Underneath Images and Robots, Looking Deeper into the Pneumoperitoneum: A Narrative Review
Abstract
:1. Towards the Minimally Invasive Pneumoperitoneum in Laparoscopy
2. Pneumoperitoneum Effects and the Pressure–Volume Derivative
3. Individualizing Pressure and Volume Measures to Increase the Workspace
4. Temperature and Humidity
5. Conclusions: Perioperative Goals and Implementation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The COlon cancer Laparoscopic or Open Resection Study Group. Laparoscopic surgery versus open surgery for colon cancer:short-term outcomes of a randomised trial. Lancet Oncol. 2005, 6, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, S.A.; Antoniou, G.A.; Koch, O.O.; Pointner, R.; Granderath, F.A. Meta-analysis of laparoscopic vs open cholecystectomy in elderly patients. World J. Gastroenterol. 2014, 20, 17626–17634. [Google Scholar] [CrossRef] [PubMed]
- Maas, K.; Biere, S.; Van Der Peet, D.; Cuesta, M. Minimally invasive esophagectomy: Current status and future direction. Surg. Endosc. 2012, 26, 1794. [Google Scholar] [CrossRef] [PubMed]
- Spanjersberg, W.R.; van Sambeeck, J.D.P.; Bremers, A.; Rosman, C.; van Laarhoven, C.J.H.M. Systematic review and meta-analysis for laparoscopic versus open colon surgery with or without an ERAS programme. Surg. Endosc. 2015, 29, 3443–3453. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Sang, L.; Zhang, W.; Chu, Z.; Liu, Y. Laparoscopic versus conventional appendectomy—A meta-analysis of randomized controlled trials. BMC Gastroenterol. 2010, 10, 129. [Google Scholar] [CrossRef]
- Binda, M.M. Humidification during laparoscopic surgery: Overview of the clinical benefits of using humidified gas during laparoscopic surgery. Arch. Gynecol. Obstet. 2015, 292, 955–971. [Google Scholar] [CrossRef]
- Reynolds, W. The First Laparoscopic Cholecystectomy. J. Soc. Laparosc. Robot. Surg. 2001, 5, 89–94. [Google Scholar]
- Anderson, P.L.; Lathrop, R.A.; Webster, R.J. Robot-like dexterity without computers and motors: A review of hand-held laparoscopic instruments with wrist-like tip articulation. Expert Rev. Med. Devices 2016, 13, 661–672. [Google Scholar] [CrossRef]
- Achilli, P.; Mari, G.M.; Crippa, J.; Miranda, A.; Santurro, L.; Riggio, V.; Gerosa, M.; Ascheri, P.; Cordaro, G.; Costanzi, A.T.M.; et al. 4K ultra HD technology reduces operative time and intraoperative blood loss in colorectal laparoscopic surgery. F1000Research 2020, 9, 106. [Google Scholar] [CrossRef]
- Dunstan, M.; Smith, R.; Schwab, K.; Scala, A.; Gatenby, P.; Whyte, M.; Rockall, T.; Jourdan, I. Is 3D faster and safer than 4K laparoscopic cholecystectomy? A randomised-controlled trial. Surg. Endosc. 2020, 34, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Zwart, M.J.W.; Jones, L.R.; Fuente, I.; Balduzzi, A.; Takagi, K.; Novak, S.; Stibbe, L.A.; de Rooij, T.; van Hilst, J.; van Rijssen, L.B.; et al. Performance with robotic surgery versus 3D- and 2D-laparoscopy during pancreatic and biliary anastomoses in a biotissue model: Pooled analysis of two randomized trials. Surg. Endosc. 2022, 36, 4518–4528. [Google Scholar] [CrossRef]
- Lanfranco, A.R.; Castellanos, A.E.; Desai, J.P.; Meyers, W.C. Robotic Surgery: A Current Perspective. Ann. Surg. 2004, 239, 14–21. [Google Scholar] [CrossRef]
- Schurr, M.O.; Kunert, W.; Arezzo, A.; Buess, G. Review in Minimally Invasive Surgery The Role and Future of Endoscopic Imaging Systems. Endoscopy 1999, 31, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Mutsaers, S.E. Mesothelial cells: Their structure, function and role in serosal repair. Respirology 2002, 7, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.B. Changes in the coelomic microclimate during carbon dioxide laparoscopy: Morphological and functional implications. Pleura Peritoneum 2017, 2, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Umano, G.R.; Delehaye, G.; Noviello, C.; Papparella, A. The “dark Side” of Pneumoperitoneum and Laparoscopy. Minim. Invasive Surg. 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Papparella, A.; Noviello, C.; Romano, M.; Parmeggiani, P.; Paciello, O.; Papparella, S. Local and systemic impact of pnemoperitoneum on prepuberal rats. Pediatr. Surg. Int. 2007, 23, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, S.J.; Gupta, A.; Watson, D.I. Helium and other alternative insufflation gases for laparoscopy: A review. Surg. Endosc. 2001, 15, 553–560. [Google Scholar] [CrossRef]
