Effect of Transcranial Direct Current Stimulation (tDCS) on Depression in Parkinson’s Disease—A Narrative Review
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection Criteria
2.3. Screening Process
2.3.1. Title and Abstract Screening
2.3.2. Full-Text Assessment
3. Results
3.1. Summary of Included Studies
3.2. Effects of tDCS on Depression in PD
3.3. Other Interventions and Medications Used during tDCS
3.4. Durability of tDCS Effects
4. Results
4.1. General Findings
4.2. Mechanisms of Action of tDCS in Depression in PD
4.2.1. Impact on Cortical Regions
4.2.2. Neuroplasticity Enhancement
4.2.3. Brain-Derived Neurotrophic Factor (BDNF) Modulation
4.2.4. Top-Down Network Modulation
4.2.5. Dopaminergic System Modulation
4.2.6. Glutamatergic Neurotransmission Modulation
4.2.7. Anti-Inflammatory Effects
4.2.8. Lowering α-Synuclein Levels
4.3. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Goswami, P.; Joshi, N.; Singh, S. Neurodegenerative signaling factors and mechanisms in Parkinson’s pathology. Toxicol. In Vitro 2017, 43, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Raza, C.; Anjum, R.; Shakeel, N.U.A. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci. 2019, 226, 77–90. [Google Scholar] [CrossRef]
- Pfeiffer, R.F. Non-motor symptoms in Parkinson’s disease. Park. Relat. Disord. 2016, 22 (Suppl. S1), S119–S122. [Google Scholar] [CrossRef] [PubMed]
- Galts, C.P.; Bettio, L.E.; Jewett, D.C.; Yang, C.C.; Brocardo, P.S.; Rodrigues, A.L.S.; Thacker, J.S.; Gil-Mohapel, J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci. Biobehav. Rev. 2019, 102, 56–84. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, R.; Martinez-Martin, P. Neuropsychiatric symptoms, behavioural disorders, and quality of life in Parkinson’s disease. J. Neurol. Sci. 2017, 373, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Prange, S.; Klinger, H.; Laurencin, C.; Danaila, T.; Thobois, S. Depression in Patients with Parkinson’s Disease: Current Understanding of its Neurobiology and Implications for Treatment. Drugs Aging 2022, 39, 417–439. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Påhlhagen, S.; Ballard, C.G.; Ehrt, U.; Svenningsson, P. Depression in Parkinson disease—Epidemiology, mechanisms and management. Nat. Rev. Neurol. 2011, 8, 35–47. [Google Scholar] [CrossRef]
- Tsai, P.; Gopalakrishna, G. Mood disorders in Parkinson’s disease. In Non-Motor Parkinson’s Disease; Gálvez-Jiménez, N., Korczyn, A., Lugo-Sanchez, R., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 91–98. [Google Scholar]
- Kritzinger, C.; Vollstedt, E.-J.; Hückelheim, K.; Lorwin, A.; Graf, J.; Tunc, S.; Klein, C.; Kasten, M. Qualitative characteristics of depression in Parkinson’s patients and controls. Behav. Neurol. 2015, 2015, e961372. [Google Scholar] [CrossRef]
- Gonera, E.G.; van’t Hof, M.; Berger, H.J.; van Weel, C.; Horstink, M.W. Symptoms and duration of the prodromal phase in Parkinson’s disease. Mov. Disord. 1997, 12, 871–876. [Google Scholar] [CrossRef]
- Pont-Sunyer, C.; Hotter, A.; Gaig, C.; Seppi, K.; Compta, Y.; Katzenschlager, R.; Mas, N.; Hofeneder, D.; Brücke, T.; Bayés, A.; et al. The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov. Disord. 2015, 30, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Schrag, A.; Horsfall, L.; Walters, K.; Noyce, A.; Petersen, I. Prediagnostic presentations of Parkinson’s disease in primary care: A case-control study. Lancet Neurol. 2015, 14, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Cong, S.; Xiang, C.; Zhang, S.; Zhang, T.; Wang, H.; Cong, S. Prevalence and clinical aspects of depression in Parkinson’s disease: A systematic review and meta-analysis of 129 studies. Neurosci. Biobehav. Rev. 2022, 141, 104749. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, R.D.; Rubino, J.T.; Friedman, J.; Allen, L.A.; Gara, M.A.; Menza, M. Barriers to mental health care utilization in Parkinson’s disease. J. Geriatr. Psychiatry Neurol. 2013, 26, 105–116. [Google Scholar] [CrossRef]
