Right Ventricular Function in Arrhythmogenic Right Ventricular Cardiomyopathy: Potential Value of Strain Echocardiography
Abstract
:1. Introduction
2. Right Ventricular Function
2.1. Echocardiographic Assessment of the Right Ventricle
2.2. Right Ventricular Strain
3. Right Ventricular Strain to Characterize ARVC
3.1. RV Global Strain
3.2. Regional Strain
3.3. Mechanical Dispersion
4. Right Ventricular Strain and Ventricular Arrhythmia
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marcus, F.I.; Fontaine, G.H.; Guiraudon, G.; Frank, R.; Laurenceau, J.L.; Malergue, C.; Grosgogeat, Y. Right Ventricular Dysplasia: A Report of 24 Adult Cases. Circulation 1982, 65, 384–398. [Google Scholar] [CrossRef]
- Corrado, D.; Basso, C.; Judge, D.P. Arrhythmogenic Cardiomyopathy. Circ. Res. 2017, 121, 784–802. [Google Scholar] [CrossRef]
- Corrado, D.; Zorzi, A.; Cipriani, A.; Bauce, B.; Bariani, R.; Beffagna, G.; De Lazzari, M.; Migliore, F.; Pilichou, K.; Rampazzo, A.; et al. Evolving Diagnostic Criteria for Arrhythmogenic Cardiomyopathy. J. Am. Heart Assoc. 2021, 10, e021987. [Google Scholar] [CrossRef]
- Corrado, D.; Link, M.S.; Calkins, H. Arrhythmogenic Right Ventricular Cardiomyopathy. N. Engl. J. Med. 2017, 376, 61–72. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the Management of Cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Marcus, F.I.; McKenna, W.J.; Sherrill, D.; Basso, C.; Bauce, B.; Bluemke, D.A.; Calkins, H.; Corrado, D.; Cox, M.G.P.J.; Daubert, J.P.; et al. Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: Proposed Modification of the Task Force Criteria. Circulation 2010, 121, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Perazzolo Marra, M.; Zorzi, A.; Beffagna, G.; Cipriani, A.; Lazzari, M.D.; Migliore, F.; Pilichou, K.; Rampazzo, A.; Rigato, I.; et al. Diagnosis of Arrhythmogenic Cardiomyopathy: The Padua Criteria. Int. J. Cardiol. 2020, 319, 106–114. [Google Scholar] [CrossRef]
- Groeneweg, J.A.; Bhonsale, A.; James, C.A.; te Riele, A.S.; Dooijes, D.; Tichnell, C.; Murray, B.; Wiesfeld, A.C.P.; Sawant, A.C.; Kassamali, B.; et al. Clinical Presentation, Long-Term Follow-Up, and Outcomes of 1001 Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patients and Family Members. Circ. Cardiovasc. Genet. 2015, 8, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Borgquist, R.; Haugaa, K.H.; Gilljam, T.; Bundgaard, H.; Hansen, J.; Eschen, O.; Jensen, H.K.; Holst, A.G.; Edvardsen, T.; Svendsen, J.H.; et al. The Diagnostic Performance of Imaging Methods in ARVC Using the 2010 Task Force Criteria. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 1219–1225. [Google Scholar] [CrossRef]
- Bosman, L.P.; Cadrin-Tourigny, J.; Bourfiss, M.; Aliyari Ghasabeh, M.; Sharma, A.; Tichnell, C.; Roudijk, R.W.; Murray, B.; Tandri, H.; Khairy, P.; et al. Diagnosing Arrhythmogenic Right Ventricular Cardiomyopathy by 2010 Task Force Criteria: Clinical Performance and Simplified Practical Implementation. Europace 2020, 22, 787–796. [Google Scholar] [CrossRef]
- Asatryan, B. Detecting Concealed Phase and Progression in Subclinical ARVC: Tackling the Age Spectrum Challenge. J. Am. Coll. Cardiol. 2023, 82, 798–800. [Google Scholar] [CrossRef] [PubMed]
