Personalizing Prediction of High Opioid Use in the Neurointensive Care Unit: Development and Validation of a Stratified Risk Model for Acute Brain Injury Due to Stroke or Traumatic Brain Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Institutional Review Board Review and Approval
2.2. Study Design, Population, and Clinical Setting
2.3. Data Collection and Curation
2.4. Model Development
2.5. Multicollinearity Assessment
2.6. Model Validation
2.7. Feature Selection and Multicollinearity
2.8. Online Calculator Development
3. Results
3.1. Derivation of the Study Cohort
3.2. Study Sample Characteristics
3.3. Association Between High Opioid Use and Infections and Non-Infectious Complications and Use of Medications to Counteract Adverse Events
3.4. Creating a Model to Predict High-Dose Opioid Use
3.5. Model Performance in the Training Cohort
3.6. Validation of Model
3.7. Online Calculator
4. Discussion
4.1. Implications for Clinical Practice
4.2. Future Directions and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suarez, J.I.; Martin, R.H.; Bauza, C.; Georgiadis, A.; Rao, C.P.V.; Calvillo, E.; Hemphill, J.C.; Sung, G.; Oddo, M.; LeRoux, P.D.; et al. Worldwide Organization of Neurocritical Care: Results from the PRINCE Study Part 1. Neurocrit. Care 2019, 32, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Venkatasubba Rao, C.P.; Suarez, J.I.; Martin, R.H.; Bauza, C.; Georgiadis, A.; Calvillo, E.; Hemphill, J.C.; Sung, G.; Oddo, M.; LeRoux, P.D.; et al. Global Survey of Outcomes of Neurocritical Care Patients: Analysis of the PRINCE Study Part 2. Neurocrit. Care 2020, 32, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Mahta, A.; Anderson, M.N.; Azher, A.I.; Mahmoud, L.N.; Dakay, K.; Abdulrazeq, H.; Abud, A.; Moody, S.; Reznik, M.E.; Yaghi, S.; et al. Short- and long-term opioid use in survivors of subarachnoid hemorrhage. Clin. Neurol. Neurosurg. 2021, 207, 106770. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, V.; Lucke-Wold, B.; Jones, C.; Aiello, G.; Li, Y.; Ayala, A.; Fox, W.C.; Maciel, C.B.; Busl, K.M. Change in opioid and analgesic use for headaches after aneurysmal subarachnoid hemorrhage over time. Neurochirurgie 2021, 67, 427–432. [Google Scholar] [CrossRef]
- Maciel, C.B.; Barlow, B.; Lucke-Wold, B.; Gobinathan, A.; Abu-Mowis, Z.; Peethala, M.M.; Merck, L.H.; Aspide, R.; Dickinson, K.; Miao, G.; et al. Acute headache management for patients with subarachnoid hemorrhage: An international survey of health care providers. Neurocrit. Care 2022, 38, 395–406. [Google Scholar] [CrossRef]
- Lin, N.; Mandel, D.; Chuck, C.C.; Gobinathan, A.; Abu-Mowis, Z.; Peethala, M.M.; Merck, L.H.; Aspide, R.; Dickinson, K.; Miao, G.; et al. Risk Factors for Opioid Utilization in Patients with Intracerebral Hemorrhage. Neurocrit. Care 2022, 36, 964–973. [Google Scholar] [CrossRef]
- Binhas, M.; Walleck, P.; El Bitar, N.; Melon, E.; Palfi, S.; Albaladejo, P.; Marty, J. Pain management in subarachnoid haemorrhage: A survey of French analgesic practices. Ann. Fr. Anesth. Reanim. 2006, 25, 935–939. [Google Scholar] [CrossRef]
- Morad, A.H.; Tamargo, R.J.; Gottschalk, A. The Longitudinal Course of Pain and Analgesic Therapy Following Aneurysmal Subarachnoid Hemorrhage: A Cohort Study. Headache 2016, 56, 1617–1625. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Shenoy, V.S.; Fong, C.T.; Walters, A.M.; Sekhar, L.; Curatolo, M.; Vavilala, M.S.; Lele, A.V. The Prevalence and Factors Associated with the Prescription of Opioids for Head/Neck Pain after Elective Craniotomy for Tumor Resection/Vascular Repair: A Retrospective Cohort Study. Medicina 2022, 59, 28. [Google Scholar] [CrossRef]
