Periodontal Breakdown, Orthodontic Movements and Pulpal Ischemia Correlations—A Comparison Between Five Study Methods
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- During the periodontal breakdown, all five methods displayed, for all five movements, quantitative amounts of stress lower than MHP, suggesting that 3 N are not inducing any local tissular ischemic risks for the healthy intact NVB and pulp.
- During the periodontal breakdown, among the five methods, Tresca and Von Mises were more accurate than the other three, with Tresca being the most accurate of all.
- All five methods displayed rotation as the most stressful movement for 1–8 mm of bone loss, while translation was the least stressful.
- NVB was more exposed to ischemic risks than dental pulp during the periodontal breakdown due to constant tissular deformations during the 1–8 mm bone loss simulation, visible for all five movements.
- Only VM and Tresca showed the translation movement as more prone to exposing dental pulp (both coronal and radicular) to more ischemic risks than the other five movements during the periodontal breakdown simulation.
- All five methods showed intrusion and extrusion as more prone to exposing the NVB to higher ischemic risks than the other movements during the periodontal breakdown simulation.
6. Practical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xing, J.; Zhang, G.; Sun, M.; Pan, H.; Zhang, C.; Liu, Y.; Li, K.; He, Z.; Zhang, K.; Wang, J.; et al. Clinical insights into tooth extraction via torsion method: A biomechanical analysis of the tooth-periodontal ligament complex. Front. Bioeng. Biotechnol. 2024, 12, 1479751. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, J.; Yin, D.; Liu, Y. Improved stomatognathic model for highly realistic finite element analysis of temporomandibular joint biomechanics. J. Mech. Behav. Biomed. Mater. 2024, 160, 106780. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zheng, F.; Gong, Y.; Zhu, J.; Yin, D.; Liu, Y. Effect of occlusal contact on TMJ loading during occlusion: An in silico study. Comput. Biol. Med. 2024, 178, 108725. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Gong, Y.; Zhu, Y.; Yin, D.; Liu, Y. Three-dimensional theoretical model for effectively describing the effect of craniomaxillofacial structural factors on loading situation in the temporomandibular joint. J. Mech. Behav. Biomed. Mater. 2024, 151, 106371. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Fukasawa, S. Is Inflammation a Friend or Foe for Orthodontic Treatment?: Inflammation in Orthodontically Induced Inflammatory Root Resorption and Accelerating Tooth Movement. Int. J. Mol. Sci. 2021, 22, 2388. [Google Scholar] [CrossRef]
- Weissheimer, T.; Silva, E.; Pinto, K.P.; Só, G.B.; Rosa, R.A.; Só, M.V.R. Do orthodontic tooth movements induce pulp necrosis? A systematic review. Int. Endod. J. 2021, 54, 1246–1262. [Google Scholar] [CrossRef]
- Vitali, F.C.; Cardoso, I.V.; Mello, F.W.; Flores-Mir, C.; Andrada, A.C.; Dutra-Horstmann, K.L.; Duque, T.M. Effect of orthodontic force on dental pulp histomorphology and tissue factor expression. Angle Orthod. 2021, 91, 830–842. [Google Scholar] [CrossRef]