- Sarvari, S.I.; Haugaa, K.H.; Anfinsen, O.-G.; Leren, T.P.; Smiseth, O.A.; Kongsgaard, E.; Amlie, J.P.; Edvardsen, T. Right Ventricular Mechanical Dispersion Is Related to Malignant Arrhythmias: A Study of Patients with Arrhythmogenic Right Ventricular Cardiomyopathy and Subclinical Right Ventricular Dysfunction. Eur. Heart J. 2011, 32, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Lie, Ø.H.; Chivulescu, M.; Rootwelt-Norberg, C.; Ribe, M.; Bogsrud, M.P.; Lyseggen, E.; Beitnes, J.O.; Almaas, V.; Haugaa, K.H. Left Ventricular Dysfunction in Arrhythmogenic Cardiomyopathy: Association with Exercise Exposure, Genetic Basis, and Prognosis. J. Am. Heart Assoc. 2021, 10, e018680. [Google Scholar] [CrossRef] [PubMed]
- Lie, Ø.H.; Rootwelt-Norberg, C.; Dejgaard, L.A.; Leren, I.S.; Stokke, M.K.; Edvardsen, T.; Haugaa, K.H. Prediction of Life-Threatening Ventricular Arrhythmia in Patients with Arrhythmogenic Cardiomyopathy: A Primary Prevention Cohort Study. JACC Cardiovasc. Imaging 2018, 11, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Zaidi, A.; Knight, D.S.; Augustine, D.X.; Harkness, A.; Oxborough, D.; Pearce, K.; Ring, L.; Robinson, S.; Stout, M.; Willis, J.; et al. Echocardiographic Assessment of the Right Heart in Adults: A Practical Guideline from the British Society of Echocardiography. Echo Res. Pract. 2020, 7, G19–G41. [Google Scholar] [CrossRef]
- DiLorenzo, M.P.; Bhatt, S.M.; Mercer-Rosa, L. How Best to Assess Right Ventricular Function by Echocardiography. Cardiol. Young 2015, 25, 1473–1481. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Trevisan, R.; Lombardo, M.; Grasso, E.; Gensini, G.F.; Ambrosio, G. The Influence of Pectus Excavatum on Cardiac Kinetics and Function in Otherwise Healthy Individuals: A Systematic Review. Int. J. Cardiol. 2023, 381, 135–144. [Google Scholar] [CrossRef]
- Voigt, J.-U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a Common Standard for 2D Speckle Tracking Echocardiography: Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Olsen, F.J.; Biering-Sørensen, T. Myocardial Strain and Dyssynchrony: Incremental Value? Heart Fail. Clin. 2019, 15, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Mirea, O.; Duchenne, J.; Voigt, J.-U. Comparison between Nondedicated and Novel Dedicated Tracking Tool for Right Ventricular and Left Atrial Strain. J. Am. Soc. Echocardiogr. 2022, 35, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Brainin, P. Myocardial Postsystolic Shortening and Early Systolic Lengthening: Current Status and Future Directions. Diagnostics 2021, 11, 1428. [Google Scholar] [CrossRef] [PubMed]
- Espersen, C.; Skaarup, K.G.; Lassen, M.C.H.; Johansen, N.D.; Hauser, R.; Olsen, F.J.; Jensen, G.B.; Schnohr, P.; Møgelvang, R.; Biering-Sørensen, T. Normal Age- and Sex-Based Values of Right Ventricular Free Wall and Four-Chamber Longitudinal Strain by Speckle-Tracking Echocardiography: From the Copenhagen City Heart Study. Clin. Res. Cardiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Addetia, K.; Miyoshi, T.; Citro, R.; Daimon, M.; Gutierrez Fajardo, P.; Kasliwal, R.R.; Kirkpatrick, J.N.; Monaghan, M.J.; Muraru, D.; Ogunyankin, K.O.; et al. Two-Dimensional Echocardiographic Right Ventricular Size and Systolic Function Measurements Stratified by Sex, Age, and Ethnicity: Results of the World Alliance of Societies of Echocardiography Study. J. Am. Soc. Echocardiogr. 2021, 34, 1148–1157.e1. [Google Scholar] [CrossRef] [PubMed]
