Protective Influence of SGLT-2 Inhibitors Against Heart Failure in Type 2 Diabetes Mellitus Through Longitudinal Clinical Database Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data
2.2. Variables
2.3. Statistical Analysis
2.3.1. Baseline Characteristics
2.3.2. Multiple Logistic Regression Model
2.3.3. Model Performance Evaluation
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Hara, D.V.; Lam, C.S.P.; McMurray, J.J.V.; Yi, T.W.; Hocking, S.; Dawson, J.; Raichand, S.; Januszewski, A.S.; Jardine, M.J. Applications of SGLT2 inhibitors beyond glycaemic control. Nat. Rev. Nephrol. 2024, 20, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Galiero, R.; Caturano, A.; Rinaldi, L.; Di Martino, A.; Albanese, G.; Di Salvo, J.; Epifani, R.; Marfella, R.; Docimo, G.; et al. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int. J. Mol. Sci. 2022, 23, 3651. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Williams, S.; Ho, S.; Loraine, H.; Hagan, D.; Whaley, J.M.; Feder, J.N. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther. 2010, 1, 57–92. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Carbonara, O.; Cozzolino, D.; Torella, R.; Nasti, R.; Lascar, N.; Sasso, F.C. Kidney in diabetes: From organ damage target to therapeutic target. Curr. Drug Metab. 2011, 12, 658–666. [Google Scholar] [CrossRef]
- Chao, E.C.; Henry, R.R. SGLT2 inhibition—A novel strategy for diabetes treatment. Nat. Rev. Drug Discov. 2010, 9, 551–559. [Google Scholar] [CrossRef]
- Petersen, C. Analyse des Phloridzins. Ann. Pharm. 1835, 15, 178. [Google Scholar] [CrossRef]
- Blaschek, W. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors. Planta Medica 2017, 83, 985–993. [Google Scholar] [CrossRef]
- Cowie, M.R.; Fisher, M. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 2020, 17, 761–772. [Google Scholar] [CrossRef]
- Ehrenkranz, J.R.L.; Lewis, N.G.; Kahn, C.R.; Roth, J. Phlorizin: A review. Diabetes Metab. Res. Rev. 2005, 21, 31–38. [Google Scholar] [CrossRef]
- Al Rifai, M.; Newby, L.K.; Nair, A.P.; Misra, A.; Rogers, J.G.; Fedson, S.; Virani, S.S. SGLT-2 Inhibitors for Patients with Heart Failure: What Have We Learned Recently? Curr. Atheroscler. Rep. 2022, 24, 627–634. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef]
- Butler, J.; Packer, M.; Filippatos, G.; Ferreira, J.P.; Zeller, C.; Schnee, J.; Brueckmann, M.; Pocock, S.J.; Zannad, F.; Anker, S.D. Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur. Heart J. 2022, 43, 416–426. [Google Scholar] [CrossRef]
- Jhund, P.S.; Kondo, T.; Butt, J.H.; Docherty, K.F.; Claggett, B.L.; Desai, A.S.; Vaduganathan, M.; Gasparyan, S.B.; Bengtsson, O.; Lindholm, D.; et al. Dapagliflozin across the range of ejection fraction in patients with heart failure: A patient-level, pooled meta-analysis of DAPA-HF and DELIVER. Nat. Med. 2022, 28, 1956–1964. [Google Scholar] [CrossRef]
- Garla, V.V.; Butler, J.; Lien, L.F. SGLT-2 Inhibitors in Heart Failure: Guide for Prescribing and Future Perspectives. Curr. Cardiol. Rep. 2021, 23, 59. [Google Scholar] [CrossRef]
- Ojha, U.; Reyes, L.; Eyenga, F.; Oumbe, D.; Watkowska, J.; Saint-Jacques, H. Diabetes, Heart Failure and Beyond: Elucidating the Cardioprotective Mechanisms of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors. Am. J. Cardiovasc. Drugs 2022, 22, 35–46. [Google Scholar] [CrossRef]
- Caruso, I.; Giorgino, F. SGLT-2 inhibitors as cardio-renal protective agents. Metabolism 2022, 127, 154937. [Google Scholar] [CrossRef]
