Aortic Pulse Wave Velocity Determined with Oscillometric Pulse Wave Analysis Algorithm Antares Is an Independent Predictor of Major Adverse Cardiovascular Events: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Follow-Up Assessment and Study Endpoint
2.3. PWV Assessment
2.4. Statistics
3. Results
3.1. Baseline Data
3.2. Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regnault, V.; Lacolley, P.; Laurent, S. Arterial Stiffness: From Basic Primers to Integrative Physiology. Annu. Rev. Physiol. 2024, 86, 99–121. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F. Arterial Stiffness in Aging: Does It Have a Place in Clinical Practice?: Recent Advances in Hypertension. Hypertension 2021, 77, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.R. Arterial Stiffness: Recommendations and Standardization. Pulse 2016, 4, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen, C.H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef]
- Doerr, M.; Richter, S.; Eckert, S.; Ohlow, M.-A.; Hammer, F.; Hummel, A.; Dornberger, V.; Genzel, E.; Baulmann, J. P60 Invasive Validation of Antares, a New Algorithm to Calculate Central Blood Pressure from Oscillometric Upper Arm Pulse Waves. Artery Res. 2019, 25, S101. [Google Scholar] [CrossRef]
- Stäuber, A.; Piper, C.; Köster, M.; Dörr, M.; Richter, S.; Ohlow, M.-A.; Eckert, S.; Baulmann, J. Invasive validation of the Antares algorithm for determining central blood pressure based on upper arm oscillometric pulse waves in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2023, 11, e003119. [Google Scholar] [CrossRef]
- Stäuber, A.; Dörr, M.; Piper, C.; Köster, M.; Lapp, H.; Richter, S.; Ohlow, M.-A.; Eckert, S.; Hoppe, M.W.; Barroso, M.T.C.; et al. Invasively measured and estimated central blood pressure using the oscillometric algorithm Antares in patients with and without obesity. PLoS ONE 2023, 18, e0294075. [Google Scholar] [CrossRef]
- Baulmann, J.; Dörr, M.; Genzel, E.; Stäuber, A.; Richter, S.; Ohlow, M.-A.; Eckert, S. Feasibility of Calculating Aortic Pulse Wave Velocity from Oscillometric Upper Arm Pulse Waves Using the Antares Algorithm. Artery Res. 2022, 28, 1–8. [Google Scholar] [CrossRef]
- Bosco, E.; Hsueh, L.; McConeghy, K.W.; Gravenstein, S.; Saade, E. Major adverse cardiovascular event definitions used in observational analysis of administrative databases: A systematic review. BMC Med. Res. Methodol. 2021, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). G Ital. Cardiol. 2018, 19, 3S–73S. [Google Scholar]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J. Principles of confounder selection. Eur. J. Epidemiol. 2019, 34, 211–219. [Google Scholar] [CrossRef]
- Longato, E.; Vettoretti, M.; Di Camillo, B. A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models. J. Biomed. Inform. 2020, 108, 103496. [Google Scholar] [CrossRef]
- Bavry, A.A.; Kumbhani, D.J.; Gong, Y.; Handberg, E.M.; Cooper-DeHoff, R.M.; Pepine, C.J.; Tabata, N.; Yamamoto, E.; Hokimoto, S.; Yamashita, T.; et al. Simple Integer Risk Score to Determine Prognosis of Patients with Hypertension and Chronic Stable Coronary Artery Disease. J. Am. Hear. Assoc. 2013, 2, e000205. [Google Scholar] [CrossRef]
- Laurent, S.; Katsahian, S.; Fassot, C.; Tropeano, A.-I.; Gautier, I.; Laloux, B.; Boutouyrie, P. Aortic Stiffness Is an Independent Predictor of Fatal Stroke in Essential Hypertension. Stroke 2003, 34, 1203–1206. [Google Scholar] [CrossRef]
- Boutouyrie, P.; Tropeano, A.I.; Asmar, R.; Gautier, I.; Benetos, A.; Lacolley, P.; Laurent, S. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: A longitudinal study. Hypertension 2002, 39, 10–15. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P.; Asmar, R.; Gautier, I.; Laloux, B.; Guize, L.; Ducimetiere, P.; Benetos, A. Aortic Stiffness Is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients. Hypertension 2001, 37, 1236–1241. [Google Scholar] [CrossRef]