- Shulman, L.M.; Taback, R.L.; Rabinstein, A.A.; Weiner, W.J. Non-recognition of depression and other non-motor symptoms in Parkinson’s disease. Park. Relat. Disord. 2002, 8, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, J.S.; Ehrt, U.; Weber, W.E.; Aarsland, D.; Leentjens, A.F. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov. Disord. 2008, 23, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Remy, P.; Doder, M.; Lees, A.; Turjanski, N.; Brooks, D. Depression in Parkinson’s disease: Loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005, 128, 1314–1322. [Google Scholar] [CrossRef]
- Ahmad, M.H.; Rizvi, M.A.; Ali, M.; Mondal, A.C. Neurobiology of depression in Parkinson’s disease: Insights into epidemiology, molecular mechanisms and treatment strategies. Ageing Res. Rev. 2023, 85, 101840. [Google Scholar] [CrossRef]
- Marsh, L. Depression and Parkinson’s disease: Current knowledge. Curr. Neurol. Neurosci. Rep. 2013, 13, 409. [Google Scholar] [CrossRef]
- Ryan, M.; Eatmon, C.V.; Slevin, J.T. Drug treatment strategies for depression in Parkinson disease. Expert Opin. Pharmacother. 2019, 20, 1351–1363. [Google Scholar] [CrossRef]
- Devos, D.; Dujardin, K.; Poirot, I.; Moreau, C.; Cottencin, O.; Thomas, P.; Destée, A.; Bordet, R.; Defebvre, L. Comparison of desipramine and citalopram treatments for depression in Parkinson’s disease: A double-blind, randomized, placebo-controlled study. Mov. Disord. 2008, 23, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Menza, M.; Dobkin, R.D.; Marin, H.; Mark, M.H.; Gara, M.; Buyske, S.; Bienfait, K.; Dicke, A. A controlled trial of antidepressants in patients with Parkinson disease and depression. Neurology 2009, 72, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Richard, I.H.; McDermott, M.P.; Kurlan, R.; Lyness, J.M.; Como, P.G.; Pearson, N.; Factor, S.A.; Juncos, J.; Serrano Ramos, C.; Brodsky, M.; et al. A randomized, double-blind, placebo controlled trial of antidepressants in Parkinson disease. Neurology 2012, 78, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Załuska, M.; Dyduch, A. Bupropion in the treatment of depression in Parkinson’s disease. Int. Psychogeriatr. 2011, 23, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, R.D.; Menza, M.; Allen, L.A.; Gara, M.A.; Mark, M.H.; Tiu, J.; Bienfait, K.L.; Friedman, J. Cognitive-behavioral therapy for depression in Parkinson’s disease: A randomized, controlled trial. Am. J. Psychiatry 2011, 168, 1066–1074. [Google Scholar] [CrossRef]
- Sacheli, M.A.; Neva, J.L.; Lakhani, B.; Msc, D.K.M.; Vafai, N.; Shahinfard, E.; English, C.; McCormick, S.; Dinelle, K.; Neilson, N.; et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov. Disord. 2019, 34, 1891–1900. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef]
- Fricke, K.; Seeber, A.A.; Thirugnanasambandam, N.; Paulus, W.; Nitsche, M.A.; Rothwell, J.C. Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 2011, 105, 1141–1149. [Google Scholar] [CrossRef]
- Stagg, C.J.; Antal, A.; Nitsche, M.A. Physiology of transcranial direct current stimulation. J. ECT 2018, 34, 144–152. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef]
- Frank, E.; Wilfurth, S.; Landgrebe, M.; Eichhammer, P.; Hajak, G.; Langguth, B. Anodal skin lesions after treatment with transcranial direct current stimulation. Brain Stimul. 2010, 3, 58–59. [Google Scholar] [CrossRef]
- Pol, F.; Salehinejad, M.A.; Baharlouei, H.; Nitsche, M.A. The effects of transcranial direct current stimulation on gait in patients with Parkinson’s disease: A systematic review. Transl. Neurodegener. 2021, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, I.; Ko, J.H. Modulating brain networks associated with cognitive deficits in Parkinson’s disease. Mol. Med. 2021, 27, 24. [Google Scholar] [CrossRef] [PubMed]
