Risk Factors for Corneal Endothelial Decompensation after Penetrating Keratoplasty: A Population-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Patient Selection
2.3. Main Outcome
2.4. Risk Factors
2.5. Statistical Analysis
3. Results
3.1. Basic Characteristics of Study Population
3.2. Risk Factors for Endothelial Decompensation
3.3. Subgroup Analysis Stratified by Age and Sex
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, R.; Gupta, N.; Vanathi, M.; Tandon, R. Corneal transplantation in the modern era. Indian J. Med. Res. 2019, 150, 7–22. [Google Scholar]
- Berrospi, R.D.; Galvis, V.; Bhogal, M.; Tello, A. Double-Line Reflection Pattern as a Simple Method to Determine Graft Orientation of Descemet Membrane Endothelial Keratoplasty. Cornea 2019, 38, 768–771. [Google Scholar] [CrossRef]
- Galvis, V.; Tello, A.; Laiton, A.N.; Salcedo, S.L.L. Indications and techniques of corneal transplantation in a referral center in Colombia, South America (2012–2016). Int. Ophthalmol. 2019, 39, 1723–1733. [Google Scholar] [CrossRef]
- Matthaei, M.; Sandhaeger, H.; Hermel, M.; Adler, W.; Jun, A.S.; Cursiefen, C.; Heindl, L.M. Changing Indications in Penetrating Keratoplasty: A Systematic Review of 34 Years of Global Reporting. Transplantation 2017, 101, 1387–1399. [Google Scholar] [CrossRef]
- Henein, C.; Nanavaty, M.A. Systematic review comparing penetrating keratoplasty and deep anterior lamellar keratoplasty for management of keratoconus. Cont. Lens. Anterior. Eye 2017, 40, 3–14. [Google Scholar] [CrossRef]
- Deshmukh, R.; Nair, S.; Vaddavalli, P.K.; Agrawal, T.; Rapuano, C.J.; Beltz, J.; Vajpayee, R.B. Post-penetrating keratoplasty astigmatism. Surv. Ophthalmol. 2022, 67, 1200–1228. [Google Scholar] [CrossRef]
- Power, B.J.; Power, W.J. Penetrating Keratoplasty and Complications Management. In Albert and Jakobiec’s Principles and Practice of Ophthalmology; Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H., Eds.; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Akanda, Z.Z.; Naeem, A.; Russell, E.; Belrose, J.; Si, F.F.; Hodge, W.G. Graft rejection rate and graft failure rate of penetrating keratoplasty (PKP) vs lamellar procedures: A systematic review. PLoS ONE 2015, 10, e0119934. [Google Scholar] [CrossRef]
- Stechschulte, S.U.; Azar, D.T. Complications after penetrating keratoplasty. Int. Ophthalmol. Clin. 2000, 40, 27–43. [Google Scholar] [CrossRef]
- Culbertson, W.W.; Abbott, R.L.; Forster, R.K. Endothelial cell loss in penetrating keratoplasty. Ophthalmology 1982, 89, 600–604. [Google Scholar] [CrossRef]
- Shams, A.; Abdelmoneim Gaafar, A.; Elkitkat, R.S.; Omar Yousif, M. Endothelial cell loss rate after penetrating keratoplasty: Optical versus therapeutic grafts. Med. Hypothesis Discov. Innov. Ophthalmol. 2021, 10, 74–79. [Google Scholar] [CrossRef]
- Bertelmann, E.; Pleyer, U.; Rieck, P. Risk factors for endothelial cell loss post-keratoplasty. Acta Ophthalmol. Scand. 2006, 84, 766–770. [Google Scholar] [CrossRef]
- Lass, J.H.; Gal, R.L.; Dontchev, M.; Beck, R.W.; Kollman, C.; Dunn, S.P.; Heck, E.; Holland, E.J.; Mannis, M.J.; Cornea Donor Study Investigator Group; et al. Donor age and corneal endothelial cell loss 5 years after successful corneal transplantation. Specular microscopy ancillary study results. Ophthalmology 2008, 115, 627–632.e8. [Google Scholar]