- Landzaat, J.W.D.; van Heerebeek, L.; Jonkman, N.H.; van der Bijl, E.M.; Riezebos, R.K. The Quest for Determination of Standard Reference Values of Right Ventricular Longitudinal Systolic Strain: A Systematic Review and Meta-Analysis. J. Echocardiogr. 2023, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.K.M.; Grimm, R.A.; Rodriguez, L.L.; Collier, P.; Griffin, B.P.; Popović, Z.B. Defining the Reference Range for Right Ventricular Systolic Strain by Echocardiography in Healthy Subjects: A Meta-Analysis. PLoS ONE 2021, 16, e0256547. [Google Scholar] [CrossRef] [PubMed]
- Muraru, D.; Onciul, S.; Peluso, D.; Soriani, N.; Cucchini, U.; Aruta, P.; Romeo, G.; Cavalli, G.; Iliceto, S.; Badano, L.P. Sex- and Method-Specific Reference Values for Right Ventricular Strain by 2-Dimensional Speckle-Tracking Echocardiography. Circ. Cardiovasc. Imaging 2016, 9, e003866. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Choi, J.-O.; Park, S.W.; Cho, G.-Y.; Oh, J.K.; Lee, J.-H.; Seong, I.-W. Normal References of Right Ventricular Strain Values by Two-Dimensional Strain Echocardiography According to the Age and Gender. Int. J. Cardiovasc. Imaging 2018, 34, 177–183. [Google Scholar] [CrossRef]
- Nyberg, J.; Jakobsen, E.O.; Østvik, A.; Holte, E.; Stølen, S.; Lovstakken, L.; Grenne, B.; Dalen, H. Echocardiographic Reference Ranges of Global Longitudinal Strain for All Cardiac Chambers Using Guideline-Directed Dedicated Views. JACC Cardiovasc. Imaging 2023, 16, 1516–1531. [Google Scholar] [CrossRef]
- Fine, N.M.; Chen, L.; Bastiansen, P.M.; Frantz, R.P.; Pellikka, P.A.; Oh, J.K.; Kane, G.C. Reference Values for Right Ventricular Strain in Patients without Cardiopulmonary Disease: A Prospective Evaluation and Meta-Analysis. Echocardiography 2015, 32, 787–796. [Google Scholar] [CrossRef]
- Badano, L.P.; Muraru, D.; Parati, G.; Haugaa, K.; Voigt, J.-U. How to Do Right Ventricular Strain. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.P.; Kolias, T.J.; Muraru, D.; Abraham, T.P.; Aurigemma, G.; Edvardsen, T.; D’Hooge, J.; Donal, E.; Fraser, A.G.; Marwick, T.; et al. Standardization of Left Atrial, Right Ventricular, and Right Atrial Deformation Imaging Using Two-Dimensional Speckle Tracking Echocardiography: A Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Muraru, D.; Haugaa, K.; Donal, E.; Stankovic, I.; Voigt, J.U.; Petersen, S.E.; Popescu, B.A.; Marwick, T. Right Ventricular Longitudinal Strain in the Clinical Routine: A State-of-the-Art Review. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 898–912. [Google Scholar] [CrossRef]
- Lejeune, S.; Roy, C.; Ciocea, V.; Slimani, A.; de Meester, C.; Amzulescu, M.; Pasquet, A.; Vancraeynest, D.; Beauloye, C.; Vanoverschelde, J.-L.; et al. Right Ventricular Global Longitudinal Strain and Outcomes in Heart Failure with Preserved Ejection Fraction. J. Am. Soc. Echocardiogr. 2020, 33, 973–984.e2. [Google Scholar] [CrossRef] [PubMed]
- Teske, A.J.; Cox, M.G.; De Boeck, B.W.; Doevendans, P.A.; Hauer, R.N.; Cramer, M.J. Echocardiographic Tissue Deformation Imaging Quantifies Abnormal Regional Right Ventricular Function in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. J. Am. Soc. Echocardiogr. 2009, 22, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Pieles, G.E.; Grosse-Wortmann, L.; Hader, M.; Fatah, M.; Chungsomprasong, P.; Slorach, C.; Hui, W.; Fan, C.-P.S.; Manlhiot, C.; Mertens, L.; et al. Association of Echocardiographic Parameters of Right Ventricular Remodeling and Myocardial Performance with Modified Task Force Criteria in Adolescents with Arrhythmogenic Right Ventricular Cardiomyopathy. Circ. Cardiovasc. Imaging 2019, 12, e007693. [Google Scholar] [CrossRef]