- Chen, M.-B.; Wang, H.; Zheng, Q.-H.; Xu, H.-L.; Cui, W.-Y. Effect of Sodium-Dependent Glucose Transporter Inhibitors on Glycated Hemoglobin A1c After 24 weeks in Patients With Diabetes Mellitus. Medicine 2021, 100, e24101. [Google Scholar] [CrossRef]
- Lambers Heerspink, H.J.; de Zeeuw, D.; Wie, L.; Leslie, B.; List, J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab. 2013, 15, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Hallow, K.M.; Helmlinger, G.; Greasley, P.J.; McMurray, J.J.V.; Boulton, D.W. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes. Metab. 2018, 20, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Vallon, V. The Mechanisms and Therapeutic Potential of SGLT2 Inhibitors in Diabetes Mellitus. Annu. Rev. Med. 2015, 66, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Lahnwong, S.; Chattipakorn, S.C.; Chattipakorn, N. Potential Mechanisms Responsible for Cardioprotective Effects of Sodium–glucose Co-Transporter 2 Inhibitors. Cardiovasc. Diabetol. 2018, 17, 101. [Google Scholar] [CrossRef]
- Verma, S.; McMurray, J.J. SGLT2 Inhibitors and Mechanisms of Cardiovascular Benefit: A State-of-the-Art Review. Diabetologia 2018, 61, 2108–2117. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.E.; Januzzi, J.L.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes With Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Roy, R. Sodium-Glucose Cotransporter-2 (SGLT-2) Inhibitors in Heart Failure: An Umbrella Review. Cureus 2023, 15, e42113. [Google Scholar] [CrossRef]
- Cai, X.; Yang, W.; Gao, X.; Chen, Y.; Zhou, L.; Zhang, S.; Han, X.; Ji, L. The Association Between the Dosage of SGLT2 Inhibitor and Weight Reduction in Type 2 Diabetes Patients: A Meta-Analysis. Obesity 2018, 26, 70–80. [Google Scholar] [CrossRef]
- Zheng, C.; Lin, M.; Chen, Y.; Xu, H.; Yan, L.; Dai, H. Effects of Sodium-glucose Cotransporter Type 2 Inhibitors on Cardiovascular, Renal, and Safety Outcomes in Patients With Cardiovascular Disease: A Meta-analysis of Randomized Controlled Trials. Cardiovasc. Diabetol. 2021, 20, 83. [Google Scholar] [CrossRef]
- Yang, D.; Yan, J.; Liu, M.; An, F. SGLT-2 Inhibitors on Prognosis and Health-Related Quality of Life in Patients With Heart Failure and Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 942125. [Google Scholar] [CrossRef]
- Ferrannini, E.; Baldi, S.; Frascerra, S.; Astiarraga, B.; Heise, T.; Bizzotto, R.; Mari, A.; Pieber, T.R.; Muscelli, E. Shift to Fatty Substrate Utilization in Response to Sodium–Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes. Diabetes 2016, 65, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Lytvyn, Y.; Perkins, B.A.; Cherney, D.Z.I. Uric acid as a biomarker and a therapeutic target in diabetes. Can. J. Diabetes 2015, 39, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Behzad, H.; Asham, H.; Beheshtirouy, S.; Mashayekhi, S.; Jafari, N.; Entezari-Maleki, T. Sodium-glucose cotransporter-2 inhibitors in individuals with ischemia reperfusion injury: A systematic review. Perfusion 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Durante, W.; Behnammanesh, G.; Peyton, K.J. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int. J. Mol. Sci. 2021, 22, 8786. [Google Scholar] [CrossRef]
- Diabetes [Internet]. Available online: https://www.who.int/health-topics/diabetes (accessed on 27 October 2024).
