Comparison of the Effects of Anaesthesia Methods Used in Caesarean Delivery on Neonatal Cerebral and Renal Oxygenation: A Randomised Controlled Trial
Abstract
:1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saygi, A.I.; Ozdamar, O.; Gun, I.; Emirkadı, H.; Müngen, E.; Akpak, Y.K. Comparison of maternal and fetal outcomes among patients undergoing caesarean section under general and spinal anesthesia: A randomized clinical trial. Sao Paulo Med. J. 2015, 133, 227–234. [Google Scholar] [CrossRef]
- Kim, W.; Hur, M.; Park, S.-K.; Yoo, S.; Lim, T.; Yoon, H.; Kim, J.-T.; Bahk, J.-H. Comparison between general, spinal, epidural, and combined spinal-epidural anesthesia for cesarean delivery: A network meta-analysis. Int. J. Obstet. Anesth. 2019, 37, 5–15. [Google Scholar] [CrossRef]
- van Bel, F.; Lemmers, P.; Naulaers, G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: Value and pitfalls. Neonatology 2008, 94, 237–244. [Google Scholar] [CrossRef]
- Scheeren, T.W.; Schober, P.; Schwarte, L.A. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background and current applications. J. Clin. Monit. Comput. 2012, 26, 279–287. [Google Scholar] [CrossRef]
- Bailey, S.M.; Hendricks-Munoz, K.D.; Mally, P. Cerebral, renal, and splanchnic tissue oxygen saturation values in healthy term newborns. Am. J. Perinatol. 2014, 31, 339–344. [Google Scholar]
- Montaldo, P.; De Leonibus, C.; Giordano, L.; De Vivo, M.; Giliberti, P. Cerebral, renal and mesenteric regional oxygen saturation of term infants during transition. J. Pediatr. Surg. 2015, 50, 1273–1277. [Google Scholar] [CrossRef]
- Gulcan Kersin, S.; Yasa, B.; Cetinkaya, M.; Ilgın, C.; Özek, E.; Bilgen, H. Regional pulmonary oxygen saturations immediately after birth. Early Hum. Dev. 2022, 166, 105552. [Google Scholar] [CrossRef] [PubMed]
- Zanardo, V.; Dal Cengio, V.; Parotto, M.; Cavallin, F.; Trevisanuto, D. Elective caesarean delivery adversely affects preductal oxygen saturation during birth transition. Arch. Dis. Child Fetal Neonatal Ed. 2016, 101, F339–F343. [Google Scholar] [CrossRef] [PubMed]
- Beşkardeş, A.; Salihoğlu, Ö.; Can, E.; Atalay, D.; Akyol, B.; Hatipoğlu, S. Oxygen saturation of healthy term neonates during the first 30 minutes of life. Pediatr. Int. 2013, 55, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Hulsoore, R.; Shrivastav, J.; Dwivedi, R. Normal oxygen saturation trend in healthy term newborns within 30 minutes of birth. Indian J. Pediatr. 2011, 78, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, Z.S.; Toraman, F.; Erkek, E.; Sungur, T.; Guclu, P.; Durmaz, S.; Bilgili, C.O. Cesarean under general or epidural anesthesia: Does it differ in terms of regional cerebral oxygenation? Acta Anaesthesiol. Taiwan 2014, 52, 159–162. [Google Scholar] [CrossRef]
- Evans, C.M.; Murphy, J.F.; Gray, O.P.; Rosen, M. Epidural versus general anaesthesia for elective caesarean section. Effect on Apgar score and acid-base status of the newborn. Anaesthesia 1989, 44, 778–782. [Google Scholar] [CrossRef]
- Staikou, C.; Tsaroucha, A.; Vakas, P.; Salakos, N.; Hasiakos, D.; Panoulis, K.; Petropoulos, G. Maternal and umbilical cord oxygen content and acid-base balance in relation to general, epidural or subarachnoid anesthesia for term elective cesarean section. Clin Exp. Obstet. Gynecol. 2013, 40, 367–371. [Google Scholar]
- Ilves, P.; Lintrop, M.; Talvik, I.; Muug, K.; Asser, K.; Veinla, M.; Lintrop, M.M. Developmental changes in cerebral and visceral blood flow velocity in healthy neonates and infants. J. Ultrasound Med. 2008, 27, 199–207. [Google Scholar] [CrossRef]