- Vitarelli, A.; Cortes Morichetti, M.; Capotosto, L.; De Cicco, V.; Ricci, S.; Caranci, F.; Vitarelli, M. Utility of Strain Echocardiography at Rest and after Stress Testing in Arrhythmogenic Right Ventricular Dysplasia. Am. J. Cardiol. 2013, 111, 1344–1350. [Google Scholar] [CrossRef]
- Teske, A.J.; Cox, M.G.P.J.; Te Riele, A.S.J.M.; De Boeck, B.W.; Doevendans, P.A.; Hauer, R.N.W.; Cramer, M.J.M. Early Detection of Regional Functional Abnormalities in Asymptomatic ARVD/C Gene Carriers. J. Am. Soc. Echocardiogr. 2012, 25, 997–1006. [Google Scholar] [CrossRef]
- Prakasa, K.R.; Wang, J.; Tandri, H.; Dalal, D.; Bomma, C.; Chojnowski, R.; James, C.; Tichnell, C.; Russell, S.; Judge, D.; et al. Utility of Tissue Doppler and Strain Echocardiography in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Am. J. Cardiol. 2007, 100, 507–512. [Google Scholar] [CrossRef]
- Wang, J.; Prakasa, K.; Bomma, C.; Tandri, H.; Dalal, D.; James, C.; Tichnell, C.; Corretti, M.; Bluemke, D.; Calkins, H.; et al. Comparison of Novel Echocardiographic Parameters of Right Ventricular Function with Ejection Fraction by Cardiac Magnetic Resonance. J. Am. Soc. Echocardiogr. 2007, 20, 1058–1064. [Google Scholar] [CrossRef]
- Tops, L.F.; Prakasa, K.; Tandri, H.; Dalal, D.; Jain, R.; Dimaano, V.L.; Dombroski, D.; James, C.; Tichnell, C.; Daly, A.; et al. Prevalence and Pathophysiologic Attributes of Ventricular Dyssynchrony in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. J. Am. Coll. Cardiol. 2009, 54, 445–451. [Google Scholar] [CrossRef]
- Iacoviello, M.; Forleo, C.; Puzzovivo, A.; Nalin, I.; Guida, P.; Anaclerio, M.; Marangelli, V.; Sorrentino, S.; Monitillo, F.; Ciccone, M.M.; et al. Altered Two-Dimensional Strain Measures of the Right Ventricle in Patients with Brugada Syndrome and Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Eur. J. Echocardiogr. 2011, 12, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Qasem, M.; Utomi, V.; George, K.; Somauroo, J.; Zaidi, A.; Forsythe, L.; Bhattacharrya, S.; Lloyd, G.; Rana, B.; Ring, L.; et al. A Meta-Analysis for Echocardiographic Assessment of Right Ventricular Structure and Function in ARVC. Echo Res. Pract. 2016, 3, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Saberniak, J.; Hasselberg, N.E.; Borgquist, R.; Platonov, P.G.; Sarvari, S.I.; Smith, H.-J.; Ribe, M.; Holst, A.G.; Edvardsen, T.; Haugaa, K.H. Vigorous Physical Activity Impairs Myocardial Function in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy and in Mutation Positive Family Members. Eur. J. Heart Fail. 2014, 16, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on Sports Cardiology and Exercise in Patients with Cardiovascular Disease. Rev. Esp. Cardiol. 2021, 74, 545. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; Win, S.; James, C.A.; Kutty, S.; Mukherjee, M.; Gilotra, N.A.; Tichnell, C.; Murray, B.; Agafonova, J.; Tandri, H.; et al. Right Ventricular Strain Predicts Structural Disease Progression in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy. J. Am. Heart Assoc. 2020, 9, e015016. [Google Scholar] [CrossRef]