- Zaehle, T. Frontal Transcranial Direct Current Stimulation as a Potential Treatment of Parkinson’s Disease-Related Fatigue. Brain Sci. 2021, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- Lattari, E.; Costa, S.S.; Campos, C.; de Oliveira, A.J.; Machado, S.; Maranhao Neto, G.A. Can transcranial direct current stimulation on the dorsolateral prefrontal cortex improves balance and functional mobility in Parkinson’s disease? Neurosci. Lett. 2017, 636, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Hadoush, H.; Alqudah, A.; Banihani, S.A.; Al-Jarrah, M.; Amro, A.; Aldajah, S. Melatonin serum level, sleep functions, and depression level after bilateral anodal transcranial direct current stimulation in patients with Parkinson’s disease: A feasibility study. Sleep Sci. 2021, 14, 25–30. [Google Scholar] [CrossRef]
- Hadoush, H.; Al-Sharman, A.; Khalil, H.; Banihani, S.A.; Al-Jarrah, M. Sleep Quality, Depression, and Quality of Life After Bilateral Anodal Transcranial Direct Current Stimulation in Patients with Parkinson’s Disease. Med. Sci. Monit. Basic. Res. 2018, 24, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Benninger, D.H.; Lomarev, M.; Lopez, G.; Wassermann, E.M.; Li, X.; Considine, E.; Hallett, M. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1105–1111. [Google Scholar] [CrossRef]
- Oh, E.; Park, J.; Youn, J.; Jang, W. Anodal Transcranial Direct Current Stimulation Could Modulate Cortical Excitability and the Central Cholinergic System in Akinetic Rigid Type Parkinson’s Disease: Pilot Study. Front. Neurol. 2022, 13, 830976. [Google Scholar] [CrossRef]
- Ferrucci, R.; Cortese, F.; Bianchi, M.; Pittera, D.; Turrone, R.; Bocci, T.; Borroni, B.; Vergari, M.; Cogiamanian, F.; Ardolino, G.; et al. Cerebellar and Motor Cortical Transcranial Stimulation Decrease Levodopa-Induced Dyskinesias in Parkinson’s Disease. Cerebellum 2016, 15, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Manenti, R.; Brambilla, M.; Benussi, A.; Rosini, S.; Cobelli, C.; Ferrari, C.; Petesi, M.; Orizio, I.; Padovani, A.; Borroni, B.; et al. Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy. Mov. Disord. 2016, 31, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Manenti, R.; Cotelli, M.S.; Cobelli, C.; Gobbi, E.; Brambilla, M.; Rusich, D.; Alberici, A.; Padovani, A.; Borroni, B.; Cotelli, M. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson Disease: A randomized, placebo controlled study. Brain Stimul. 2018, 11, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Doruk, D.; Gray, Z.; Bravo, G.L.; Pascual-Leone, A.; Fregni, F. Effects of tDCS on executive function in Parkinson’s disease. Neurosci. Lett. 2014, 582, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Biundo, R.; Weis, L.; Fiorenzato, E.; Gentile, G.; Giglio, M.; Schifano, R.; Campo, M.C.; Marcon, V.; Martinez-Martin, P.; Bisiacchi, P.; et al. Double-blind Randomized Trial of tDCS Versus Sham in Parkinson Patients With Mild Cognitive Impairment Receiving Cognitive Training. Brain Stimul. 2015, 8, 1223–1225. [Google Scholar] [CrossRef] [PubMed]
- Razza, L.B.; De Smet, S.; Moffa, A.; Sudbrack-Oliveira, P.; Vanderhasselt, M.A.; Brunoni, A.R. Follow-up effects of transcranial direct current stimulation (tDCS) for the major depressive episode: A systematic review and meta-analysis. Psychiatry Res. 2021, 302, 114024. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, H.; Schülke, R.; Geng, X.; Sahakian, B.J.; Wang, S. Is transcranial direct current stimulation, alone or in combination with antidepressant medications or psychotherapies, effective in treating major depressive disorder? A systematic review and meta-analysis. BMC Med. 2021, 19, 319. [Google Scholar] [CrossRef]
