---|
NTF3 | 56,118 ± 148,412 | 25,089 ± 29,299 | 60,782 ± 81,897 | 1.000 | 0.25 | 0.011 ** |
ACO2 | 415 ± 940 | 429 ± 525 | 706 ± 975 | 0.769 | 0.043 * | 0.241 |
HSPD1 | 28,166 ± 28,430 | 51,236 ± 81,773 | 90,819 ± 144,239 | 0.753 | 0.034 * | 0.195 |
ALB | 6169 ± 12,010 | 11,504 ± 19,920 | 21,661 ± 55,524 | 0.967 | 0.048 | 0.178 |
TTR | 1566 ± 6470 | 325 ± 429 | 590 ± 841 | 0.216 | 0.004 ** | 0.177 |
CA2 | 82,278 ± 137,370 | 82,870 ± 86,933 | 131,123 ± 137,132 | 1.000 | 0.042 * | 0.067 |
MBP | 5302 ± 15,824 | 4448 ± 5340 | 11,875 ± 28,819 | 0.24 | 0.001 ** | 0.061 |
SNCG | 6844 ± 8510 | 11,655 ± 21,215 | 15,918 ± 30,304 | 1.000 | 0.043 * | 0.051 |
groEL2 | 25,625 ± 28,341 | 50,827 ± 83,165 | 78,762 ± 117,962 | 0.655 | 0.005 ** | 0.032 * |
CALR | 65,456 ± 127,619 | 41,690 ± 45,664 | 88,560 ± 128,165 | 0.881 | 0.998 | 0.026 * |
Mucin 5B | 4438 ± 11,390 | 2477 ± 2527 | 5710 ± 7395 | 1.000 | 0.079 | 0.019 * |
SOD | 775 ± 1966 | 1409 ± 2695 | 1950 ± 4315 | 0.353 | 0.015 * | 0.277 |
NTF4 | 3070 ± 6568 | 2294 ± 3202 | 4858 ± 6272 | 1.000 | 0.028 * | 0.007 ** |
OGFR | 6354 ± 11,293 | 4724 ± 6154 | 13,931 ± 38,235 | 1.000 | 0.006 ** | 0.005 ** |
BDNF | 27,360 ± 36,641 | 20,753 ± 35,313 | 38,897 ± 86,989 | 0.351 | 1.000 | 0.005 ** |
Dermcidin | 10,111 ± 14,190 | 13,797 ± 34,140 | 19,041 ± 20,508 | 1.000 | 0.045 | 0.003 ** |
CLUS | 4696 ± 10,040 | 3672 ± 4518 | 9231 ± 11,712 | 1.000 | 0.006 ** | 0.003 ** |
TF | 16,309 ± 29,591 | 13,116 ± 23,293 | 32,492 ± 55,885 | 1.000 | 0.036 * | 0.002 ** |
VEGF | 7918 ± 22,695 | 5423 ± 10,712 | 13,302 ± 17,109 | 1.000 | 0.001 ** | <0.001 ** |
OR 95% CI | ||||||||
---|---|---|---|---|---|---|---|---|
Estimate | SE | Wald | df | p Value | Odds Ratio | Lower | Upper | |
Intercept | 1.556 | 1.740 | 0.800 | 1 | 0.371 | |||
Refraction spherical | 0.259 | 0.109 | 5.613 | 1 | 0.018 | 1.296 | 1.046 | 1.606 |
Refraction cylinder | 0.802 | 0.364 | 4.848 | 1 | 0.028 | 2.229 | 1.092 | 4.549 |
Refraction degree | 0.001 | 0.007 | 0.050 | 1 | 0.823 | 1.001 | 0.989 | 1.015 |
Central retinal thickness | 0.000 | 0.001 | 0.163 | 1 | 0.686 | 1.000 | 0.997 | 1.002 |
ETDRS score | 0.010 | 0.014 | 0.507 | 1 | 0.476 | 1.010 | 0.983 | 1.038 |
No. of IVT injections | −0.143 | 0.195 | 0.542 | 1 | 0.462 | 0.867 | 0.592 | 1.269 |
APOA1 | 0.000 | 0.000 | 0.546 | 1 | 0.460 | 1.000 | 1.000 | 1.000 |
USP10 | 0.000 | 0.000 | 3.092 | 1 | 0.079 | 1.000 | 1.000 | 1.000 |
SFN | 0.000 | 0.000 | 3.600 | 1 | 0.058 | 1.000 | 1.000 | 1.000 |
SNCG | 0.000 | 0.000 | 4.194 | 1 | 0.041 | 1.000 | 1.000 | 1.000 |
EIF4A1 | 0.001 | 0.000 | 11.313 | 1 | 0.001 | 1.001 | 1.000 | 1.001 |
PRKCSH | 0.000 | 0.000 | 15.042 | 1 | <0.001 | 1.000 | 1.000 | 1.000 |
GPX4 | 0.000 | 0.000 | 0.319 | 1 | 0.572 | 1.000 | 1.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korb, C.A.; Gerstenberger, E.; Lorenz, K.; Bell, K.; Beck, A.; Scheller, Y.; Beutgen, V.M.; Wolters, D.; Grus, F.H. Correlation of Functional and Structural Outcomes with Serum Antibody Profiles in Patients with Neovascular Age-Related Macular Degeneration Treated with Ranibizumab and Healthy Subjects: A Prospective, Controlled Monocenter Trial. J. Clin. Med. 2024, 13, 7033. https://doi.org/10.3390/jcm13237033
Korb CA, Gerstenberger E, Lorenz K, Bell K, Beck A, Scheller Y, Beutgen VM, Wolters D, Grus FH. Correlation of Functional and Structural Outcomes with Serum Antibody Profiles in Patients with Neovascular Age-Related Macular Degeneration Treated with Ranibizumab and Healthy Subjects: A Prospective, Controlled Monocenter Trial. Journal of Clinical Medicine. 2024; 13(23):7033. https://doi.org/10.3390/jcm13237033
Chicago/Turabian StyleKorb, Christina A., Eva Gerstenberger, Katrin Lorenz, Katharina Bell, Anna Beck, Yvonne Scheller, Vanessa M. Beutgen, Dominik Wolters, and Franz H. Grus. 2024. "Correlation of Functional and Structural Outcomes with Serum Antibody Profiles in Patients with Neovascular Age-Related Macular Degeneration Treated with Ranibizumab and Healthy Subjects: A Prospective, Controlled Monocenter Trial" Journal of Clinical Medicine 13, no. 23: 7033. https://doi.org/10.3390/jcm13237033
APA StyleKorb, C. A., Gerstenberger, E., Lorenz, K., Bell, K., Beck, A., Scheller, Y., Beutgen, V. M., Wolters, D., & Grus, F. H. (2024). Correlation of Functional and Structural Outcomes with Serum Antibody Profiles in Patients with Neovascular Age-Related Macular Degeneration Treated with Ranibizumab and Healthy Subjects: A Prospective, Controlled Monocenter Trial. Journal of Clinical Medicine, 13(23), 7033. https://doi.org/10.3390/jcm13237033