- Scuteri, D.; Mantovani, E.; Tamburin, S.; Sandrini, G.; Corasaniti, M.T.; Bagetta, G.; Tonin, P. Opioids in post-stroke pain: A systematic review and meta-analysis. Front. Pharmacol. 2020, 11, 587050. [Google Scholar] [CrossRef]
- Starosta, A.J.; Adams, R.S.; Marwitz, J.H.; Kreutzer, J.; Monden, K.R.; Dams O’Connor, K.; Hoffman, J. Scoping review of opioid use after traumatic brain injury. J. Head. Trauma. Rehabil. 2021, 36, 310–327. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.S.; Corrigan, J.D.; Dams-O’Connor, K. Opioid use among individuals with traumatic brain injury: A perfect storm? J. Neurotrauma 2020, 37, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Maneeton, N.; Maneeton, B.; Srisurapanont, M. Prevalence and predictors of pain in patients with major depressive disorder. Asian J. Psychiatr. 2013, 6, 288–291. [Google Scholar] [CrossRef]
- Poignant, S.; Vigué, B.; Balram, P.; Kreutzer, J.; Monden, K.R.; O’Connor, K.D.; Hoffman, J. A one-day prospective national observational study on sedation-analgesia of patients with brain injury in french intensive care units: The SEDA-BIP-ICU (sedation-analgesia in brain injury patient in ICU) study. Neurocrit. Care 2022, 36, 266–278. [Google Scholar] [CrossRef]
- Herzer, G.; Mirth, C.; Illievich, U.M.; Voelckel, W.G.; Trimmel, H. Analgosedation of adult patients with elevated intracranial pressure: Survey of current clinical practice in Austria. Wien. Klin. Wochenschr. 2018, 130, 45–53. [Google Scholar] [CrossRef]
- Oddo, M.; Crippa, I.A.; Mehta, S.; Menon, D.; Payen, J.-F.; Taccone, F.S.; Citerio, G. Optimizing sedation in patients with acute brain injury. Crit. Care 2016, 20, 128. [Google Scholar] [CrossRef]
- Zheng, R.-Z.; Lei, Z.-Q.; Yang, R.-Z.; Huang, G.-H.; Zhang, G.-M. Identification and management of paroxysmal sympathetic hyperactivity after traumatic brain injury. Front. Neurol. 2020, 11, 81. [Google Scholar] [CrossRef]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Waston, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, e825–e873. [Google Scholar] [CrossRef]
- Shivashankar, R.; Khanna, S.; Kammer, P.P.; Harmsen, W.S.; Zinsmeister, A.R.; Baddour, L.M.; Pardi, D.S. Clinical factors associated with development of severe-complicated Clostridium difficile infection. Clin. Gastroenterol. Hepatol. 2013, 11, 1466–1471. [Google Scholar] [CrossRef]
- RStudio. Available online: https://www.rstudio.com/ (accessed on 7 January 2022).
- Glmnet Function—RDocumentation. Available online: https://www.rdocumentation.org/packages/glmnet/versions/4.1-8/topics/glmnet (accessed on 26 August 2024).
- pROC. Available online: https://www.rdocumentation.org/packages/pROC/versions/1.18.5 (accessed on 26 August 2024).
- rms Package—RDocumentation. Available online: https://www.rdocumentation.org/packages/rms/versions/6.8-2 (accessed on 26 August 2024).
- MASS Package—RDocumentation. Available online: https://www.rdocumentation.org/packages/MASS/versions/7.3-61 (accessed on 26 August 2024).
- vif Function—RDocumentation. Available online: https://www.rdocumentation.org/packages/car/versions/3.1-2/topics/vif (accessed on 26 August 2024).
- High Opioid Use Predictor (>/=17.5 Oral morphine Equivalents/Day of ICU Stay. Available online: https://nccs.shinyapps.io/nccalculator/ (accessed on 26 August 2024).