- Pizzagalli, D.A.; Roberts, A.C. Prefrontal cortex and depression. Neuropsychopharmacology 2022, 47, 225–246. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Siemer, M.; Gotlib, I.H. Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Mol. Psychiatry 2008, 13, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Sheline, Y.I. Depression and the hippocampus: Cause or effect? Biol. Psychiatry 2011, 70, 308–309. [Google Scholar] [CrossRef]
- Luo, C.; Song, W.; Chen, Q.; Yang, J.; Gong, Q.; Shang, H.F. Cortical thinning in drug-naive Parkinson’s disease patients with depression. J. Neurol. 2016, 263, 2114–2119. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Ferrucci, R.; Fregni, F.; Boggio, P.S.; Priori, A. Transcranial direct current stimulation for the treatment of major depressive disorder: A summary of preclinical, clinical and translational findings. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Player, M.J.; Taylor, J.L.; Weickert, C.S.; Alonzo, A.; Sachdev, P.; Martin, D.; Mitchell, P.B.; Loo, C.K. Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology 2013, 38, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Woodham, R.; Rimmer, R.M.; Mutz, J.; Fu, C.H.Y. Is tDCS a potential first line treatment for major depression? Int. Rev. Psychiatry 2021, 33, 250–265. [Google Scholar] [CrossRef]
- Player, M.J.; Taylor, J.L.; Weickert, C.S.; Alonzo, A.; Sachdev, P.S.; Martin, D.; Mitchell, P.B.; Loo, C.K. Increase in PAS-induced neuroplasticity after a treatment course of transcranial direct current stimulation for depression. J. Affect. Disord. 2014, 167, 140–147. [Google Scholar] [CrossRef]
- Karege, F.; Perret, G.; Bondolfi, G.; Schwald, M.; Bertschy, G.; Aubry, J.M. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002, 109, 143–148. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.J.; Boulle, F.; Steinbusch, H.W.; van den Hove, D.L.; Kenis, G.; Lanfumey, L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 2018, 235, 2195–2220. [Google Scholar] [CrossRef]
- Rahmani, F.; Saghazadeh, A.; Rahmani, M.; Teixeira, A.L.; Rezaei, N.; Aghamollaii, V.; Ardebili, H.E. Plasma levels of brain-derived neurotrophic factor in patients with Parkinson disease: A systematic review and meta-analysis. Brain Res. 2019, 1704, 127–136. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Du, X.D.; Zhang, Y.; Yin, G.; Zhang, B.S.; Soares, J.C.; Zhang, X.Y. Association of low serum BDNF with depression in patients with Parkinson’s disease. Park. Relat. Disord. 2017, 41, 73–78. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, C.; Zhang, Q.; Wu, W.; Sun, J. Serum BDNF discriminates Parkinson’s disease patients with depression from without depression and reflect motor severity and gender differences. J. Neurol. 2021, 268, 1411–1418. [Google Scholar] [CrossRef]
- Irwin, C.L.; Coelho, P.S.; Kluwe-Schiavon, B.; Silva-Fernandes, A.; Gonçalves, Ó.F.; Leite, J.; Carvalho, S. Non-pharmacological treatment-related changes of molecular biomarkers in major depressive disorder: A systematic review and meta-analysis. Int. J. Clin. Health Psychol. 2023, 23, 100367. [Google Scholar] [CrossRef]
- Chrysikou, E.G.; Wing, E.K.; van Dam, W.O. Transcranial Direct Current Stimulation Over the Prefrontal Cortex in Depression Modulates Cortical Excitability in Emotion Regulation Regions as Measured by Concurrent Functional Magnetic Resonance Imaging: An Exploratory Study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022, 7, 85–94. [Google Scholar] [CrossRef]
- Hunter, M.A.l.; Coffman, B.A.; Gasparovic, C.; Calhoun, V.D.; Trumbo, M.C.; Clark, V.P. Baseline effects of transcranial direct current stimulation on glutamatergic neurotransmission and large-scale network connectivity. Brain Res. 2015, 1594, 92–107. [Google Scholar] [CrossRef]