- Palazzuoli, A.; Iacoviello, M. Diabetes leading to heart failure and heart failure leading to diabetes: Epidemiological and clinical evidence. Heart Fail. Rev. 2023, 28, 585–596. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 17; StataCorp LLC: College Station, TX, USA, 2021. [Google Scholar]
- Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol. 2012, 21, 365–371. [Google Scholar] [CrossRef]
- Lee, C.S.; Auld, J. Heart Failure. Crit. Care Nurs. Clin. N. Am. 2015, 27, 413–425. [Google Scholar] [CrossRef]
- Butt, J.H.; Kondo, T.; Yang, M.; Jhund, P.S.; Docherty, K.F.; Vaduganathan, M.; Claggett, B.L.; Hernandez, A.F.; Lam, C.S.P.; Inzucchi, S.E.; et al. Heart failure, peripheral artery disease, and dapagliflozin: A patient-level meta-analysis of DAPA-HF and DELIVER. Eur. Heart J. 2023, 44, 2170–2183. [Google Scholar] [CrossRef]
- Soyoye, D.O.; Abiodun, O.O.; Ikem, R.T.; Kolawole, B.A.; Akintomide, A.O. Diabetes and peripheral artery disease: A review. World J. Diabetes 2021, 12, 827–838. [Google Scholar] [CrossRef]
- Gamrat, A.; Surdacki, M.A.; Chyrchel, B.; Surdacki, A. Endothelial Dysfunction: A Contributor to Adverse Cardiovascular Remodeling and Heart Failure Development in Type 2 Diabetes beyond Accelerated Atherogenesis. J. Clin. Med. 2020, 9, 2090. [Google Scholar] [CrossRef]
- Fadini, G.P.; Spinetti, G.; Santopaolo, M.; Madeddu, P. Impaired Regeneration Contributes to Poor Outcomes in Diabetic Peripheral Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Lau, E.S.H.; Luk, A.O.; Tam, C.H.T.; Ozaki, R.; Lim, C.K.P.; Wu, H.; Chow, E.Y.K.; Kong, A.P.S.; Lee, H.M.; et al. Circulating metabolomic markers linking diabetic kidney disease and incident cardiovascular disease in type 2 diabetes: Analyses from the Hong Kong Diabetes Biobank. Diabetologia 2024, 67, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Ulambayar, B.; Ghanem, A.S.; Chau, N.M.; Faludi, E.V.; Móré, M.; Nagy, A.C. Evaluation of Cardiovascular Disease Risk in Patients with Type 2 Diabetes Mellitus Using Clinical Laboratory Markers. J. Clin. Med. 2024, 13, 3561. [Google Scholar] [CrossRef]
- Song, D.K.; Hong, Y.S.; Sung, Y.-A.; Lee, H. Risk factor control and cardiovascular events in patients with type 2 diabetes mellitus. PLoS ONE 2024, 19, e0299035. [Google Scholar] [CrossRef]
- Arnold, S.V.; Hunt, P.R.; Chen, H.; Maclachlan, S.; Repetto, E.; Vora, J.; Kosiborod, M. Cardiovascular Outcomes and Mortality in Type 2 Diabetes with Associated Cardio-Renal-Metabolic Comorbidities. Diabetes 2018, 67, 1582-P. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, C.; Liu, Y.; Tan, X.; Li, C.; Li, L.; Hu, S. Chronic Inflammation Plays a Role of a Bridge Between Cardiovascular Disease and Hyperglycemia. Metab. Syndr. Relat. Disord. 2023, 21, 468–474. [Google Scholar] [CrossRef]
- Wojan, F.; Stray-Gundersen, S.; Zhao, J.; Lalande, S. Impaired erythropoietin response to hypoxia in type 2 diabetes. Acta Diabetol. 2024, 61, 925–932. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Qi, Q.; Wang, Q.; Feng, L. Relationship between dyslipidemia and diabetic retinopathy in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Syst. Rev. 2023, 12, 148. [Google Scholar] [CrossRef]