- Neudecker, J.; Sauerland, S.; Neugebauer, E.; Bergamaschi, R.; Bnjer, H.J.; Cuschieri, A.; Fuchs, K.H.; Jacobi, C.; Jansen, F.W.; Koivusalo, A.M.; et al. The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surg. Endosc. 2002, 16, 1121–1143. [Google Scholar] [CrossRef] [PubMed]
- Becker, C.; Plymale, M.A.; Wennergren, J.; Totten, C.; Stigall, K.; Roth, J.S. Compliance of the abdominal wall during laparoscopic insufflation. Surg. Endosc. 2017, 31, 1947–1951. [Google Scholar] [CrossRef]
- Förstemann, T.; Trzewik, J.; Holste, J.; Batke, B.; Konerding, M.A.; Wolloscheck, T.; Hartung, C. Forces and deformations of the abdominal wall-A mechanical and geometrical approach to the linea alba. J. Biomech. 2011, 44, 600–606. [Google Scholar] [CrossRef]
- Mazzinari, G.; Diaz-Cambronero, O.; Serpa-Neto, A.; Cañada Martinez, A.; Rovira, L.; Argente-Navarro, M.P.; Malbrain, M.L.N.G.; Pelosi, P.; Gama de Abreu, M.; Hollmann, M.W.; et al. Modeling intra-abdominal volume and respiratory driving pressure during pneumoperitoneum insufflation—A patient-level data meta-analysis. J. Appl. Physiol. 2021, 130, 721–728. [Google Scholar] [CrossRef]
- Vlot, J.; Wijnen, R.; Stolker, R.J.; Bax, K. Optimizing working space in porcine laparoscopy: CT measurement of the effects of intra-abdominal pressure. Surg. Endosc. 2013, 27, 1668–1673. [Google Scholar] [CrossRef]
- Calvo, G.; Armero, C.; Gómez-Rubio, V.; Mazzinari, G. Bayesian hierarchical nonlinear modelling of intra-abdominal volume during pneumoperitoneum for laparoscopic surgery. SORT 2021, 45, 1–20. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Miguez, F.E. Nonlinear regression models and applications in agricultural research. Agron. J. 2015, 107, 786–798. [Google Scholar] [CrossRef]
- De Laet, I.E.; Malbrain, M.L.N.G.; De Waele, J.J. A Clinician’s Guide to Management of Intra-Abdominal Hypertension and Abdominal Compartment Syndrome in Critically Ill Patients. Crit. Care 2020, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Malbrain, M.L.N.G.; Roberts, D.J.; Sugrue, M.; De Keulenauer, B.L.; Ivatury, R.; Pelosi, P.; Verbrugge, F.; Wise, R.; Mullens, W. The polycompartment syndrome: A concise state-of-the-art review. Anaesthesiol. Intensive Ther. 2014, 46, 433–450. [Google Scholar] [CrossRef]
- Van Damme, L.; De Waele, J.J. Effect of decompressive laparotomy on organ function in patients with abdominal compartment syndrome: A systematic review and meta-analysis. Crit. Care 2018, 22, 179. [Google Scholar] [CrossRef] [PubMed]
- Wever, K.E.; Bruintjes, M.H.D.; Warlé, M.C.; Hooijmans, C.R. Renal perfusion and function during pneumoperitoneum: A systematic review and meta-analysis of animal studies. PLoS ONE 2016, 11, e0163419. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.C.; Xu, Q.P.; Pan, K.H.; Mao, C.; Jin, C.W. Effect of increased intra-abdominal pressure and decompressive laparotomy on aerated lung volume. J. Zhejiang Univ. Sci. B 2010, 11, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Mazzinari, G.; Diaz-Cambronero, O.; Alonso-Iñigo, J.M.; García-Gregorio, N.; Ayas_Montero, B.; Ibañez, J.L.; Serpa-Neto, A.; Ball, L.; Gama de Abreu, M.; Pelosi, P.; et al. Intraabdominal pressure targeted positive end-expiratory pressure during laparoscopic surgery: An open-label, nonrandomized, crossover, clinical trial. Anesthesiology 2020, 132, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Ni, L.; Huang, L.; Zhou, Y.; Wang, K. Effect of positive end-expiratory pressure on pulmonary compliance and pulmonary complications in patients undergoing robot-assisted laparoscopic radical prostatectomy: A randomized control trial. BMC Anesthesiol. 2022, 22, 347. [Google Scholar] [CrossRef] [PubMed]