- Fonteneau, C.; Redoute, J.; Haesebaert, F.; Le Bars, D.; Costes, N.; Suaud-Chagny, M.F.; Brunelin, J. Frontal transcranial direct current stimulation induces dopamine release in the ventral striatum in human. Cereb. Cortex 2018, 28, 2636–2646. [Google Scholar] [CrossRef]
- Fukai, M.; Bunai, T.; Hirosawa, T.; Kikuchi, M.; Ito, S.; Minabe, Y.; Ouchi, Y. Endogenous dopamine release under transcranial direct-current stimulation governs enhanced attention: A study with positron emission tomography. Transl. Psychiatry 2019, 9, 115. [Google Scholar] [CrossRef]
- Yildiz-Yesiloglu, A.; Ankerst, D.P. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: A meta-analysis. Psychiatry Res. Neuroimaging 2006, 147, 1–25. [Google Scholar] [CrossRef]
- Millan, M.J. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol. Ther. 2006, 110, 135–370. [Google Scholar] [PubMed]
- Khoodoruth, M.A.S.; Estudillo-Guerra, M.A.; Pacheco-Barrios, K.; Nyundo, A.; Chapa Koloffon, G.; Ouanes, S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front. Psychiatry 2022, 13, 886918. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Alvarado, S.; Boutzoukas, E.M.; Kraft, J.N.; O’Shea, A.; Indahlastari, A.; Albizu, A.; Nissim, N.R.; Evangelista, N.D.; Cohen, R.; Porges, E.C.; et al. Impact of Transcranial Direct Current Stimulation and Cognitive Training on Frontal Lobe Neurotransmitter Concentrations. Front. Aging Neurosci. 2021, 13, 761348. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Janelidze, S.; Surova, Y.; Widner, H.; Zetterberg, H.; Hansson, O. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci. Rep. 2018, 8, 13276. [Google Scholar] [CrossRef]
- De Virgilio, A.; Greco, A.; Fabbrini, G.; Inghilleri, M.; Rizzo, M.I.; Gallo, A.; Conte, M.; Rosato, C.; Ciniglio Appiani, M.; de Vincentiis, M. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun. Rev. 2016, 15, 1005–1011. [Google Scholar] [CrossRef]
- Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022, 22, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Tonhajzerova, I.; Sekaninova, N.; Bona Olexova, L.; Visnovcova, Z. Novel insight into neuroimmune regulatory mechanisms and biomarkers linking major depression and vascular diseases: The dilemma continues. Int. J. Mol. Sci. 2020, 21, 2317. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, A.; Long, Z.; Wang, D.; Li, X.; Xia, J.; Luo, S.; Shan, Y.H. Relationship between levels of inflammatory cytokines in the peripheral blood and the severity of depression and anxiety in patients with Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3853–3856. [Google Scholar]
- Guo, T.; Fang, J.; Tong, Z.Y.; He, S.; Luo, Y. Transcranial direct current stimulation ameliorates cognitive impairment via modulating oxidative stress, inflammation, and autophagy in a rat model of vascular dementia. Front. Neurosci. 2020, 14, 28. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Machado-Vieira, R.; Zarate, C.A.; Valiengo, L.; Vieira, E.L.; Benseñor, I.M.; Lotufo, P.A.; Gattaz, W.F.; Teixeira, A.L. Cytokines plasma levels during antidepressant treatment with sertraline and transcranial direct current stimulation (tDCS): Results from a factorial, randomized, controlled trial. Psychopharmacology 2014, 231, 1315–1323. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Padberg, F.; Vieira, E.L.M.; Teixeira, A.L.; Carvalho, A.F.; Lotufo, P.A.; Gattaz, W.F.; Benseñor, I.M. Plasma biomarkers in a placebo-controlled trial comparing tDCS and escitalopram efficacy in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Goerigk, S.; Cretaz, E.; Sampaio-Junior, B.; Vieira, É.L.M.; Gattaz, W.; Klein, I.; Lafer, B.; Teixeira, A.L.; Carvalho, A.F.; Lotufo, P.A.; et al. Effects of tDCS on neuroplasticity and inflammatory biomarkers in bipolar depression: Results from a sham controlled study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 105, 110119. [Google Scholar] [CrossRef] [PubMed]