- Pantelidis, P.; Kalliakmanis, A.; Mitas, C.; Sideris, M.; Grassos, C.; Pittaras, A.; Manolis, A. Sodium-glucose Cotransporter 2 Inhibitors: The Pleiotropic Mechanisms of Actions. Cardiovasc. Hematol. Disord.-Drug Targets 2018, 18, 86–93. [Google Scholar] [CrossRef]
- Sen, T.; Heerspink, H.J.L. A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors. Cell Metab. 2021, 33, 732–739. [Google Scholar] [CrossRef]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef] [PubMed]
- Chrysant, S.G.; Chrysant, G.S. Beneficial cardiovascular and remodeling effects of SGLT 2 inhibitors. Expert Rev. Cardiovasc. Ther. 2022, 20, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Alsereidi, F.R.; Khashim, Z.; Marzook, H.; Gupta, A.; Al-Rawi, A.M.; Ramadan, M.M.; Saleh, M.A. Targeting inflammatory signaling pathways with SGLT2 inhibitors: Insights into cardiovascular health and cardiac cell improvement. Curr. Probl. Cardiol. 2024, 49, 102524. [Google Scholar] [CrossRef] [PubMed]
- Gager, G.M.; Von Lewinski, D.; Sourij, H.; Jilma, B.; Eyileten, C.; Filipiak, K.; Hülsmann, M.; Kubica, J.; Postula, M.; Siller-Matula, J.M. Effects of SGLT2 Inhibitors on Ion Homeostasis and Oxidative Stress associated Mechanisms in Heart Failure. Biomed. Pharmacother. 2021, 143, 112169. [Google Scholar] [CrossRef]
- Packer, M. SGLT2 inhibitors: Role in protective reprogramming of cardiac nutrient transport and metabolism. Nat. Rev. Cardiol. 2023, 20, 443–462. [Google Scholar] [CrossRef]
- Wong, J.; Chan, K.Y.; Lo, K. Sodium-glucose co-transporter 2 inhibitors on weight change and cardiometabolic profiles in individuals with overweight or obesity and without diabetes: A meta-analysis. Obes. Rev. 2021, 22, e13336. [Google Scholar] [CrossRef]
- Pereira, M.J.; Eriksson, J.W. Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs 2019, 79, 219–230. [Google Scholar] [CrossRef]
- Okuhara, Y.; Asakura, M.; Orihara, Y.; Naito, Y.; Tsujino, T.; Ishihara, M.; Masuyama, T. Effects of Weight Loss in Outpatients With Mild Chronic Heart Failure: Findings from the J-MELODIC Study. J. Card. Fail. 2019, 25, 44–50. [Google Scholar] [CrossRef]
- Karakasis, P.; Fragakis, N.; Patoulias, D.; Theofilis, P.; Sagris, M.; Koufakis, T.; Vlachakis, P.K.; Rangraze, I.R.; El Tanani, M.; Tsioufis, K.; et al. The Emerging Role of Glucagon-like Peptide-1 Receptor Agonists in the Management of Obesity-Related Heart Failure with Preserved Ejection Fraction: Benefits beyond What Scales Can Measure? Biomedicines 2024, 12, 2112. [Google Scholar] [CrossRef]
- Li, W.; Yu, K.; Sun, S. Novel oral hypoglycemic agents SGLT-2 inhibitors: Cardiovascular benefits and potential mechanisms. Pharmazie 2020, 75, 224–229. [Google Scholar] [CrossRef]
- Blonde, L.; Khunti, K.; Harris, S.B.; Meizinger, C.; Skolnik, N.S. Interpretation and Impact of Real-World Clinical Data for the Practicing Clinician. Adv. Ther. 2018, 35, 1763–1774. [Google Scholar] [CrossRef]
- Hall, P.S. Real-world data for efficient health technology assessment. Eur. J. Cancer 2017, 79, 235–237. [Google Scholar] [CrossRef]
Variables | Baseline (%(n)) | |
---|---|---|
Age * | 65.00 (58–71) | |
Gender | Female | 54.72% (1391) |
Male | 45.28% (1151) | |
Comorbidities (except for heart failure) | Atherosclerosis | 28.21% (717) |
Myocardial ischemia | 25.33% (644) | |
Stroke | 7.67% (195) | |
Peripheral artery disease | 15.11% (384) | |
Nephropathy | 17.15% (436) | |
Retinopathy | 14.63% (372) | |