- Swart, L.M.; van der Zanden, V.; Spies, P.E.; de Rooij, S.E.; van Munster, B.C. The comparative risk of delirium with different opioids: A systematic review. Drugs Aging 2017, 34, 437–443. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Tanaka, R.; Sato, T.; Sato, T.; Saitoh, A.; Yamada, D.; Shino, M. Incidence of Delirium with Different Oral Opioids in Previously Opioid-Naive Patients. Am. J. Hosp. Palliat. Care 2022, 39, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
No Opioids | Opioids | Univariable Analysis Unadjusted Odds Ratio [95% CI] | Multivariable Analysis Adjusted Odds Ratio [95% CI] | |
---|---|---|---|---|
N = 1037 | N = 1453 | |||
Age | ||||
18–44 years | 138 (13.3%) | 393 (27.0%) | Reference | Reference |
45–64 years | 274 (26.4%) | 544 (37.4%) | 0.70 [0.55;0.89] | 0.97 [0.73;1.29] |
65–79 years | 421 (40.6%) | 397 (27.3%) | 0.33 [0.26;0.42] | 0.56 [0.42;0.76] |
≥80 years | 204 (19.7%) | 119 (8.19%) | 0.21 [0.15;0.28] | 0.43 [0.30;0.62] |
Sex | ||||
Female | 397 (38.3%) | 605 (41.6%) | Reference | |
Male | 640 (61.7%) | 848 (58.4%) | 0.87 [0.74;1.02] | Excluded |
Race/ethnicity | Excluded | |||
White | 796 (76.8%) | 1118(76.9%) | Reference | |
Black or African-American | 64 (6.2%) | 109 (7.5%) | 1.21 [0.88;1.67] | |
Asian | 88 (8.5%) | 115 (7.9%) | 0.93 [0.69;1.24] | |
Other | 89 (8.58%) | 111 (7.64%) | 0.88 [0.66;1.19] | |
Language | ||||
English | 901 (87.0%) | 1285 (88.4%) | Reference | |
Non-English | 135 (13.0%) | 168 (11.6%) | 0.87 [0.69;1.11] | Excluded |
Insurance carrier | ||||
Commercial | 226 (21.8%) | 430 (29.6%) | Reference | |
Non-commercial | 811 (78.2%) | 1023 (70.4%) | 0.66 [0.55;0.80] | 0.94 [0.73;1.21] |
Medicaid | 160 (15.43%) | 390 (26.84%) | 1.28 [1.00;1.64] | |
Medicare | 585 (56.41%) | 533 (3668%) | 0.47 [0.29;0.58] | |
Self-pay | 24 (2.31%) | 27 (1.86%) | 0.59 [0.33;1.04] | |
Tricare | 9 (0.87%) | 12 (0.83%) | 0.70 [0.29;1.69] | |
Worker’s compensation | 6 (0.58%) | 29 (2%) | 2.54 [1.04;6.28] | |
Other | 27 (2.6%) | 32 (2.2%) | 0.62 [0.36;1.07] | |
Elixhauser comorbidity | ||||
Alcohol abuse | 124 (12.0%) | 262 (18.0%) | 1.62 [1.29;2.04] | 1.06 [0.80;1.40] |
Tumor/Cancer | 128 (12.3%) | 151 (10.4%) | 0.82 [0.64;1.06] | Excluded |
Anxiety-depression | 223 (21.5%) | 397 (27.3%) | 1.37 [1.14;1.66] | 1.63 [1.30;2.03] |
Psychoses | 77 (7.43%) | 127 (8.74%) | 1.19 [0.89;1.61] | Excluded |
Substance use disorder | 71 (6.85%) | 198 (13.6%) | 2.14 [1.62;2.86] | 1.33 [0.94;1.89] |
Chronic pain | 177 (17.1%) | 266 (18.3%) | 1.09 [0.88;1.34] | Excluded |
Pre-admission OME | 1.48 (9.89) | 2.58 (17.1) | 1.01 [1.00;1.01] | Excluded |
Admitting diagnosis | ||||
Acute ischemic stroke | 397 (69.9%)) | 171 (30.11%) | Reference | Reference |
Intracerebral hemorrhage | 218 (56.33%) | 169 (43.67%) | 1.80 [1.37;2.36] | 1.18 [0.86;1.61] |
Subarachnoid hemorrhage | 58 (17.42%) | 275 (82.58%) | 11.0 [7.88;15.4] | 5.85 [3.98;8.60] |
Traumatic brain injury | 364 (30.28%) | 838 (69.72%) | 5.34 [4.30;6.65] | 4.68 [3.64;6.01] |