- Miquel-Rio, L.; Sarriés-Serrano, U.; Pavia-Collado, R.; Meana, J.J.; Bortolozzi, A. The Role of α-Synuclein in the Regulation of Serotonin System: Physiological and Pathological Features. Biomedicines 2023, 11, 541. [Google Scholar] [CrossRef]
- Shahmoradian, S.H.; Lewis, A.J.; Genoud, C.; Hench, J.; Moors, T.E.; Navarro, P.P.; Castaño-Díez, D.; Schweighauser, G.; Graff-Meyer, A.; Goldie, K.N.; et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 2019, 22, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Giguère, N.; Burke Nanni, S.; Trudeau, L.E. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson’s Disease. Front. Neurol. 2018, 9, 455. [Google Scholar] [CrossRef]
- Halliday, G.M.; Blumbergs, P.C.; Cotton, R.G.; Blessing, W.W.; Geffen, L.B. Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res. 1990, 510, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Politis, M.; Wu, K.; Loane, C.; Quinn, N.P.; Brooks, D.J.; Oertel, W.H.; Björklund, A.; Lindvall, O.; Piccini, P. Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci. Transl. Med. 2012, 4, 128ra41. [Google Scholar] [CrossRef] [PubMed]
- Sala, G.; Bocci, T.; Borzì, V.; Parazzini, M.; Priori, A.; Ferrarese, C. Direct current stimulation enhances neuronal alpha-synuclein degradation in vitro. Sci. Rep. 2021, 11, 2197. [Google Scholar] [CrossRef]
- Lee, S.B.; Kim, H.T.; Yang, H.O.; Jang, W. Anodal transcranial direct current stimulation prevents methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by modulating autophagy in an in vivo mouse model of Parkinson’s disease. Sci. Rep. 2018, 8, 15165. [Google Scholar] [CrossRef] [PubMed]
- Godeiro, C.; França, C.; Carra, R.B.; Saba, F.; Saba, R.; Maia, D.; Brandão, P.; Allam, N.; Rieder, C.R.M.; Freitas, F.C.; et al. Use of non-invasive stimulation in movement disorders: A critical review. Arq. Neuropsiquiatr. 2021, 79, 630–646. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef]
- Lindqvist, D.; Kaufman, E.; Brundin, L.; Hall, S.; Surova, Y.; Hansson, O. Non-motor symptoms in patients with Parkinson’s disease—Correlations with inflammatory cytokines in serum. PLoS ONE 2012, 7, e47387. [Google Scholar] [CrossRef]
- Ramanzini, L.G.; Camargo, L.F.M.; Silveira, J.O.F.; Bochi, G.V. Inflammatory markers and depression in Parkinson’s disease: A systematic review. Neurol. Sci. 2022, 43, 6707–6717. [Google Scholar] [CrossRef]
Author, Citation | Population | Used Test | Interventions | Stimulation Site | Current Intensity | Duration (min) | Main Findings in Treatment Group | Follow-Up |
---|---|---|---|---|---|---|---|---|
Hadoush et al. [38] | 25 patients | GDS | 10 sessions | Two anodal electrodes over the left FC1 and right FC2, two cathodal electrodes over the left and right Fp1 and Fp2 supraorbital areas. | 1 mA | 20 | Reduction in the average depression levels, as measured using the GDS. The decrease in depression levels was found to be statistically significant (p = 0.027), with a small to moderate effect size (Cohen’s d = 0.42). | |
Hadoush et al. [39] | 21 patients | GDS | 10 sessions | Bilateral anodal stimulation was applied simultaneously over the left and right prefrontal (F3) and motor (C3) areas. Two cathode electrodes were placed over the left and right supraorbital areas. | 1 mA | 20 | Statistically significant decrease in the average total score of the GDS. | |
Benninger et al. [40] | 25 patients 13 real tDCS 12 sham tDCS | BDI | Each target area was stimulated four times (eight sessions) | The anodal electrode was placed symmetrically either over the pre-motor or motor areas, with the center of the electrode positioned 8 mm anterior to Cz, or over the prefrontal cortices (forehead above eyebrows). Cathodal electrodes were positioned over the mastoids. | 2 mA | 20 | The results indicated that there were changes observed in the BDI scores from baseline to post-intervention measurements. However, these changes did not show significant differences between the treatment groups. | There was a further decrease in depression scores 1 month after the intervention, but there was a slight increase after 3 months. |