- Vermiglio, G.; Centofanti, A.; Matarese, G.; Militi, A.; Matarese, M.; Arco, A.; Nicita, F.; Cutroneo, G. Human Dental Pulp Tissue during Orthodontic Tooth Movement: An Immunofluorescence Study. J. Funct. Morphol. Kinesiol. 2020, 5, 65. [Google Scholar] [CrossRef]
- Bauss, O.; Rohling, J.; Meyer, K.; Kiliaridis, S. Pulp vitality in teeth suffering trauma during orthodontic therapy. Angle Orthod. 2009, 79, 166–171. [Google Scholar] [CrossRef]
- Bauss, O.; Rohling, J.; Rahman, A.; Kiliaridis, S. The effect of pulp obliteration on pulpal vitality of orthodontically intruded traumatized teeth. J. Endod. 2008, 34, 417–420. [Google Scholar] [CrossRef]
- Bauss, O.; Schäfer, W.; Sadat-Khonsari, R.; Knösel, M. Influence of orthodontic extrusion on pulpal vitality of traumatized maxillary incisors. J. Endod. 2010, 36, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Patro, S.; Meto, A.; Mohanty, A.; Chopra, V.; Miglani, S.; Das, A.; Luke, A.M.; Hadi, D.A.; Meto, A.; Fiorillo, L.; et al. Diagnostic Accuracy of Pulp Vitality Tests and Pulp Sensibility Tests for Assessing Pulpal Health in Permanent Teeth: A Systematic Review and Meta-Analysis. Int J Env. Res Public Health 2022, 19, 9599. [Google Scholar] [CrossRef] [PubMed]
- Cărămizaru, M.; Pleşea, I.E.; Dragomir, L.P.; Popescu, M.R.; Uscatu, C.D.; Şerbănescu, M.S.; Alexandru, D.O.; Comănescu, T.M. Quantitative assessment of morphological changes of dental pulp components of teeth affected by occlusal trauma. Rom. J. Morphol. Embryol. = Rev. Roum. Morphol. Embryol. 2018, 59, 729–740. [Google Scholar]
- França, C.M.; Riggers, R.; Muschler, J.L.; Widbiller, M.; Lococo, P.M.; Diogenes, A.; Bertassoni, L.E. 3D-Imaging of Whole Neuronal and Vascular Networks of the Human Dental Pulp via CLARITY and Light Sheet Microscopy. Sci. Rep. 2019, 9, 10860. [Google Scholar] [CrossRef] [PubMed]
- Moga, R.A.; Olteanu, C.D.; Botez, M.D.; Buru, S.M. Assessment of the Orthodontic External Resorption in Periodontal Breakdown—A Finite Elements Analysis (Part I). Healthcare 2023, 11, 1447. [Google Scholar] [CrossRef]
- Moga, R.A.; Delean, A.G.; Buru, S.M.; Botez, M.D.; Olteanu, C.D. Orthodontic Internal Resorption Assessment in Periodontal Breakdown—A Finite Elements Analysis (Part II). Healthcare 2023, 11, 2622. [Google Scholar] [CrossRef]
- Moga, R.A.; Olteanu, C.D.; Botez, M.; Buru, S.M. Assessment of the Maximum Amount of Orthodontic Force for Dental Pulp and Apical Neuro-Vascular Bundle in Intact and Reduced Periodontium on Bicuspids (Part II). Int. J. Env. Res. Public Health 2023, 20, 1179. [Google Scholar] [CrossRef]
- Moga, R.A.; Buru, S.M.; Olteanu, C.D. Assessment of the Best FEA Failure Criteria (Part II): Investigation of the Biomechanical Behavior of Dental Pulp and Apical-Neuro-Vascular Bundle in Intact and Reduced Periodontium. Int. J. Env. Res. Public Health 2022, 19, 15635. [Google Scholar] [CrossRef]
- Moga, R.A.; Buru, S.M.; Chiorean, C.G. Overall stress in periodontal ligament under orthodontic movement during a periodontal breakdown. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2022, 161, e127–e135. [Google Scholar] [CrossRef]