Admission Glasgow Coma Scale score | ||||
13–15 | 797 (76.9%) | 882 (60.7%) | Reference | Reference |
3–8 | 118 (11.4%) | 441 (30.4%) | 3.37 [2.70;4.24] | 0.93 [0.62;1.40] |
9–12 | 122 (11.8%) | 130 (8.95%) | 0.96 [0.74;1.26] | 0.86 [0.63;1.18] |
Mechanical ventilation | 216 (20.8%) | 675 (46.5%) | 3.29 [2.75;3.96] | 2.13 [1.45;3.11] |
Maximum CIWA score | 11.0 (8.95) | 12.1 (7.76) | 1.02 [0.99;1.05] | Excluded |
Paroxysmal sympathetic hyperactivity | 22 (2.1%) | 163 (11.22%) | 5.83 [3.71;9.17] | 2.53 [1.45; 4.32] |
Intracranial pressure monitoring | 24 (2.31%) | 345 (23.7%) | 13.1 [8.74;20.5] | 5.50 [3.44;8.80] |
Lowest Admission Glasgow Coma Scale score in the ICU | ||||
13–15 | 596 (57.5%) | 597 (41.1%) | Reference | Reference |
3–8 | 254 (24.5%) | 700 (48.2%) | 2.75 [2.29;3.31] | 0.81 [0.55;1.21] |
9–12 | 187 (18.0%) | 156 (10.7%) | 0.83 [0.65;1.06] | 0.80 [0.62;1.18] |
Gastrostomy feeding tube | 114 (11.0%) | 295 (20.3%) | 2.06 [1.64;2.61] | 1.19 [0.84;1.69] |
Tracheostomy | 10 (0.96%) | 85 (5.85%) | 6.29 [3.41;13.0] | 1.46 [0.66;3.23] |
Craniotomy/craniectomy | 108 (10.4%) | 527 (36.3%) | 4.89 [3.91;6.15] | 2.21 [1.71;2.87] |
No Opioids | Opioids | Overall | |
---|---|---|---|
(N = 1037) | (N = 1453) | (N = 2490) | |
Propofol | 197 (19.0%) | 650 (44.7%) | 847 (34.0%) |
Ketamine | 6 (0.6%) | 50 (3.4%) | 56 (2.2%) |
Dexmedetomidine | 46 (4.4%) | 254 (17.5%) | 300 (12.0%) |
Phenobarbital | 23 (2.2%) | 58 (4.0%) | 81 (3.3%) |
Gabapentin | 152 (14.7%) | 539 (37.1%) | 691 (27.8%) |
Acetaminophen | 846 (81.6%) | 1421 (97.8%) | 2267 (91.0%) |
Haloperidol | 65 (6.3%) | 170 (11.7%) | 235 (9.4%) |
Quetiapine | 109 (10.5%) | 321 (22.1%) | 430 (17.3%) |
Lorazepam | 163 (15.7%) | 319 (22.0%) | 482 (19.4%) |
Diazepam | 28 (2.7%) | 61 (4.2%) | 89 (3.6%) |
Midazolam | 119 (11.5%) | 492 (33.9%) | 611 (24.5%) |
Daily OME <17.5/ICU Day | Daily OME ≥17.5/ICU Day | Univariable Analysis Unadjusted Odds Ratio [95% CI] | Multivariable Analysis Adjusted Odds Ratio [95% CI] | |
---|---|---|---|---|
N = 1089 | N = 364 | |||
Age | ||||
18–44 years | 238 (21.9%) | 155 (42.6%) | Reference | Reference |
45–64 years | 410 (37.6%) | 134 (36.8%) | 0.50 [0.38;0.67] | 0.56 [0.41;0.77] |
65–80 years | 332 (30.5%) | 65 (17.9%) | 0.30 [0.21;0.42] | 0.44 [0.3;0.64] |
>80 years | 109 (10.0%) | 10 (2.75%) | 0.14 [0.07;0.27] | 0.25 [0.12;0.51] |
Sex | ||||
Female | 460 (42.2%) | 145 (39.8%) | Reference | Reference |
Male | 629 (57.8%) | 219 (60.2%) | 1.10 [0.87;1.41] | Excluded |
Race/Ethnicity | ||||
Non-White | 244 (22.4%) | 91 (25.0%) | Reference | Reference |
White | 845 (77.6%) | 273 (75.0%) | 0.87 [0.66;1.15] | Excluded |
Language | ||||
English | 959 (88.1%) | 326 (89.6%) | Reference | Reference |
Non-English | 130 (11.9%) | 38 (10.4%) | 0.86 [0.58;1.25] | Excluded |
Insurance | ||||
Commercial | 306 (28.1%) | 124 (34.1%) | Reference | Reference |
Non-commercial | 783 (71.9%) | 240 (65.9%) | 0.76 [0.59;0.98] | Excluded |
Elixhauser comorbidity | ||||