- Xiao, X.; Xie, L. The influencing factors and characteristics of corneal graft endothelial decompensation after penetrating keratoplasty. Eur. J. Ophthalmol. 2010, 20, 21–28. [Google Scholar] [CrossRef]
- Selver, O.B.; Karaca, I.; Palamar, M.; Egrilmez, S.; Yagci, A. Graft Failure and Repeat Penetrating Keratoplasty. Exp. Clin. Transplant. 2021, 19, 72–76. [Google Scholar] [CrossRef]
- Kiel, M.; Bu, J.B.; Gericke, A.; Vossmerbaeumer, U.; Schuster, A.K.; Pfeiffer, N.; Wasielica-Poslednik, J. Comparison of DMEK and DSAEK in Eyes with Endothelial Decompensation After Previous Penetrating Keratoplasty. Cornea 2021, 40, 1218–1224. [Google Scholar] [CrossRef]
- Galvis, V.; Tello, A.; Gutierrez, Á.J. Human corneal endothelium regeneration: Effect of ROCK inhibitor. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4971–4973. [Google Scholar] [CrossRef]
- Hos, D.; Schlereth, S.; Schrittenlocher, S.; Hayashi, T.; Bock, F.; Matthaei, M.; Bachmann, B.O.; Cursiefen, C. Descemet membrane endothelial keratoplasty (DMEK) for graft failure after penetrating keratoplasty and in vascularized high-risk eyes. Ophthalmologe 2021, 118, 536–543. [Google Scholar] [CrossRef]
- Steindor, F.A.; Menzel-Severing, J.; Borrelli, M.; Schrader, S.; Geerling, G. DMEK after penetrating keratoplasty: Cohort with DMEK grafts and descemetorhexis larger than full-thickness graft. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 2933–2939. [Google Scholar] [CrossRef]
- Del Barrio, J.L.A.; Bhogal, M.; Ang, M.; Ziaei, M.; Robbie, S.; Montesel, A.; Gore, D.M.; Mehta, J.S.; Alió, J.L. Corneal transplantation after failed grafts: Options and outcomes. Surv. Ophthalmol. 2021, 66, 20–40. [Google Scholar] [CrossRef]
- Nishisako, S.; Yamaguchi, T.; Hirayama, M.; Higa, K.; Aoki, D.; Sasaki, C.; Noma, H.; Shimazaki, J. Donor-Related Risk Factors for Graft Decompensation Following Descemet’s Stripping Automated Endothelial Keratoplasty. Front. Med. 2022, 9, 810536. [Google Scholar] [CrossRef]
- Price, F.W.; Jr Whitson, W.E.; Johns, S.; Gonzales, J.S. Risk factors for corneal graft failure. J. Refract. Surg. 1996, 12, 134–143; discussion 143–147. [Google Scholar] [CrossRef]
- Nishimura, J.K.; Hodge, D.O.; Bourne, W.M. Initial endothelial cell density and chronic endothelial cell loss rate in corneal transplants with late endothelial failure. Ophthalmology 1999, 106, 1962–1965. [Google Scholar] [CrossRef]
- Xu, T.-T.; Cao, R.; Dong, Y.-L.; Xie, L.-X.; Cheng, J. Analysis of risk factors of rapid attenuation of graft endothelium in the early stage after penetrating keratoplasty. PLoS ONE 2022, 17, e0266072. [Google Scholar] [CrossRef]
- Liu, M.; Hong, J. Risk Factors for Endothelial Decompensation after Penetrating Keratoplasty and Its Novel Therapeutic Strategies. J. Ophthalmol. 2018, 2018, 1389486. [Google Scholar] [CrossRef]
- Fernandez, A.B.; Keyes, M.J.; Pencina, M.; D’Agostino, R.; O’Donnell, C.J.; Thompson, P.D. Relation of corneal arcus to cardiovascular disease (from the Framingham Heart Study data set). Am. J. Cardiol. 2009, 103, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Thorin, J.C. The cornea in diabetes mellitus. Int. Ophthalmol. Clin. 1998, 38, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Feizi, S. Corneal endothelial cell dysfunction: Etiologies and management. Ther. Adv. Ophthalmol. 2018, 10, 2515841418815802. [Google Scholar] [CrossRef]