- Cruickshank, K.; Riste, L.; Anderson, S.G.; Wright, J.S.; Dunn, G.; Gosling, R.G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: An integrated index of vascular function? Circulation 2002, 106, 2085–2090. [Google Scholar] [CrossRef]
- Blacher, J.; Pannier, B.; Guerin, A.P.; Marchais, S.J.; Safar, M.E.; London, G.M. Carotid Arterial Stiffness as a Predictor of Cardiovascular and All-Cause Mortality in End-Stage Renal Disease. Hypertension 1998, 32, 570–574. [Google Scholar] [CrossRef]
- Meaume, S.; Benetos, A.; Henry, O.; Rudnichi, A.; Safar, M. Aortic Pulse Wave Velocity Predicts Cardiovascular Mortality in Subjects > 70 Years of Age. Arter. Thromb. Vasc. Biol. 2001, 21, 2046–2050. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F.; Hwang, S.J.; Vasan, R.S.; Larson, M.G.; Pencina, M.J.; Hamburg, N.M.; Vita, J.A.; Levy, D.; Benjamin, E.J. Arterial stiffness and cardiovascular events: The Framingham Heart Study. Circulation 2010, 121, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Mattace-Raso, F.U.; van der Cammen, T.J.; Hofman, A.; van Popele, N.M.; Bos, M.L.; Schalekamp, M.A.; Asmar, R.; Reneman, R.S.; Hoeks, A.P.; Breteler, M.M.; et al. Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study. Circulation 2006, 113, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Hametner, B.; Wassertheurer, S.; Mayer, C.C.; Danninger, K.; Binder, R.K.; Weber, T. Aortic Pulse Wave Velocity Predicts Cardiovascular Events and Mortality in Patients Undergoing Coronary Angiography: A Comparison of Invasive Measurements and Noninvasive Estimates. Hypertension 2021, 77, 571–581. [Google Scholar] [CrossRef]
- Siasos, G.; Oikonomou, E.; Maniatis, K.; Georgiopoulos, G.; Kokkou, E.; Tsigkou, V.; Zaromitidou, M.; Antonopoulos, A.; Vavuranakis, M.; Stefanadis, C.; et al. Prognostic significance of arterial stiffness and osteoprotegerin in patients with stable coronary artery disease. Eur. J. Clin. Investig. 2018, 48, e12890. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Terentes-Printzios, D.; Laurent, S.; Nilsson, P.M.; Protogerou, A.D.; Aznaouridis, K.; Xaplanteris, P.; Koutagiar, I.; Tomiyama, H.; Yamashina, A.; et al. Association of Estimated Pulse Wave Velocity With Survival: A Secondary Analysis of SPRINT. JAMA Netw. Open 2019, 2, e1912831. [Google Scholar] [CrossRef]
- Greve, S.V.; Blicher, M.K.; Kruger, R.; Sehestedt, T.; Gram-Kampmann, E.; Rasmussen, S.; Vishram, J.K.; Boutouyrie, P.; Laurent, S.; Olsen, M.H. Estimated carotid–femoral pulse wave velocity has similar predictive value as measured carotid–femoral pulse wave velocity. J. Hypertens. 2016, 34, 1279–1289. [Google Scholar] [CrossRef]
- Vishram-Nielsen, J.K.; Laurent, S.; Nilsson, P.M.; Linneberg, A.; Sehested, T.S.; Greve, S.V.; Pareek, M.; Palmieri, L.; Giampaoli, S.; Donfrancesco, C.; et al. Does Estimated Pulse Wave Velocity Add Prognostic Information?: MORGAM Prospective Cohort Project. Hypertension 2020, 75, 1420–1428. [Google Scholar] [CrossRef]
- Kerr, K.F. Net Reclassification Index Statistics Do Not Help Assess New Risk Models. Radiology 2023, 306, e222343. [Google Scholar] [CrossRef]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Hear. J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
- An, D.-W.; Hansen, T.W.; Aparicio, L.S.; Chori, B.; Huang, Q.-F.; Wei, F.-F.; Cheng, Y.-B.; Yu, Y.-L.; Sheng, C.-S.; Gilis-Malinowska, N.; et al. Derivation of an Outcome-Driven Threshold for Aortic Pulse Wave Velocity: An Individual-Participant Meta-Analysis. Hypertension 2023, 80, 1949–1959. [Google Scholar] [CrossRef] [PubMed]
- Pilz, N.; Heinz, V.; Ax, T.; Fesseler, L.; Patzak, A.; Bothe, T.L. Pulse Wave Velocity: Methodology, Clinical Applications, and Interplay with Heart Rate Variability. Rev. Cardiovasc. Med. 2024, 25, 266. [Google Scholar] [CrossRef] [PubMed]