Alcohol abuse | 170 (15.6%) | 92 (25.3%) | 1.83 [1.37;2.43] | Excluded |
Tumor/Cancer | 114 (10.5%) | 37 (10.2%) | 0.97 [0.65;1.42] | Excluded |
Anxiety/depression | 300 (27.5%) | 97 (26.6%) | 0.96 [0.73;1.25] | Excluded |
Psychoses | 82 (7.53%) | 45 (12.4%) | 1.73 [1.17;2.54] | Excluded |
Substance use disorder | 118 (10.8%) | 80 (22.0%) | 2.32 [1.69;3.17] | 1.89 [1.31;2.73] |
Chronic pain | 186 (17.1%) | 80 (22.0%) | 1.37 [1.02;1.83] | 1.94 [1.39;2.72] |
Pre-admission OME | 1.84 (11.9) | 4.78 (27.1) | 1.01 [1.00;1.02] | Excluded |
Admitting diagnosis | ||||
Acute ischemic stroke | 151 (13.9%) | 20 (5.49%) | Reference | Reference |
Intracerebral hemorrhage | 147 (13.5%) | 22 (6.04%) | 1.13 [0.59;2.18] | 0.7 [0.35;1.4] |
Subarachnoid hemorrhage | 196 (18.0%) | 79 (21.7%) | 3.02 [1.80;5.29] | 2 [1.1;3.62] |
Traumatic brain injury | 595 (54.6%) | 243 (66.8%) | 3.06 [1.92;5.14] | 2.27 [1.34;3.84] |
Admission Glasgow Coma Scale score | ||||
13–15 | 686 (63.0%) | 196 (53.8%) | Reference | Reference |
3–8 | 295 (27.1%) | 146 (40.1%) | 1.73 [1.34;2.23] | 1.38 [0.88;2.17] |
9–12 | 108 (9.92%) | 22 (6.04%) | 0.72 [0.43;1.14] | 0.69 [0.38;1.24] |
Mechanical ventilation | 474 (43.5%) | 201 (55.2%) | 1.60 [1.26;2.03] | 1.7 [0.97;2.97] |
Maximum CIWA score | 11.6 (7.47) | 13.2 (8.30) | 1.03 [0.99;1.06] | Excluded |
Paroxysmal sympathetic hyperactivity | 0.08 (0.27) | 0.21 (0.41) | 3.04 [2.18;4.25] | 2.41 [1.59;3.65] |
Intracranial pressure monitoring | 223 (20.5%) | 122 (33.5%) | 1.96 [1.50;2.54] | 1.73 [1.21;2.46] |
Lowest Admission Glasgow Coma Scale score in the ICU | ||||
13–15 | 459 (42.1%) | 138 (37.9%) | Reference | Reference |
3–8 | 500 (45.9%) | 200 (54.9%) | 1.33 [1.04;1.71] | 0.51 [0.28;0.94] |
9–12 | 130 (11.9%) | 26 (7.14%) | 0.67 [0.41;1.05] | 0.7 [0.41;1.21] |
Gastrostomy feeding tube | 212 (19.5%) | 83 (22.8%) | 1.22 [0.91;1.63] | 0.75 [0.48;1.16] |
Tracheostomy | 52 (4.78%) | 33 (9.07%) | 1.99 [1.25;3.12] | 1.05 [0.57;1.93] |
Craniotomy/craniectomy | 365 (33.5%) | 162 (44.5%) | 1.59 [1.25;2.03] | 1.25 [0.95;1.65] |
Condition/Medication | Patients Receiving <17.5 OME/ICU Day N = 1089 | Patients Receiving ≥17.5 OME/ICU Day N = 364 | Unadjusted Odds Ratio [95% CI] |
---|---|---|---|
Non-infectious complications | |||
Code blue | 14 (1.3%) | 10 (2.7%) | 2.17 [0.95;4.93] |
Rapid response | 265 (24%) | 83 (23%) | 0.92 [0.69;1.22] |
Delirium | 19 (1.7%) | 4 (1.1%) | 1.08 [0.85;1.37] |
Ileus | 83 (7.6%) | 40 (11%) | 1.50 [1.00;2.23] |
Venous thromboembolism | 39 (3.6%) | 18 (4.9%) | 1.40 [0.79;2.48] |
One or more out-of-operating room non-procedural intubation | 42 (88%) | 24 (92%) | 1.76 [1.05;2.95] |
Infectious complications | |||
Ventilator-associated pneumonia (VAP) | 53 (4.9%) | 41 (11%) | 2.48 [1.62;3.80] |
Catheter-associated urinary tract infections (CAUTI) | 19 (1.7%) | 4 (1.1%) | 0.63 [0.21;1.85] |
Clostridium difficile infection | 18 (1.7%) | 7 (1.9%) | 1.17 [0.48;2.82] |
Medications to counteract adverse events | |||