- Langston, R.H. Prevention and management of corneal decompensation. Int. Ophthalmol. Clin. 1982, 22, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Price, M.O.; Mehta, J.S.; Jurkunas, U.V.; Price, F.W., Jr. Corneal endothelial dysfunction: Evolving understanding and treatment options. Prog. Retin. Eye Res. 2021, 82, 100904. [Google Scholar] [CrossRef]
- Tone, S.O.; Kocaba, V.; Böhm, M.; Wylegala, A.; White, T.L.; Jurkunas, U.V. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog. Retin. Eye Res. 2021, 80, 100863. [Google Scholar] [CrossRef]
- Wong, A.H.Y.; Kua, W.N.; Young, A.L.; Wan, K.H. Management of cytomegalovirus corneal endotheliitis. Eye Vis. 2021, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Asi, F.; Milioti, G.; Seitz, B. Descemet membrane endothelial keratoplasty for corneal decompensation caused by herpes simplex virus endotheliitis. J. Cataract Refract. Surg. 2018, 44, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.W.; Carley, F.; Jones, N.P. Corneal Decompensation in Uveitis Patients: Incidence, Etiology, and Outcome. Ocul. Immunol. Inflamm. 2021, 29, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Galvis, V.; Prada, A.M.; Tello, A.; Parra, M.M.; Camacho, P.A.; Polit, M.P. Safety of intracameral application of moxifloxacin and dexamethasone (Vigadexa®) after phacoemulsification surgery. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 3215–3221. [Google Scholar] [CrossRef] [PubMed]
- Nishi, Y.; Engler, C.; Na, D.R.; Kashiwabuchi, R.T.; Shin, Y.J.; Cano, M.; Jun, A.S.; Chuck, R.S. Evaluation of phacoemulsification-induced oxidative stress and damage of cultured human corneal endothelial cells in different solutions using redox fluorometry microscopy. Acta Ophthalmol. 2010, 88, e323–e327. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.B.; Thompson, P.D. Eye markers of cardiovascular disease. BMJ 2011, 343, d5304. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Yang, H.K.; Hyon, J.Y. Influence of diabetes mellitus on anterior segment of the eye. Clin. Interv. Aging 2019, 14, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Goldich, Y.; Barkana, Y.; Gerber, Y.; Rasko, A.; Morad, Y.; Harstein, M.; Avni, I.; Zadok, D. Effect of diabetes mellitus on biomechanical parameters of the cornea. J. Cataract Refract. Surg. 2009, 35, 715–719. [Google Scholar] [CrossRef]
- Goldstein, A.S.; Janson, B.J.; Skeie, J.M.; Ling, J.J.; Greiner, M.A. The effects of diabetes mellitus on the corneal endothelium: A review. Surv. Ophthalmol. 2020, 65, 438–450. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, T.G. The effects of type 2 diabetes mellitus on the corneal endothelium and central corneal thickness. Sci. Rep. 2021, 11, 8324. [Google Scholar] [CrossRef]
- Chowdhury, B.; Bhadra, S.; Mittal, P.; Shyam, K. Corneal endothelial morphology and central corneal thickness in type 2 diabetes mellitus patients. Indian J. Ophthalmol. 2021, 69, 1718–1724. [Google Scholar] [CrossRef]