Oh et al. [41] | 18 patients | BDI | Five sessions | Anodal tDCS targeting the primary motor cortex (M1) area, specifically on the contralateral side of their dominant hand. | 2 mA | 20 | Significant improvement in the BDI scores after anodal stimulation compared to before. The mean change in BDI scores was 2.67 ± 3.48, and this improvement was statistically significant with a p-value of less than 0.01. | |
Ferrucci et al. [42] | Nine patients | BDI | Five sessions | For the anodal stimulation of the primary motor cortex (M1), three sponge electrodes were utilized. Two electrodes were placed on the scalp over the motor cortex bilaterally (C3 and C4), while the third electrode was positioned over the right deltoid muscle. | 2 mA | 20 | No significant changes in the BDI scores. | |
Manenti et al. [43] | 20 patients 10 real tDCS 10 sham tDCS | BDI-II | 10 sessions | The anodal electrode was positioned over either the left or right DLPFC, approximately 8 cm frontally and 6 cm laterally from the scalp vertex, using the F3/4 or F7/8 international 10–20 EEG system. The reference electrode was placed on the contralateral supraorbital area. | 2 mA | 25 | Statistically significant decrease in BDI-II scores. | Improvement in depression was evident in the 3-month follow-up period. |
Manenti et al. [44] | 22 patients | BDI-II | 10 sessions | Anodal electrode was positioned over the left DLPFC, approximately 8 cm frontally and 6 cm laterally from the scalp vertex (over F3). The reference electrode was placed on the right supraorbital area. | 2 mA | 25 | The analysis showed a significant reduction in BDI-II scores from baseline to the post-treatment assessment. | The improvement in depression was maintained after 3 months of observation. |
Doruk et al. [45] | 11 patients | BDI, HRSD | 10 sessions | Anodal tDCS over the right DLPFC (F4) or anodal tDCS over the left DLPFC (F3). | 2 mA | 20 | A greater reduction in BDI scores compared to the sham stimulation group and the group receiving tDCS over the right DLPFC. The mean percentage reduction in BDI scores was −49.8% ± 13.82 in the left DLPFC group. | |
Biundo et al. [46] | 24 patients 12 real tDCS 12 sham tDCS | BDI-II | 16 sessions | The anodal electrode was positioned over the left DLPFC, while the cathodal electrode was placed over the contralateral supraorbital region. | 2 mA | 20 | The results indicated that the participants experienced a reduction in BDI-II scores. Specifically, the BDI-II scores dropped by an average of 7 (SD = 8.44) after the intervention period. | During the 16-week follow-up, the BDI-II scores further decreased by an average of 4.22 (SD = 13.13). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, J.; Rybakowski, F.; Leszek, J. Effect of Transcranial Direct Current Stimulation (tDCS) on Depression in Parkinson’s Disease—A Narrative Review. J. Clin. Med. 2024, 13, 699. https://doi.org/10.3390/jcm13030699
Chmiel J, Rybakowski F, Leszek J. Effect of Transcranial Direct Current Stimulation (tDCS) on Depression in Parkinson’s Disease—A Narrative Review. Journal of Clinical Medicine. 2024; 13(3):699. https://doi.org/10.3390/jcm13030699
Chicago/Turabian StyleChmiel, James, Filip Rybakowski, and Jerzy Leszek. 2024. "Effect of Transcranial Direct Current Stimulation (tDCS) on Depression in Parkinson’s Disease—A Narrative Review" Journal of Clinical Medicine 13, no. 3: 699. https://doi.org/10.3390/jcm13030699
APA StyleChmiel, J., Rybakowski, F., & Leszek, J. (2024). Effect of Transcranial Direct Current Stimulation (tDCS) on Depression in Parkinson’s Disease—A Narrative Review. Journal of Clinical Medicine, 13(3), 699. https://doi.org/10.3390/jcm13030699