- Tandri, H.; Macedo, R.; Calkins, H.; Marcus, F.; Cannom, D.; Scheinman, M.; Daubert, J.; Estes, M.; Wilber, D.; Talajic, M.; et al. Role of Magnetic Resonance Imaging in Arrhythmogenic Right Ventricular Dysplasia: Insights from the North American Arrhythmogenic Right Ventricular Dysplasia (ARVD/C) Study. Am. Heart J. 2008, 155, 147–153. [Google Scholar] [CrossRef]
- Zghaib, T.; Ghasabeh, M.A.; Assis, F.R.; Chrispin, J.; Keramati, A.; Misra, S.; Berger, R.; Calkins, H.; Kamel, I.; Nazarian, S.; et al. Regional Strain by Cardiac Magnetic Resonance Imaging Improves Detection of Right Ventricular Scar Compared with Late Gadolinium Enhancement on a Multimodality Scar Evaluation in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy. Circ. Cardiovasc. Imaging 2018, 11, e007546. [Google Scholar] [CrossRef]
- Gandjbakhch, E.; Redheuil, A.; Pousset, F.; Charron, P.; Frank, R. Clinical Diagnosis, Imaging, and Genetics of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 784–804. [Google Scholar] [CrossRef]
- Avella, A.; d’Amati, G.; Pappalardo, A.; Re, F.; Silenzi, P.F.; Laurenzi, F.; DE Girolamo, P.; Pelargonio, G.; Dello Russo, A.; Baratta, P.; et al. Diagnostic Value of Endomyocardial Biopsy Guided by Electroanatomic Voltage Mapping in Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. J. Cardiovasc. Electrophysiol. 2008, 19, 1127–1134. [Google Scholar] [CrossRef]
- Marchlinski, F.E.; Edvardsen, T. Arrhythmogenic Right Ventricular Cardiomyopathy: Better Tools for Detecting Early Disease and Progression. J. Am. Coll. Cardiol. 2016, 68, 2198–2200. [Google Scholar] [CrossRef]
- Mast, T.P.; Teske, A.J.; Walmsley, J.; van der Heijden, J.F.; van Es, R.; Prinzen, F.W.; Delhaas, T.; van Veen, T.A.; Loh, P.; Doevendans, P.A.; et al. Right Ventricular Imaging and Computer Simulation for Electromechanical Substrate Characterization in Arrhythmogenic Right Ventricular Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 68, 2185–2197. [Google Scholar] [CrossRef]
- Haugaa, K.H.; Edvardsen, T.; Leren, T.P.; Gran, J.M.; Smiseth, O.A.; Amlie, J.P. Left Ventricular Mechanical Dispersion by Tissue Doppler Imaging: A Novel Approach for Identifying High-Risk Individuals with Long QT Syndrome. Eur. Heart J. 2009, 30, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Haugaa, K.H.; Smedsrud, M.K.; Steen, T.; Kongsgaard, E.; Loennechen, J.P.; Skjaerpe, T.; Voigt, J.-U.; Willems, R.; Smith, G.; Smiseth, O.A.; et al. Mechanical Dispersion Assessed by Myocardial Strain in Patients after Myocardial Infarction for Risk Prediction of Ventricular Arrhythmia. JACC Cardiovasc. Imaging 2010, 3, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Saberniak, J.; Leren, I.S.; Haland, T.F.; Beitnes, J.O.; Hopp, E.; Borgquist, R.; Edvardsen, T.; Haugaa, K.H. Comparison of Patients with Early-Phase Arrhythmogenic Right Ventricular Cardiomyopathy and Right Ventricular Outflow Tract Ventricular Tachycardia. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Cadrin-Tourigny, J.; Bosman, L.P.; Nozza, A.; Wang, W.; Tadros, R.; Bhonsale, A.; Bourfiss, M.; Fortier, A.; Lie, H.; Saguner, A.M.; et al. A New Prediction Model for Ventricular Arrhythmias in Arrhythmogenic Right Ventricular Cardiomyopathy. Eur. Heart J. 2022, 43, e1–e9. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Alizade, E.; Yesin, M.; Tabakci, M.M.; Avci, A.; Bulut, M.; Acar, G.; Şimşek, Z.; Izci, S.; Barutçu, S.; Pala, S. Utility of Speckle Tracking Echocardiography Imaging in Patients with Asymptomatic and Symptomatic Arrhythmogenic Right Ventricular Cardiomyopathy. Echocardiography 2016, 33, 1683–1688. [Google Scholar] [CrossRef]