- Valenza, F.; Chevallard, G.; Fossali, T.; Salice, V.; Pizzocri, M.; Gattinoni, L. Management of mechanical ventilation during laparoscopic surgery. Best Pract. Res. Clin. Anaesthesiol. 2010, 24, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Awad, H.; Santilli, S.; Ohr, M.; Roth, A.; Yan, W.; Fernandez, S.; Roth, S.; Patel, V. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth. Analg. 2009, 109, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Robba, C.; Cardim, D.; Donnelly, J.; Bertuccio, A.; Bacigaluppi, S.; Bragazzi, N.; Cabella, B.; Liu, X.; Matta, B.; Lattuada, M.; et al. Effects of pneumoperitoneum and Trendelenburgposition on intracranial pressure assessed using different non-invasive methods. Br. J. Anaesth. 2016, 117, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Kalmar, A.F.; Foubert, L.; Hendrickx, J.F.A.; Mottrie, M.; Absalom, A.; Mortier, E.P.; Struys, M.M.R.F. Influence of steep Trendelenburg position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br. J. Anaesth. 2010, 104, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Papparella, A.; Nino, F.; Coppola, S.; Noviello, C.; Paciello, O.; Papparella, S. Peritoneal morphological changes due to pneumoperitoneum: The effect of intra-abdominal pressure. Eur. J. Pediatr. Surg. 2014, 24, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Tarhan, O.R.; Barut, I.; Ozogul, C.; Bozkurt, S.; Baykara, B.; Bulbul, M. Structural deteriorations of the human peritoneum during laparoscopic cholecystectomy. A transmission electron microscopic study. Surg. Endosc. 2013, 27, 2744–2750. [Google Scholar] [CrossRef]
- Neuhaus, S.J.; Watson, D.I. Pneumoperitoneum and peritoneal surface changes—A review. Surg. Endosc. 2004, 18, 1316–1322. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Jardon, K.; Maleysson, E.; Darpiany, F.; Canis, M.; Botchorishvili, R. Impact of intraperitoneal pressure of a CO2 pneumoperitoneum on the surgical peritoneal environment. Hum. Reprod. 2012, 27, 1613–1623. [Google Scholar] [CrossRef]
- Sammour, T.; Mittal, A.; Loveday, B.P.T.; Kahokehr, A.; Phillips, A.R.J.; Windsor, J.A.; Hill, A.G. Systematic review of oxidative stress associated with pneumoperitoneum. Br. J. Surg. 2009, 96, 836–850. [Google Scholar] [CrossRef]
- Eleftheriadis, E.; Kotzampassi, K.; Botsios, D.; Tzartinoglou, E.; Farmakis, H.; Dadoukis, J. Splanchnic Ischemia during Laparoscopic Cholecystectomy. Surg. Endosc. 1996, 10, 324–326. [Google Scholar] [CrossRef]
- Jakimowicz, J.; Stultiëns, G.; Smulders, F. Laparoscopic Insufflation of the Abdomen Reduces Portal Venous Flow. Surg. Endosc. 1998, 12, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Olmedilla Arnal, L.E.; Cambronero, O.D.; Mazzinari, G.; Perez Peña, J.M.; Zorrilla Ortuzar, J.; Rodriguez Martin, M.; Vila Montañes, M.; Schultz, M.J.; Rovira, L.; Navarro , M.P.A.; et al. An Individualized Low-Pneumoperitoneum-Pressure Strategy May Prevent a Reduction in Liver Perfusion during Colorectal Laparoscopic Surgery. Biomedicines 2023, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Albers, K.I.; Polat, F.; Loonen, T.; Graat, L.J.; Mulier, J.P.; Snoeck, M.M.J.; Pnahuizen, I.F.; Vermulst, A.A.; Scheffer, G.J.; Warlé, M.C. Visualising improved peritoneal perfusion at lower intra-abdominal pressure by fluorescent imaging during laparoscopic surgery: A randomised controlled study. Int. J. Surg. 2020, 77, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Naidu, G. The role of danger-associated molecular patterns (DAMPs) in trauma and infections. J. Thorac. Dis. 2016, 8, 1406–1409. [Google Scholar] [CrossRef] [PubMed]
- Relja, B.; Land, W.G. Damage-associated molecular patterns in trauma. Eur. J. Trauma Emerg. Surg. 2020, 46, 751–775. [Google Scholar] [CrossRef] [PubMed]