- Moga, R.A.; Olteanu, C.D.; Buru, S.M.; Botez, M.D.; Delean, A.G. Cortical and Trabecular Bone Stress Assessment during Periodontal Breakdown—A Comparative Finite Element Analysis of Multiple Failure Criteria. Medicina 2023, 59, 1462. [Google Scholar] [CrossRef]
- Moga, R.A.; Olteanu, C.D.; Buru, S.M.; Botez, M.D.; Delean, A.G. Finite Elements Analysis of Biomechanical Behavior of the Bracket in a Gradual Horizontal Periodontal Breakdown—A Comparative Analysis of Multiple Failure Criteria. Appl. Sci. 2023, 13, 9480. [Google Scholar] [CrossRef]
- Moga, R.-A.; Olteanu, C.D.; Delean, A.G. Investigating the Ability of the Tooth and Surrounding Support Tissues to Absorb and Dissipate Orthodontic Loads during Periodontal Breakdown—Finite Elements Analysis. Appl. Sci. 2024, 14, 1041. [Google Scholar] [CrossRef]
- Cardenas-Duque, L.M.; Yoshida, M.; Goto, G. Pulpal response to different pulp capping methods after pulp exposure by air abrasion. J. Clin. Pediatr. Dent. 2002, 26, 269–273. [Google Scholar] [CrossRef]
- Murray, P.E.; Hafez, A.A.; Windsor, L.J.; Smith, A.J.; Cox, C.F. Comparison of pulp responses following restoration of exposed and non-exposed cavities. J. Dent. 2002, 30, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Mjör, I.A. Pulp-dentin biology in restorative dentistry. Part 7: The exposed pulp. Quintessence Int. 2002, 33, 113–135. [Google Scholar]
- Murray, P.E.; Hafez, A.A.; Smith, A.J.; Cox, C.F. Identification of hierarchical factors to guide clinical decision making for successful long-term pulp capping. Quintessence Int. 2003, 34, 61–70. [Google Scholar]
- Kitasako, Y.; Murray, P.E.; Tagami, J.; Smith, A.J. Histomorphometric analysis of dentinal bridge formation and pulpal inflammation. Quintessence Int. 2002, 33, 600–608. [Google Scholar]
- Medina, V.O., 3rd; Shinkai, K.; Shirono, M.; Tanaka, N.; Katoh, Y. Histopathologic study on pulp response to single-bottle and self-etching adhesive systems. Oper. Dent. 2002, 27, 330–342. [Google Scholar]
- Suzuki, M.; Katsumi, A.; Watanabe, R.; Shirono, M.; Katoh, Y. Effects of an experimentally developed adhesive resin system and CO2 laser irradiation on direct pulp capping. Oper. Dent. 2005, 30, 702–718. [Google Scholar]
- Kitasako, Y.; Ikeda, M.; Tagami, J. Pulpal responses to bacterial contamination following dentin bridging beneath hard-setting calcium hydroxide and self-etching adhesive resin system. Dent. Traumatol. Off. Publ. Int. Assoc. Dent. Traumatol. 2008, 24, 201–206. [Google Scholar] [CrossRef]
- Schuurs, A.H.; Gruythuysen, R.J.; Wesselink, P.R. Pulp capping with adhesive resin-based composite vs. calcium hydroxide: A review. Endod. Dent. Traumatol. 2000, 16, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.F.; Hafez, A.A. Biocomposition and reaction of pulp tissues to restorative treatments. Dent. Clin. N. Am. 2001, 45, 31–48. [Google Scholar] [CrossRef]
- Farughi, A.; Rouhani, A.; Shahmohammadi, R.; Jafarzadeh, H. Clinical comparison of sensitivity and specificity between sensibility and vitality tests in determining the pulp vitality of mandibular premolars. Aust. Endod. J. J. Aust. Soc. Endodontol. Inc. 2021, 47, 474–479. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.W., Jr.; Sarver, D.M. Contemporary Orthodontics, 5th ed.; Elsevier: St. Louis, MO, USA, 2012. [Google Scholar]