Neuropathy | 18.69% (475) | |
Median HbA1c * | 7.2 (6.5–8.2) | |
Medial LDL * | 2.76 (2.05–3.50) | |
Median HDL * | 1.20 (1.00–1.45) | |
Median triglyceride * | 1.70 (1.24–2.50) |
Variable | Category | Without HF, N(%) | With HF, N(%) | p-Value |
---|---|---|---|---|
Gender | Female | 1134 (98.52%) | 17 (1.48%) | 0.099 |
Male | 1380 (99.21%) | 11 (0.79%) | ||
Age Group | <65 | 1252 (98.97%) | 13 (1.03%) | 0.723 |
≥65 | 1262 (98.83%) | 15 (1.17%) | ||
LDL Levels | <3.4 mmol/L | 1530 (98.77%) | 19 (1.23%) | 0.642 |
≥3.4 mmol/L | 601 (99.01%) | 6 (0.99%) | ||
HbA1c | <7% | 1057 (99.53%) | 5 (0.47%) | 0.01 |
≥7% | 1457 (98.45%) | 23 (1.55%) | ||
Triglycerides | <1.7 mmol/L | 1104 (99.10%) | 10 (0.90%) | 0.383 |
≥1.7 mmol/L | 1243 (98.73%) | 16 (1.27%) | ||
Atherosclerosis | Yes | 1812 (99.29%) | 15 (2.09%) | 0.003 |
No | 702 (97.91%) | 13 (0.71%) | ||
Stroke | Yes | 2323 (98.98%) | 4 (2.05%) | 0.186 |
No | 191 (97.95%) | 24 (1.02%) | ||
AMI | Yes | 1890 (99.58%) | 20 (3.11%) | <0.001 |
No | 624 (96.89%) | 8 (0.42%) | ||
Peripheral Artery Disease | Yes | 2138 (99.07%) | 8 (2.08%) | 0.045 |
No | 376 (97.92%) | 20 (0.93%) | ||
Nephropathy | Yes | 2087 (99.10%) | 9 (2.06%) | 0.034 |
No | 427 (97.94%) | 19 (0.90%) | ||
Retinopathy | Yes | 2150 (99.08%) | 8 (2.15%) | 0.036 |
No | 364 (97.85%) | 20 (0.92%) | ||
Neuropathy | Yes | 2048 (99.08%) | 9 (1.89%) | 0.066 |
No | 466 (98.11%) | 19 (0.92%) | ||
SGLT-2 Inhibitors | Yes | 2268 (99.87%) | 25 (9.23%) | <0.001 |
No | 246 (90.77%) | 3 (0.13%) |
Variable | Odds Ratio [95% CI] | p-Value |
---|---|---|
SGLT-2 inhibitor (yes/no) | 0.55 [0.31–0.99] | 0.046 |
Age (years) | 1.02 [0.99–1.06] | 0.178 |
Gender (female/male) | 0.45 [0.28–0.71] | 0.001 |
Duration SGLT-2 inhibitor use | 1.13 [0.89–1.44] | 0.309 |
Baseline HbA1c (%) | 1.14 [0.99–1.31] | 0.066 |
eGFR (mL/min/1.73 m2) | 0.98 [0.97–0.99] | 0.004 |
year: 2017/2016 | 1.38 [0.59–3.22] | 0.461 |
year: 2018/2016 | 0.85 [0.40–1.80] | 0.671 |
year: 2019/2016 | 0.92 [0.49–1.74] | 0.797 |
year: 2020/2016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, A.C.; Tóth, Á.; Bak, N.; Ulambayar, B.; Ghanem, A.S.; Sztanek, F. Protective Influence of SGLT-2 Inhibitors Against Heart Failure in Type 2 Diabetes Mellitus Through Longitudinal Clinical Database Analysis. J. Clin. Med. 2024, 13, 7093. https://doi.org/10.3390/jcm13237093
Nagy AC, Tóth Á, Bak N, Ulambayar B, Ghanem AS, Sztanek F. Protective Influence of SGLT-2 Inhibitors Against Heart Failure in Type 2 Diabetes Mellitus Through Longitudinal Clinical Database Analysis. Journal of Clinical Medicine. 2024; 13(23):7093. https://doi.org/10.3390/jcm13237093
Chicago/Turabian StyleNagy, Attila Csaba, Ágnes Tóth, Natália Bak, Battamir Ulambayar, Amr Sayed Ghanem, and Ferenc Sztanek. 2024. "Protective Influence of SGLT-2 Inhibitors Against Heart Failure in Type 2 Diabetes Mellitus Through Longitudinal Clinical Database Analysis" Journal of Clinical Medicine 13, no. 23: 7093. https://doi.org/10.3390/jcm13237093
APA StyleNagy, A. C., Tóth, Á., Bak, N., Ulambayar, B., Ghanem, A. S., & Sztanek, F. (2024). Protective Influence of SGLT-2 Inhibitors Against Heart Failure in Type 2 Diabetes Mellitus Through Longitudinal Clinical Database Analysis. Journal of Clinical Medicine, 13(23), 7093. https://doi.org/10.3390/jcm13237093