- Storr-Paulsen, A.; Singh, A.; Jeppesen, H.; Norregaard, J.C.; Thulesen, J. Corneal endothelial morphology and central thickness in patients with type II diabetes mellitus. Acta Ophthalmol. 2014, 92, 158–160. [Google Scholar] [CrossRef]
- Módis, L., Jr.; Szalai, E.; Kertész, K.; Kemény-Beke, Á.; Kettesy, B.; Berta, A. Evaluation of the corneal endothelium in patients with diabetes mellitus type I and II. Histol. Histopathol. 2010, 25, 1531–1537. [Google Scholar] [PubMed]
- Roszkowska, A.M.; Tringali, C.G.; Colosi, P.; Squeri, C.A.; Ferreri, G. Corneal endothelium evaluation in type I and type II diabetes mellitus. Ophthalmologica 1999, 213, 258–261. [Google Scholar] [CrossRef]
- Itoi, M.; Nakamura, T.; Mizobe, K.; Kodama, Y.; Nakagawa, N.; Itoi, M. Specular microscopic studies of the corneal endothelia of Japanese diabetics. Cornea 1989, 8, 2–6. [Google Scholar] [CrossRef]
- Schultz, R.O.; Matsuda, M.; Yee, R.W.; Edelhauser, H.F.; Schultz, K.J. Corneal endothelial changes in type I and type II diabetes mellitus. Am. J. Ophthalmol. 1984, 98, 401–410. [Google Scholar] [CrossRef]
- Doors, M.; Berendschot, T.T.; Touwslager, W.; Webers, C.A.; Nuijts, R.M. Phacopower modulation and the risk for postoperative corneal decompensation: A randomized clinical trial. JAMA Ophthalmol. 2013, 131, 1443–1450. [Google Scholar] [CrossRef]
- Alfawaz, A.M.; Holland, G.N.; Yu, F.; Margolis, M.S.; Giaconi, J.A.; Aldave, A.J. Corneal Endothelium in Patients with Anterior Uveitis. Ophthalmology 2016, 123, 1637–1645. [Google Scholar] [CrossRef]
- Koushan, K.; Mikhail, M.; Beattie, A.; Ahuja, N.; Liszauer, A.; Kobetz, L.; Farrokhyar, F.; Martin, J.A. Corneal endothelial cell loss after pars plana vitrectomy and combined phacoemulsification-vitrectomy surgeries. Can. J. Ophthalmol. 2017, 52, 4–8. [Google Scholar] [CrossRef]
- Abdelghany, A.A.; D’Oria, F.; Alio, J.L. Surgery for glaucoma in modern corneal graft procedures. Surv. Ophthalmol. 2021, 66, 276–289. [Google Scholar] [CrossRef]
- Yu, A.L.; Kaiser, M.; Schaumberger, M.; Messmer, E.; Kook, D.; Welge-Lussen, U. Donor-related risk factors and preoperative recipient-related risk factors for graft failure. Cornea 2014, 33, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Sugar, A.; Tanner, J.P.; Dontchev, M.; Tennant, B.; Schultze, R.L.; Dunn, S.P.; Lindquist, T.D.; Gal, R.L.; Beck, R.W.; Kollman, C.; et al. Recipient risk factors for graft failure in the cornea donor study. Ophthalmology 2009, 116, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Price, M.O.; Thompson, R.W., Jr.; Price, F.W., Jr. Risk factors for various causes of failure in initial corneal grafts. Arch. Ophthalmol. 2003, 121, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.L.; Braatvedt, G.D.; Patel, D.V. Impact of diabetes mellitus on the ocular surface: A review. Clin. Exp. Ophthalmol. 2016, 44, 278–288. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wilkins, M.; Kim, T.; Malyugin, B.; Mehta, J.S. Cataracts. Lancet 2017, 390, 600–612. [Google Scholar] [CrossRef]
Features | Study Population (N = 335) |
---|---|
Sex | |
Male | 186 |
Female | 149 |
Age | |
20–39 | 47 |
40–49 | 38 |
50–59 | 65 |
60–69 | 77 |
70–79 | 80 |
≥80 | 30 |
Urbanization | |
Urban | 198 |
Sub-urban | 98 |
Rural | 39 |
Systemic morbidities | |
Hypertension | 112 |