- Leren, I.S.; Saberniak, J.; Haland, T.F.; Edvardsen, T.; Haugaa, K.H. Combination of ECG and Echocardiography for Identification of Arrhythmic Events in Early ARVC. JACC Cardiovasc. Imaging 2017, 10, 503–513. [Google Scholar] [CrossRef]
- Kirkels, F.P.; Rootwelt-Norberg, C.; Bosman, L.P.; Aabel, E.W.; Muller, S.A.; Castrini, A.I.; Taha, K.; van Osta, N.; Lie, H.; Asselbergs, F.W.; et al. The Added Value of Abnormal Regional Myocardial Function for Risk Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 1710–1718. [Google Scholar] [CrossRef]
- Kirkels, F.P.; Lie, Ø.H.; Cramer, M.J.; Chivulescu, M.; Rootwelt-Norberg, C.; Asselbergs, F.W.; Teske, A.J.; Haugaa, K.H. Right Ventricular Functional Abnormalities in Arrhythmogenic Cardiomyopathy: Association with Life-Threatening Ventricular Arrhythmias. JACC Cardiovasc. Imaging 2021, 14, 900–910. [Google Scholar] [CrossRef] [PubMed]
CCHS [23] n: 1297 | WASE [24] n: 1913 | Muraru et al. [27] n: 276 | NORMAL [28] n: 493 | HUNT [29] n: 1103 | Fine et al. [30] ** n: 489 | Wang et al. [26] ** n: 3673 | |
---|---|---|---|---|---|---|---|
RV FWS | −16.5% | −20.0% | −23.3% | −18.0% | −17.4% | −24.0% | −18.0% |
RV GLS | −15.0% | −18.2% | −20.2% | 15.1% | - | - | −16.4% * |
RV apical strain | - | - | −14.9% | - | - | - | - |
RV mid strain | - | - | −22.3% | - | - | - | - |
RV basal strain | - | - | −20.0% | - | - | - | - |
RV MD | - | - | - | - | - | - | - |
Study | Population | RV FWS (%) | RV GLS (%) | RV Basal Strain (%) | RV Mid Strain (%) | RV Apical Strain (%) | Proposed Cut-Off ** | AUC ** | Sensitivity (%) ** | Specificity (%) ** |
---|---|---|---|---|---|---|---|---|---|---|
Teske et al. [35] | 34 D-ARVC | −17.8 † | - | −11.1 † | −16.5 † | −19.0 † | RV FWS: −25.1 | 0.96 | 90 | 100 |
34 healthy controls | −29.6 † | - | −25.4 † | −29.7 † | −31.9 † | |||||
Pieles et al. [36] | 38 D-ARVC | −19.0 † | −21.0 † | −21.0 † | −19.0 † | −17.0 † | RV GLS: −20.4 | 0.84 | 53 | 100 |
39 B-ARVC | −21.0 † | −23.0 † | −24.0 † | −21.0 † | −19.0 † | |||||
43 P-ARVC | −24.0 † | −26.0 † | −28.0 † | −23.0 † | −22.0 † | |||||
35 healthy controls | −24.0 † | −25.0 † | −27.0 † | −23.0 † | −20.0 † | |||||
Vitarelli et al. [37] | 19 D-ARVC | - | −20.4 † | - | - | - | RV GLS: −25.0 | 0.86 | 85 | 90 |
19 healthy controls | - | −28.6 † | - | - | - | |||||
Teske et al. [38] | 14 AM-ARVC | −25.0 † | - | −19.5 † | −23.8 † | −28.4 | RV FWS: −18.0 | - | 71 | 81 |
56 healthy controls | −29.0 † | - | −25.2 † | −28.2 † | −31.2 | |||||
Prakasa et al. [39] * | 30 D-ARVC | −10.0 † | - | - | - | - | RV FWS: −18.0 | 0.82 | 73 | 87 |
36 healthy controls | −28.0 † | - | - | - | - | |||||
Wang et al. [40] * | 10 D-ARVC | −17.2 † | - | - | - | - | - | - | - | - |
43 healthy controls | −33.3 † | - | - | - | - | |||||
Tops et al. [41] * | 52 D-ARVC | −19.0 † | - | - | - | - | - | - | - | - |
25 healthy controls | −25.0 † | - | - | - | - | |||||