Naloxegol | 10 (0.9%) | 32 (8.8%) | 10.40 [5.06;21.38] |
Naloxone | 20 (1.8%) | 17 (4.7%) | 2.62 [1.36;5.06] |
Variables | Overall | AIS | s-ICH | SAH | TBI |
---|---|---|---|---|---|
Intercept | −2.73 | −2.38 | −2.58 | −0.087 | −0.51 |
Age | |||||
18–44 years | Reference | Reference | Reference | Reference | Reference |
45–64 years | −0.25 | −0.59 | −1.10 | −0.89 | −0.33 |
65–80 years | −0.97 | −0.28 | −1.52 | −1.35 | −0.94 |
≥80 years | −1.17 | −1.72 | −0.69 | −2.54 | −2.11 |
History of Anxiety/depression | 0.57 | 0.03 | 0.63 | 0.51 | −0.03 |
History of Illicit Substance Use | 0.79 | 0.20 | 0.45 | 0.89 | 0.69 |
Lowest Glasgow Coma Scale score | |||||
13–15 | Reference | Reference | Reference | Reference | Reference |
3–8 | −0.90 | 0.55 | 0.39 | −1.50 | −0.87 |
9–12 | −0.34 | 0.12 | 1.38 | −1.15 | −0.76 |
Mechanical ventilation | 1.21 | 0.42 | 0.47 | −0.28 | 1.01 |
Craniotomy/craniectomy | 0.60 | 0.11 | 1.04 | 1.02 | 0.26 |
Intracranial pressure monitoring | 0.69 | 0.43 | 0.38 | 1.40 | 0.75 |
Paroxysmal sympathetic hyperactivity | 1.12 | 2.35 | 1.35 | 1.32 | 0.45 |
AIS | s-ICH | SAH | TBI | |
---|---|---|---|---|
AUC | 0.72 | 0.80 | 0.78 | 0.73 |
Accuracy | 0.90 | 0.85 | 0.74 | 0.72 |
Precision | 0.91 | 0.87 | 0.75 | 0.74 |
Recall | 0.99 | 0.97 | 0.85 | 0.92 |
F1 | 0.95 | 0.92 | 0.79 | 0.82 |
AIS | s-ICH | SAH | TBI | |
---|---|---|---|---|
AUC | 0.72 | 0.82 | 0.76 | 0.73 |
Accuracy | 0.91 | 0.91 | 0.68 | 0.70 |
Precision | 0.94 | 0.91 | 0.73 | 0.71 |
Recall | 0.96 | 1 | 0.75 | 0.91 |
F1 | 0.95 | 0.95 | 0.74 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.Y.; Holland, I.C.; Fong, C.T.; Blacker, S.N.; Lele, A.V. Personalizing Prediction of High Opioid Use in the Neurointensive Care Unit: Development and Validation of a Stratified Risk Model for Acute Brain Injury Due to Stroke or Traumatic Brain Injury. J. Clin. Med. 2024, 13, 7055. https://doi.org/10.3390/jcm13237055
Wang WY, Holland IC, Fong CT, Blacker SN, Lele AV. Personalizing Prediction of High Opioid Use in the Neurointensive Care Unit: Development and Validation of a Stratified Risk Model for Acute Brain Injury Due to Stroke or Traumatic Brain Injury. Journal of Clinical Medicine. 2024; 13(23):7055. https://doi.org/10.3390/jcm13237055
Chicago/Turabian StyleWang, Wei Yun, Ian C. Holland, Christine T. Fong, Samuel N. Blacker, and Abhijit V. Lele. 2024. "Personalizing Prediction of High Opioid Use in the Neurointensive Care Unit: Development and Validation of a Stratified Risk Model for Acute Brain Injury Due to Stroke or Traumatic Brain Injury" Journal of Clinical Medicine 13, no. 23: 7055. https://doi.org/10.3390/jcm13237055
APA StyleWang, W. Y., Holland, I. C., Fong, C. T., Blacker, S. N., & Lele, A. V. (2024). Personalizing Prediction of High Opioid Use in the Neurointensive Care Unit: Development and Validation of a Stratified Risk Model for Acute Brain Injury Due to Stroke or Traumatic Brain Injury. Journal of Clinical Medicine, 13(23), 7055. https://doi.org/10.3390/jcm13237055