- Hayashi, T.; Ichiyama, T.; Uchida, M.; Tashiro, N.; Tanaka, H. Evaluation by colour Doppler and pulsed Doppler sonography of blood flow velocities in intracranial arteries during the early neonatal period. Eur. J. Pediatr. 1992, 151, 461–465. [Google Scholar] [CrossRef]
- Kempley, S.T.; Vyas, S.; Bower, S.; Nicolaides, K.H.; Gamsu, H. Cerebral and renal artery blood flow velocity before and after birth. Early Hum. Dev. 1996, 46, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Urlesberger, B.; Grossauer, K.; Pocivalnik, M.; Avian, A.; Müller, W.; Pichler, G. Regional oxygen saturation of the brain and peripheral tissue during birth transition of term infants. J. Pediatr. 2010, 157, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, J.; Watanabe, T.; Ito, M.; Miyake, F.; Nagano, N.; Ogawa, R.; Matsumura, S.; Araki, R.; Tamura, M.; Namba, F. Defining the reference range of regional cerebral tissue oxygen saturation using a new portable near-infrared spectroscopy device for term infants. Early Hum. Dev. 2020, 141, 104941. [Google Scholar] [CrossRef]
- Kato, R.; Hosono, S.; Takahashi, S. Reference Value of Brain Tissue Oxygen Saturation in Newborns Immediately After Birth. Adv. Exp. Med. Biol. 2020, 1232, 19–24. [Google Scholar] [PubMed]
- Urlesberger, B.; Kratky, E.; Rehak, T.; Pocivalnik, M.; Avian, A.; Czihak, J. Regional oxygen saturation of the brain during birth transition of term infants: Comparison between elective cesarean and vaginal deliveries. J. Pediatr. 2011, 159, 404–408. [Google Scholar] [CrossRef]
- Isobe, K.; Kusaka, T.; Fujikawa, Y.; Kondo, M.; Kawada, K.; Yasuda, S.; Itoh, S.; Hirao, K.; Onishi, S. Changes in cerebral hemoglobin concentration and oxygen saturation immediately after birth in the human neonate using full-spectrum near infrared spectroscopy. J. Biomed. Opt. 2000, 5, 283–286. [Google Scholar] [CrossRef]
- Fauchère, J.-C.; Schulz, G.; Haensse, D.; Keller, E.; Ersch, J.; Bucher, H.U.; Wolf, M. Near-infrared spectroscopy measurements of cerebral oxygenation in newborns during immediate postnatal adaptation. J. Pediatr. 2010, 156, 372–376. [Google Scholar] [CrossRef]
- Noori, S.; Wlodaver, A.; Gottipati, V.; McCoy, M.; Schultz, D.; Escobedo, M. Transitional changes in cardiac and cerebral hemodynamics in term neonates at birth. J. Pediatr. 2012, 160, 943–948. [Google Scholar] [CrossRef]
- Clyman, R.I. Mechanisms regulating the ductus arteriosus. Biol. Neonate 2006, 89, 330–335. [Google Scholar] [CrossRef]
- Urlesberger, B.; Brandner, A.; Pocivalnik, M.; Koestenberger, M.; Morris, N.; Pichler, G. A left-to-right shunt via the ductus arteriosus is associated with increased regional cerebral oxygen saturation during neonatal transition. Neonatology 2013, 103, 259–263. [Google Scholar] [CrossRef]
- Vanderhaegen, J.; De Smet, D.; Meyns, B.; Van De Velde, M.; Van Huffel, S.; Naulaers, G. Surgical closure of the patent ductus arteriosus and its effect on the cerebral tissue oxygenation. Acta Paediatr. 2008, 97, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Chock, V.Y.; Rose, L.A.; Mante, J.V.; Punn, R. Near-infrared spectroscopy for detection of a significant patent ductus arteriosus. Pediatr. Res. 2016, 80, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ito, M.; Miyake, F.; Ogawa, R.; Tamura, M.; Namba, F. Measurement of brain tissue oxygen saturation in term infants using a new portable near-infrared spectroscopy device. Pediatr. Int. 2017, 59, 167–170. [Google Scholar] [CrossRef]