- Wu, J.L.; Liu, Y.F.; Peng, W.; Dong, H.Y.; Zhang, J.X. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis. J. Zhejiang Univ. Sci. B 2018, 7, 535–546. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Wang, D.; Zhang, J.; Dong, X.; Jiang, X.; Xu, X. Investigation of effective intrusion and extrusion force for maxillary canine using finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, Y.; Li, B.; Wang, D.; Dong, X.; Sun, Q.; Chen, G. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar based on biomechanical responses of periodontal ligaments: A case study. Clin. Oral Investig. 2021, 25, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Minch, L.E.; Sarul, M.; Nowak, R.; Kawala, B.; Antoszewska-Smith, J. Orthodontic intrusion of periodontally-compromised maxillary incisors: 3-dimensional finite element method analysis. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2017, 26, 829–833. [Google Scholar] [CrossRef]
- Hohmann, A.; Wolfram, U.; Geiger, M.; Boryor, A.; Kober, C.; Sander, C.; Sander, F.G. Correspondences of hydrostatic pressure in periodontal ligament with regions of root resorption: A clinical and a finite element study of the same human teeth. Comput. Methods Programs Biomed. 2009, 93, 155–161. [Google Scholar] [CrossRef]
- Hohmann, A.; Wolfram, U.; Geiger, M.; Boryor, A.; Sander, C.; Faltin, R.; Faltin, K.; Sander, F.G. Periodontal ligament hydrostatic pressure with areas of root resorption after application of a continuous torque moment. Angle Orthod. 2007, 77, 653–659. [Google Scholar] [CrossRef]
- Rusu Olaru, A.; Popescu, M.R.; Pleşea, I.E.; Şerbănescu, M.S.; Pleşea, R.M.; Cojocaru, M.O.; Coculescu, E.C. Abrasion and dental pulp morphological changes in occlusal dysfunction. Rom. J. Morphol. Embryol. = Rev. Roum. Morphol. Embryol. 2024, 65, 279–290. [Google Scholar] [CrossRef]
- Javed, F.; Al-Kheraif, A.A.; Romanos, E.B.; Romanos, G.E. Influence of orthodontic forces on human dental pulp: A systematic review. Arch. Oral Biol. 2015, 60, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Bauss, O.; Röhling, J.; Sadat-Khonsari, R.; Kiliaridis, S. Influence of orthodontic intrusion on pulpal vitality of previously traumatized maxillary permanent incisors. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2008, 134, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Strobl, H.; Haas, M.; Norer, B.; Gerhard, S.; Emshoff, R. Evaluation of pulpal blood flow after tooth splinting of luxated permanent maxillary incisors. Dent. Traumatol. Off. Publ. Int. Assoc. Dent. Traumatol. 2004, 20, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Emshoff, R.; Emshoff, I.; Moschen, I.; Strobl, H. Diagnostic characteristics of pulpal blood flow levels associated with adverse outcomes of luxated permanent maxillary incisors. Dent. Traumatol. Off. Publ. Int. Assoc. Dent. Traumatol. 2004, 20, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Abbott, P.V. Dental pulp testing: A review. Int. J. Dent. 2009, 2009, 365785. [Google Scholar] [CrossRef]
- Balevi, B. Cold pulp testing is the simplest and most accurate of all dental pulp sensibility tests. Evid.-Based Dent. 2019, 20, 22–23. [Google Scholar] [CrossRef]