Iacoviello et al. [42] | 15 D-ARVC | −25.6 † | - | −25.1 † | −27.5 † | −24.1 | - | - | - | - |
25 healthy controls | −31.4 † | - | −32.7 † | −34.0 † | −27.3 |
Study | Year | Design | Sample | Outcome | Arrhythmia Detection | Events | Follow-Up (Years) | Key Findings |
---|---|---|---|---|---|---|---|---|
Sarvari et al. [12] | 2011 | Prospective inclusion Retrospective endpoints Case–control study | 69 ARVC, 40 controls
|
History of either: VT VF | Holter (asymptomatic ARVC patients) | 42 | N/A | RV MD and FAC were independently associated with a history of VA. |
Alizade et al. [58] | 2016 | Cross-sectional study Retrospective endpoints | 34 definite ARVC
| History of: Sudden cardiac arrest VT | Holter (symptomatic ARVC patients) | 17 | N/A | RV FWS was significantly reduced in patients with a history of VA. |
Leren et al. [59] | 2017 | Cross-sectional study Retrospective endpoints | 162 overall
| History of either: Any VT ACA Cardiac syncope | Holter ICD Exercise test | 84 | N/A | In patients with definite ARVC, RV GLS was associated with VAs. In patients with early ARVC, RV MD was associated with VAs. |
Lie et al. [14] | 2018 | Prospective | 117 overall
|
Composite: Sustained VT Cardiac arrest Appropriate ICD shock |
ECG Holter ICD | 18 | 2.0 (IQR: 0.5–3.5) | RV FWS and LV MD were independently associated with VAs. |
Kirkels et al. [60] | 2021 | Cross-sectional study Retrospective endpoints | 160 overall
|
History of either: Sustained VT Appropriate ICD therapy ACA | ECG Holter ICD | 47 | N/A | RV MD and subtricuspid deformation pattern were independently associated with history of VAs. |
Kirkels et al. [61] | 2023 | Prospective | 150 definite ARVC
| Composite: Sustained VT ACA Appropriate ICD therapy | Not specified | 37 | 6.3 (IQR: 3.1–9.8) | LV GLS, RV FWS, and RV MD were strongest predictors of VAs. Only RV FWS and MD improved discrimination on top of the ARVC risk calculator. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bjerregaard, C.L.; Biering-Sørensen, T.; Skaarup, K.G.; Sengeløv, M.; Lassen, M.C.H.; Johansen, N.D.; Olsen, F.J. Right Ventricular Function in Arrhythmogenic Right Ventricular Cardiomyopathy: Potential Value of Strain Echocardiography. J. Clin. Med. 2024, 13, 717. https://doi.org/10.3390/jcm13030717
Bjerregaard CL, Biering-Sørensen T, Skaarup KG, Sengeløv M, Lassen MCH, Johansen ND, Olsen FJ. Right Ventricular Function in Arrhythmogenic Right Ventricular Cardiomyopathy: Potential Value of Strain Echocardiography. Journal of Clinical Medicine. 2024; 13(3):717. https://doi.org/10.3390/jcm13030717
Chicago/Turabian StyleBjerregaard, Caroline Løkke, Tor Biering-Sørensen, Kristoffer Grundtvig Skaarup, Morten Sengeløv, Mats Christian Højbjerg Lassen, Niklas Dyrby Johansen, and Flemming Javier Olsen. 2024. "Right Ventricular Function in Arrhythmogenic Right Ventricular Cardiomyopathy: Potential Value of Strain Echocardiography" Journal of Clinical Medicine 13, no. 3: 717. https://doi.org/10.3390/jcm13030717
APA StyleBjerregaard, C. L., Biering-Sørensen, T., Skaarup, K. G., Sengeløv, M., Lassen, M. C. H., Johansen, N. D., & Olsen, F. J. (2024). Right Ventricular Function in Arrhythmogenic Right Ventricular Cardiomyopathy: Potential Value of Strain Echocardiography. Journal of Clinical Medicine, 13(3), 717. https://doi.org/10.3390/jcm13030717