T2DM | 67 |
Chronic ischemic heart diseases | 31 |
Hyperlipidemia | 59 |
Cerebrovascular disease | 28 |
Ophthalmic morbidities | |
Retinal detachment | 13 |
Vitreous hemorrhage | 7 |
Uveitis | 23 |
Cataract surgery | 24 |
Vitrectomy | 9 |
Results | N |
---|---|
Follow-up person-months | 19,718 |
Median of follow-up months (interquartile range) | 66.24 (25.33 to 118.67) |
Mean days from PK to endothelial decompensation | 127.17 |
Endothelial decompensation (percentage) | 54 (16.12) |
No endothelial decompensation (percentage) | 281 (83.88) |
Covariate | aHR | 95% CI | p Value |
---|---|---|---|
Sex | |||
Male | Reference | ||
Female | 1.036 | 0.688–1.558 | 0.8664 |
Age | |||
20–39 | 0.602 | 0.261–1.392 | 0.2355 |
40–49 | Reference | ||
50–59 | 0.583 | 0.284–1.199 | 0.1422 |
60–69 | 1.007 | 0.493–2.057 | 0.9851 |
70–79 | 1.368 | 0.670–2.792 | 0.3895 |
≥80 | 1.522 | 0.614–3.777 | 0.3647 |
Urbanization | |||
Urban | Reference | ||
Sub-urban | 1.136 | 0.736–1.754 | 0.5638 |
Rural | 0.904 | 0.449–1.821 | 0.7779 |
Systemic morbidities | |||
Hypertension | 0.900 | 0.585–1.385 | 0.6322 |
T2DM | 1.924 | 1.257–2.533 | 0.0095 * |
Ischemic heart diseases | 1.196 | 0.643–2.225 | 0.5716 |
Hyperlipidemia | 0.730 | 0.414–1.289 | 0.2785 |
Cerebrovascular disease | 0.784 | 0.393–1.562 | 0.4887 |
Ophthalmic morbidities | |||
Retinal detachment | 2.300 | 0.863–6.131 | 0.0959 |
Vitreous hemorrhage | 1.768 | 0.805–3.254 | 0.1084 |
Uveitis | 0.939 | 0.441–2.003 | 0.8714 |
Cataract surgery | 1.687 | 1.328–2.440 | 0.0026 * |
Vitrectomy | 1.765 | 0.450–6.916 | 0.4151 |
Subgroup | aHR | 95% CI | p Value |
---|---|---|---|
Age < 60 years | |||
T2DM | 1.645 | 1.103–2.428 | 0.0234 * |
Cataract surgery | 1.262 | 0.996–1.684 | 0.0578 |
Age > 60 years | |||
T2DM | 2.334 | 1.359–2.914 | 0.0071 * |
Cataract surgery | 2.017 | 1.518–2.925 | 0.0002 *,# |
Male | |||
T2DM | 1.997 | 1.233–2.568 | 0.0098 * |
Cataract surgery | 1.554 | 1.184–2.375 | 0.0029 * |
Female | |||
T2DM | 1.856 | 1.284–2.465 | 0.0090 * |
Cataract surgery | 1.703 | 1.406–2.619 | 0.0017 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-C.; Lee, C.-Y.; Chang, Y.-L.; Huang, J.-Y.; Yang, S.-F.; Chang, C.-K. Risk Factors for Corneal Endothelial Decompensation after Penetrating Keratoplasty: A Population-Based Cohort Study. J. Clin. Med. 2024, 13, 718. https://doi.org/10.3390/jcm13030718
Chen H-C, Lee C-Y, Chang Y-L, Huang J-Y, Yang S-F, Chang C-K. Risk Factors for Corneal Endothelial Decompensation after Penetrating Keratoplasty: A Population-Based Cohort Study. Journal of Clinical Medicine. 2024; 13(3):718. https://doi.org/10.3390/jcm13030718
Chicago/Turabian StyleChen, Hung-Chi, Chia-Yi Lee, Yu-Ling Chang, Jing-Yang Huang, Shun-Fa Yang, and Chao-Kai Chang. 2024. "Risk Factors for Corneal Endothelial Decompensation after Penetrating Keratoplasty: A Population-Based Cohort Study" Journal of Clinical Medicine 13, no. 3: 718. https://doi.org/10.3390/jcm13030718
APA StyleChen, H. -C., Lee, C. -Y., Chang, Y. -L., Huang, J. -Y., Yang, S. -F., & Chang, C. -K. (2024). Risk Factors for Corneal Endothelial Decompensation after Penetrating Keratoplasty: A Population-Based Cohort Study. Journal of Clinical Medicine, 13(3), 718. https://doi.org/10.3390/jcm13030718