- Mainkar, A.; Kim, S.G. Diagnostic Accuracy of 5 Dental Pulp Tests: A Systematic Review and Meta-analysis. J. Endod. 2018, 44, 694–702. [Google Scholar] [CrossRef]
- Toms, S.R.; Eberhardt, A.W. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2003, 123, 657–665. [Google Scholar] [CrossRef]
- Hemanth, M.; Deoli, S.; Raghuveer, H.P.; Rani, M.S.; Hegde, C.; Vedavathi, B. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis. J. Int. Oral Health JIOH 2015, 7, 129–133. [Google Scholar]
- Hemanth, M.; Deoli, S.; Raghuveer, H.P.; Rani, M.S.; Hegde, C.; Vedavathi, B. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study. J. Int. Oral Health JIOH 2015, 7, 114–118. [Google Scholar]
- Geramy, A. Initial stress produced in the periodontal membrane by orthodontic loads in the presence of varying loss of alveolar bone: A three-dimensional finite element analysis. Eur. J. Orthod. 2002, 24, 21–33. [Google Scholar] [CrossRef]
- Geramy, A.; Faghihi, S. Secondary trauma from occlusion: Three-dimensional analysis using the finite element method. Quintessence Int. 2004, 35, 835–843. [Google Scholar] [PubMed]
- Shaw, A.M.; Sameshima, G.T.; Vu, H.V. Mechanical stress generated by orthodontic forces on apical root cementum: A finite element model. Orthod. Craniofacial Res. 2004, 7, 98–107. [Google Scholar] [CrossRef]
- Gupta, M.; Madhok, K.; Kulshrestha, R.; Chain, S.; Kaur, H.; Yadav, A. Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements—A 3D FEM study. J. Oral Biol. Craniofacial Res. 2020, 10, 758–763. [Google Scholar] [CrossRef]
- Roscoe, M.G.; Cattaneo, P.M.; Dalstra, M.; Ugarte, O.M.; Meira, J.B.C. Orthodontically induced root resorption: A critical analysis of finite element studies’ input and output. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2021, 159, 779–789. [Google Scholar] [CrossRef]
- Prados-Privado, M.; Martínez-Martínez, C.; Gehrke, S.A.; Prados-Frutos, J.C. Influence of Bone Definition and Finite Element Parameters in Bone and Dental Implants Stress: A Literature Review. Biology 2020, 9, 224. [Google Scholar] [CrossRef]
- Yamanishi, Y.; Yamaguchi, S.; Imazato, S.; Nakano, T.; Yatani, H. Effects of the implant design on peri-implant bone stress and abutment micromovement: Three-dimensional finite element analysis of original computer-aided design models. J. Periodontol. 2014, 85, e333–e338. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pevida, E.; Brizuela-Velasco, A.; Chávarri-Prado, D.; Jiménez-Garrudo, A.; Sánchez-Lasheras, F.; Solaberrieta-Méndez, E.; Diéguez-Pereira, M.; Fernández-González, F.J.; Dehesa-Ibarra, B.; Monticelli, F. Biomechanical Consequences of the Elastic Properties of Dental Implant Alloys on the Supporting Bone: Finite Element Analysis. BioMed Res. Int. 2016, 2016, 1850401. [Google Scholar] [CrossRef] [PubMed]
- Tawara, D.; Nagura, K. Predicting changes in mechanical properties of trabecular bone by adaptive remodeling. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 415–425. [Google Scholar] [CrossRef]
- Aunmeungtong, W.; Khongkhunthian, P.; Rungsiyakull, P. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: A finite element analysis study. ORAL Implantol. 2016, 9, 202–212. [Google Scholar]