- Vesoulis, Z.A.; Mintzer, J.P.; Chock, V.Y. Neonatal NIRS monitoring: Recommendations for data capture and review of analytics. J. Perinatol. 2021, 41, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Benni, P.; Seyhan, S.; Ehrenkranz, R. Meconium and transitional stools may cause interference with near-infrared spectroscopy measurements of intestinal oxygen saturation in preterm infants. Adv. Exp. Med. Biol. 2013, 765, 287–292. [Google Scholar]
- Herrera-Gómez, A.; García-Martínez, O.; Ramos-Torrecillas, J.; De Luna-Bertos, E.; Ruiz, C.; Ocaña-Peinado, F.M. Retrospective study of the association between epidural analgesia during labour and complications for the newborn. Midwifery 2015, 31, 613–616. [Google Scholar] [CrossRef] [PubMed]
- La Camera, G.; La Via, L.; Murabito, P.; Pitino, S.; Dezio, V.; Interlandi, A.; Minardi, C.; Astuto, M. Epidural analgesia during labour and stress markers in the newborn. J. Obstet. Gynaecol. 2021, 41, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Vasile, F.; La Via, L.; Murabito, P.; Tigano, S.; Merola, F.; Nicosia, T.; De Masi, G.; Bruni, A.; Garofalo, E.; Sanfilippo, F. Non-Invasive Monitoring during Caesarean Delivery: Prevalence of Hypotension and Impact on the Newborn. J. Clin. Med. 2023, 12, 7295. [Google Scholar] [CrossRef] [PubMed]
Group SA (n = 30) | Group GA (n = 30) | Difference (95% CI) | |
---|---|---|---|
Maternal age, years | 30 ± 5 | 28 ± 5 | −2.600 (−5.344 to 0.144) |
Gestational age, weeks | 38.8 ± 0.5 | 38.6 ± 0.4 | −0.267 (−0.544 to 0.010) |
Maternal BMI, kg/m2 | 27.2 ± 3.4 | 27.5 ± 3.2 | 0.370 (−1.388 to 2.128) |
Maternal ASA status | |||
ASA II | 30 (100) | 30 (100) | 0 (0 to 0) |
Gender of neonates | |||
Male, n (%) | 15 (50) | 16 (51.6) | 0.933 (0.552 to 1.575) |
Female, n (%) | 15 (50) | 14 (48.3) | |
Birth weight, g | 3351 ± 290 | 3386 ± 244 | 35.333 (−103.215 to 173.881) |
APGAR scores | |||
1 min | 9 (9–10) | 9 (9–9) | 0 (−1 to 0) |
5 min | 10 (10–10) | 10 (10–10) | 0 (0 to 0) |
Delivery time, min | 5.8 ± 0.9 | 3.7 ± 0.5 | −2.133 (−2.526 to −1.741) |
Maternal preoperative hemoglobin, g/dL | 11.9 ± 1.3 | 11.9 ± 1.1 | 0.060 (−0.550 to 0.670) |
Group SA (n = 30) | Group GA (n = 30) | Difference (95% CI) | |
---|---|---|---|
Preductal SpO2 (%) | 94.1 ± 3.9 | 93.7 ± 4.6 | −0.341 (−0.945 to 0.262) |
Postductal SpO2 (%) | 92 ± 4.2 | 91.4 ± 5.3 | −0.630 (−1.307 to 0.045) |
Heart rate (beat/min) | 152 ± 8 | 151 ± 9 | −0.012 (−0.393 to 0.367) |
Body temperature (°C) | 36.5 ± 0.5 | 36.4 ± 0.6 | −0.047 (−0.132 to 0.037) |
Perfusion index (%) | 2.2 ± 0.4 | 2.3 ± 0.6 | 0.070 (−0.174 to 0.314) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arslan, U.; Kavrut Ozturk, N.; Kavakli, A.S.; Dagdelen, H.O. Comparison of the Effects of Anaesthesia Methods Used in Caesarean Delivery on Neonatal Cerebral and Renal Oxygenation: A Randomised Controlled Trial. J. Clin. Med. 2024, 13, 873. https://doi.org/10.3390/jcm13030873
Arslan U, Kavrut Ozturk N, Kavakli AS, Dagdelen HO. Comparison of the Effects of Anaesthesia Methods Used in Caesarean Delivery on Neonatal Cerebral and Renal Oxygenation: A Randomised Controlled Trial. Journal of Clinical Medicine. 2024; 13(3):873. https://doi.org/10.3390/jcm13030873
Chicago/Turabian StyleArslan, Ulku, Nilgun Kavrut Ozturk, Ali Sait Kavakli, and Hatice Ozge Dagdelen. 2024. "Comparison of the Effects of Anaesthesia Methods Used in Caesarean Delivery on Neonatal Cerebral and Renal Oxygenation: A Randomised Controlled Trial" Journal of Clinical Medicine 13, no. 3: 873. https://doi.org/10.3390/jcm13030873
APA StyleArslan, U., Kavrut Ozturk, N., Kavakli, A. S., & Dagdelen, H. O. (2024). Comparison of the Effects of Anaesthesia Methods Used in Caesarean Delivery on Neonatal Cerebral and Renal Oxygenation: A Randomised Controlled Trial. Journal of Clinical Medicine, 13(3), 873. https://doi.org/10.3390/jcm13030873