- Segers, P.; Rietzschel, E.R.; Chirinos, J.A. How to Measure Arterial Stiffness in Humans. Arter. Thromb. Vasc. Biol. 2020, 40, 1034–1043. [Google Scholar] [CrossRef]
Variable | n = 240 |
---|---|
Male sex | 179 (74.6%) |
Age, years | 69.0 (61.0–78.0) |
Weight, kg | 82.5 (74.3–95.0) |
Height, cm | 172.0 (167.0–178.0) |
BMI, kg/m2 | 28.7 (25.0–31.4) |
Arterial hypertension | 215 (89.6%) |
Dyslipidemia | 94 (39.2%) |
Diabetes mellitus | 90 (37.5%) |
Chronic kidney disease | 22 (9.2%) |
Prior stroke | 19 (7.9%) |
Prior myocardial infarction | 60 (25.0%) |
Patients undergoing PCI | 118 (49.2%) |
Chronic heart failure | 73 (30.4%) |
Coronary artery disease | 141 (58.8%) |
Smoking | 54 (22.5%) |
INVEST score (max. 21 points) | 5.0 (4.0–7.0) |
INVEST low risk group (0–4 points) | 98 (40.8%) |
INVEST intermediate risk group (5–6 points) | 63 (26.3%) |
INVEST high risk group (>7 points) | 79 (32.9%) |
Betablockers | 183 (76.3%) |
Calcium channel blockers | 97 (40.4%) |
ACE inhibitor or angiotensin-receptor blockers | 116 (48.3%) |
Diuretics | 65 (27.1%) |
Statins | 180 (75.0%) |
Mineralocorticoid receptor antagonists | 37 (15.4%) |
Heart rate, bpm | 65.0 (58.0–75.0) |
cSBP, mmHg | 134.0 (119.2–149.3) |
cDBP, mmHg | 73.5 (65.3–80.9) |
cMAP, mmHg | 95.1 (87.7–104.8) |
cPP, mmHg | 59.6 (47.1–71.9) |
bSBP, mmHg | 140.5 (128.3–154.8) |
bDBP, mmHg | 81.0 (75.0–89.0) |
bMAP, mmHg | 101.0 (92.3–111.0) |
bPP, mmHg | 58.0 (50.0–67.8) |
aPWV, m/s | 8.6 (7.5–9.9) |
Variable | Hazard Ratio (HR) | 95% Confidence Interval (CI) | p Value |
---|---|---|---|
aPWV per 1 m/s | 1.24 | 1.08–1.41 | 0.002 |
aPWV per 1 SD | 1.53 | 1.17–1.99 | 0.002 |
Diabetes mellitus, yes/no | 2.23 | 1.24–4.02 | 0.008 |
Heart failure, yes/no | 2.38 | 1.29–4.36 | 0.005 |
CKD, yes/no | 3.25 | 1.62–6.51 | <0.001 |
Model | Variable | HR (95% CI) | p Value | C-index | AIC | BIC |
---|---|---|---|---|---|---|
0 | INVEST score | 1.32 (1.18–1.48) | <0.001 | 0.679 | 461.98 | 463.81 |
1 | INVEST score | 1.31 (1.16–1.47) | <0.001 | 0.709 | 459.11 | 462.77 |
aPWV per 1 m/s | 1.16 (1.02–1.33) | 0.024 | ||||
aPWV per 1 SD | 1.35 (1.04–1.76) | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dörr, M.; Lapp, H.; Richter, S.; Stäuber, A.; Bahls, M.; Gross, S.; Ohlow, M.-A.; Eckert, S.; Stäuber, F.; Hoppe, M.W.; et al. Aortic Pulse Wave Velocity Determined with Oscillometric Pulse Wave Analysis Algorithm Antares Is an Independent Predictor of Major Adverse Cardiovascular Events: A Prospective Cohort Study. J. Clin. Med. 2024, 13, 7035. https://doi.org/10.3390/jcm13237035
Dörr M, Lapp H, Richter S, Stäuber A, Bahls M, Gross S, Ohlow M-A, Eckert S, Stäuber F, Hoppe MW, et al. Aortic Pulse Wave Velocity Determined with Oscillometric Pulse Wave Analysis Algorithm Antares Is an Independent Predictor of Major Adverse Cardiovascular Events: A Prospective Cohort Study. Journal of Clinical Medicine. 2024; 13(23):7035. https://doi.org/10.3390/jcm13237035
Chicago/Turabian StyleDörr, Marcus, Harald Lapp, Stefan Richter, Alexander Stäuber, Martin Bahls, Stefan Gross, Marc-Alexander Ohlow, Siegfried Eckert, Franziska Stäuber, Matthias Wilhelm Hoppe, and et al. 2024. "Aortic Pulse Wave Velocity Determined with Oscillometric Pulse Wave Analysis Algorithm Antares Is an Independent Predictor of Major Adverse Cardiovascular Events: A Prospective Cohort Study" Journal of Clinical Medicine 13, no. 23: 7035. https://doi.org/10.3390/jcm13237035
APA StyleDörr, M., Lapp, H., Richter, S., Stäuber, A., Bahls, M., Gross, S., Ohlow, M. -A., Eckert, S., Stäuber, F., Hoppe, M. W., & Baulmann, J. (2024). Aortic Pulse Wave Velocity Determined with Oscillometric Pulse Wave Analysis Algorithm Antares Is an Independent Predictor of Major Adverse Cardiovascular Events: A Prospective Cohort Study. Journal of Clinical Medicine, 13(23), 7035. https://doi.org/10.3390/jcm13237035