- Merdji, A.; Bachir Bouiadjra, B.; Achour, T.; Serier, B.; Ould Chikh, B.; Feng, Z.O. Stress analysis in dental prosthesis. Comput. Mater. Sci. 2010, 49, 126–133. [Google Scholar] [CrossRef]
- Field, C.; Ichim, I.; Swain, M.V.; Chan, E.; Darendeliler, M.A.; Li, W.; Li, Q. Mechanical responses to orthodontic loading: A 3-dimensional finite element multi-tooth model. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2009, 135, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, A.; Iserte-Vilar, J.L.; Gonzalez-Lluch, C. Interpreting finite element results for brittle materials in endodontic restorations. Biomed. Eng. Online 2011, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Hussein Mahmood Ghuloom, K.; Mascarenhas, R.; Parveen, S.; Husain, A. Finite element analysis of orthodontically induced stress in the periodontal ligament of the maxillary first molar with simulated bone loss. J. Comput. Methods Sci. Eng. 2017, 17, 243–252. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, J.; Weinkamer, R.; Darendeliler, M.A.; Swain, M.V.; Sue, A.; Zheng, K.; Li, Q. In vivo effects of different orthodontic loading on root resorption and correlation with mechanobiological stimulus in periodontal ligament. J. R. Soc. Interface 2019, 16, 20190108. [Google Scholar] [CrossRef]
Materials | Young’s Modulus, E (GPa) | Poisson Ratio, ʋ | Refs. |
---|---|---|---|
Enamel | 80 | 0.33 | [15,16,17,18,19,20,21,22] |
Dentin/Cementum | 18.6 | 0.31 | [15,16,17,18,19,20,21,22] |
Pulp and NVB | 0.0021 | 0.45 | [15,16,17,18,19,20,21,22] |
PDL | 0.0667 | 0.49 | [15,16,17,18,19,20,21,22] |
Cortical bone | 14.5 | 0.323 | [15,16,17,18,19,20,21,22] |
Trabecular bone | 1.37 | 0.3 | [15,16,17,18,19,20,21,22] |
Stainless streel bracket (Cr-Co) | 218 | 0.33 | [15,16,17,18,19,20,21,22] |
Resorption (mm) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
---|---|---|---|---|---|---|---|---|---|---|
Intrusion | Tresca | NVB | 0.84 | 0.99 | 1.13 | 1.28 | 1.50 | 1.73 | 1.95 | 2.17 |
c | 0.08 | 0.09 | 0.10 | 0.11 | 0.13 | 0.15 | 0.17 | 0.18 | ||
VM | NVB | 0.71 | 0.84 | 0.98 | 1.12 | 1.31 | 1.55 | 1.64 | 1.88 | |
c | 0.07 | 0.08 | 0.09 | 0.10 | 0.11 | 0.13 | 0.15 | 0.16 | ||
Pressure | NVB | 2.96 | 3.27 | 3.59 | 3.91 | 4.51 | 5.10 | 5.69 | 6.28 | |
c | 0.27 | 0.31 | 0.35 | 0.40 | 0.58 | 0.77 | 0.96 | 1.14 | ||
S1 | NVB | −2.56 | −2.90 | −3.24 | −3.57 | −3.99 | −4.40 | −4.80 | −5.22 | |
c | 0.27 | 0.29 | 0.31 | 0.33 | 0.39 | 0.44 | 0.49 | 0.55 | ||
S3 | NVB | −2.99 | −3.22 | −3.45 | −3.68 | −4.17 | −4.67 | −5.16 | −5.66 | |
c | 0.20 | 0.20 | 0.21 | 0.21 | 0.27 | 0.32 | 0.38 | 0.44 | ||
Extrusion | Tresca | NVB | 0.84 | 0.99 | 1.13 | 1.28 | 1.50 | 1.73 | 1.95 | 2.17 |
c | 0.08 | 0.09 | 0.10 | 0.11 | 0.13 | 0.15 | 0.17 | 0.18 | ||
VM | NVB | 0.71 | 0.84 | 0.98 | 1.12 | 1.31 | 1.55 | 1.64 | 1.88 | |
c | 0.07 | 0.08 | 0.09 | 0.10 | 0.11 | 0.13 | 0.15 | 0.16 | ||
Pressure | NVB | −2.96 | −3.27 | −3.59 | −3.91 | −4.51 | −5.10 | −5.69 | −6.28 | |
c | −0.27 | −0.31 | −0.35 | −0.40 | −0.58 | −0.77 | −0.96 | −1.14 | ||
S1 | NVB | 2.98 | 3.44 | 3.90 | 4.35 | 4.69 | 5.03 | 5.36 | 5.70 | |
c | −0.55 | −0.61 | −0.67 | 0.72 | 0.74 | 0.77 | 0.81 | 0.83 | ||
S3 | NVB | 3.05 | 3.29 | 3.52 | 3.75 | 4.29 | 4.82 | 5.36 | 5.89 | |
c | −0.26 | −0.28 | −0.30 | −0.32 | −0.36 | −0.41 | −0.44 | −0.48 | ||
Translation | Tresca | NVB | 0.64 | 0.72 | 0.80 | 0.88 | 0.98 | 1.08 | 1.19 | 1.29 |
c | 0.11 | 0.12 | 0.14 | 0.15 | 0.16 | 0.17 | 0.17 | 0.18 | ||
VM | NVB | 0.55 | 0.62 | 0.69 | 0.76 | 0.86 | 0.96 | 1.07 | 1.17 | |
c | 0.13 | 0.14 | 0.14 | 0.15 | 0.15 | 0.15 | 0.15 | 0.16 | ||
Pressure | NVB | 2.43 | 2.54 | 2.65 | 2.76 | 3.23 | 3.71 | 4.19 | 4.66 | |
c | −0.35 | −0.36 | −0.37 | 0.38 | 0.45 | 0.51 | 0.58 | 0.64 | ||
S1 | NVB | −2.11 | −2.24 | −2.39 | −2.51 | −2.94 | −3.36 | −3.79 | −4.22 | |
c | 0.28 | 0.32 | 0.35 | 0.38 | 0.42 | 0.47 | 0.51 | 0.55 | ||
S3 | NVB | −2.57 | −2.71 | −2.85 | −2.99 | −3.52 | −4.05 | −4.58 | −5.10 | |
c | −0.10 | −0.11 | −0.11 | 0.11 | 0.13 | 0.15 | 1.76 | 0.20 | ||
Rotation | Tresca | NVB | 0.90 | 1.21 | 1.51 | 2.07 | 2.32 | 2.57 | 2.82 | 3.07 |
3 N | c | 0.16 | 0.17 | 0.18 | 0.19 | 0.21 | 0.24 | 0.26 | 0.28 | |
VM | NVB | 0.97 | 1.19 | 1.41 | 1.63 | 1.74 | 1.85 | 1.95 | 2.06 | |
c | 0.14 | 0.15 | 0.16 | 0.17 | 0.19 | 0.22 | 0.24 | 0.27 | ||
Pressure | NVB | 3.98 | 4.53 | 5.08 | 5.63 | 6.33 | 7.03 | 7.73 | 8.42 | |
c | 1.69 | 1.76 | 1.83 | 1.90 | 2.13 | 2.36 | 2.59 | 2.82 | ||
S1 | NVB | −3.98 | −4.67 | −5.33 | −6.00 | −6.72 | −7.44 | −8.16 | −8.87 | |
c | 0.88 | 1.20 | 1.51 | 1.83 | 2.08 | 2.32 | 2.57 | 2.81 | ||
S3 | NVB | −4.28 | −4.95 | −5.61 | −6.28 | −7.05 | −7.83 | −8.60 | −9.37 | |
c | 0.47 | 0.56 | 0.65 | −0.74 | −0.82 | −0.91 | −0.99 | −1.08 | ||
Tipping | Tresca | NVB | 0.91 | 1.09 | 1.26 | 1.44 | 1.64 | 1.84 | 2.04 | 2.24 |
c | 0.13 | 0.14 | 0.14 | 0.14 | 0.16 | 0.17 | 0.18 | 0.19 | ||
VM | NVB | 0.79 | 0.94 | 1.10 | 1.25 | 1.43 | 1.62 | 1.80 | 1.98 | |
c | 0.11 | 0.11 | 0.11 | 0.11 | 0.13 | 0.14 | 0.16 | 0.17 | ||
Pressure | NVB | 3.09 | 3.55 | 4.01 | 4.47 | 4.94 | 5.42 | 5.89 | 6.36 | |
c | 1.17 | 1.21 | 1.25 | 1.29 | 1.33 | 1.37 | 1.40 | 1.44 | ||
S1 | NVB | −2.80 | −3.05 | −3.29 | −4.18 | −4.57 | −4.95 | −5.34 | −5.72 | |
c | −0.69 | −0.88 | −1.07 | 1.26 | 1.54 | 1.82 | 2.09 | 2.37 | ||
S3 | NVB | −3.19 | −3.56 | −3.92 | −4.28 | −4.87 | −5.46 | −6.05 | −6.64 | |
c | −0.30 | −0.35 | −0.40 | −0.44 | 0.45 | 0.47 | 0.47 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moga, R.-A.; Olteanu, C.D.; Delean, A.G. Periodontal Breakdown, Orthodontic Movements and Pulpal Ischemia Correlations—A Comparison Between Five Study Methods. J. Clin. Med. 2024, 13, 7062. https://doi.org/10.3390/jcm13237062
Moga R-A, Olteanu CD, Delean AG. Periodontal Breakdown, Orthodontic Movements and Pulpal Ischemia Correlations—A Comparison Between Five Study Methods. Journal of Clinical Medicine. 2024; 13(23):7062. https://doi.org/10.3390/jcm13237062
Chicago/Turabian StyleMoga, Radu-Andrei, Cristian Doru Olteanu, and Ada Gabriela Delean. 2024. "Periodontal Breakdown, Orthodontic Movements and Pulpal Ischemia Correlations—A Comparison Between Five Study Methods" Journal of Clinical Medicine 13, no. 23: 7062. https://doi.org/10.3390/jcm13237062
APA StyleMoga, R.-A., Olteanu, C. D., & Delean, A. G. (2024). Periodontal Breakdown, Orthodontic Movements and Pulpal Ischemia Correlations—A Comparison Between Five Study Methods. Journal of Clinical Medicine, 13(23), 7062. https://doi.org/10.3390/jcm13237062