- Leijte, G.P.; Custers, H.; Gerretsen, J.; Heijne, A.; Roth, J.; Vogl, T.; Scheffer, G.J.; Pickkers, P.; Kox, M. Increased plasma levels of danger-associated molecular patterns are associated with immune suppression and postoperative infections in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Front. Immunol. 2018, 9, 663. [Google Scholar] [CrossRef]
- Raval, A.D.; Deshpande, S.; Koufopoulou, M.; Rabar, S.; Neupane, B.; Iheanacho, I.; Bash, L.D.; Horrow, J.; Fuchs-Buder, T. The impact of intra-abdominal pressure on perioperative outcomes in laparoscopic cholecystectomy: A systematic review and network meta-analysis of randomized controlled trials. Surg. Endosc. 2020, 34, 2878–2890. [Google Scholar] [CrossRef]
- Ortenzi, M.; Montori, G.; Sartori, A.; Balla, A.; Botteri, E.; Piatto, G.; Gallo, G.; Vigna, S.; Guerrieri, M.; Williams, S.; et al. Low-pressure versus standard-pressure pneumoperitoneum in laparoscopic cholecystectomy: A systematic review and meta-analysis of randomized controlled trials. Surg. Endosc. 2022, 36, 7092–7113. [Google Scholar] [CrossRef]
- Özdemir-van Brunschot, D.M.D.; van Laarhoven, K.C.J.H.M.; Scheffer, G.J.; Pouwels, S.; Wever, K.E.; Warlé, M.C. What is the evidence for the use of low-pressure pneumoperitoneum? A systematic review. Surg. Endosc. 2016, 30, 2049–2065. [Google Scholar] [CrossRef] [PubMed]
- Reijnders-Boerboom, G.T.J.A.; Albers, K.I.; Jacobs, L.M.C.; van Helden, E.; Rsoman, C.; Díaz-Cambronero, O.; Mazzinari, G.; Scheffer, G.J.; Keijzer, C.; Warleé, M.C. Low intra-abdominal pressure in laparoscopic surgery: A systematic review and meta-analysis. Int. J. Surg. 2023, 109, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Celarier, S.; Monziols, S.; Célérier, B.; Assenat, V.; Carles, P.; Napolitano, G.; Laclau-Lacrouts, M.; Rullier, E.; Ouattara, A.; Denost, Q. Low-pressure versus standard pressure laparoscopic colorectal surgery (PAROS trial): A phase III randomized controlled trial. Br. J. Surg. 2021, 108, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Cambronero, O.; Mazzinari, G.; Flor Lorente, B.; García Gregorio, N.; Robles-Hernandez, D.; Olmedilla Arnal, L.; Martin de Pablos, A.; Schultz, M.J.; Errando, C.L.; Argente Navarro, M.P.; et al. Effect of an individualized versus standard pneumoperitoneum pressure strategy on postoperative recovery: A randomized clinical trial in laparoscopic colorectal surgery. Br. J. Surg. 2020, 107, 1605–1614. [Google Scholar] [CrossRef]
- Mulier, J.; Dillemans, B.; Crombach, M.; Missant, C.; Sels, A. On the abdominal pressure volume relationship. Internet J. Anesthesiol. 2008, 21, 5221–5231. [Google Scholar]
- Diaz-Cambronero, O.; Flor Lorente, B.; Mazzinari, G.; Vila Montañes, M.; García Gregorio, N.; Robles Hernandez, D.; Olmedilla Arnal, L.E.; Argetne Navarro, M.P.; Schultz, M.J.; Errando, C.L.; et al. A multifaceted individualized pneumoperitoneum strategy for laparoscopic colorectal surgery: A multicenter observational feasibility study. Surg. Endosc. 2019, 33, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Solass, W.; Horvath, P.; Struller, F.; Konigsrainer, I.; Beckert, S.; Konigsrainer, A.; Weinreich, F.J.; Schenk, M. Functional vascular anatomy of the peritoneum in health and disease. Pleura Peritoneum 2016, 1, 145–158. [Google Scholar] [CrossRef]
- Vlot, J.; Wijnen, R.; Stolker, R.J.; Bax, K. Optimizing working space in laparoscopy: CT measurement of the effect of pre-stretching of the abdominal wall in a porcine model. Surg. Endosc. 2014, 28, 841–846. [Google Scholar] [CrossRef]
- Diaz-Cambronero, O.; Mazzinari, G.; Errando, C.L.; Schult, M.J.; Flor Lorente, B.; García-Gregorio, N.; Vila Montañes, M.; Robles; Olmedilla Arnal, L.E.; Martin de-Pablos, A.; et al. An individualised versus a conventional pneumoperitoneum pressure strategy during colorectal laparoscopic surgery: Rationale and study protocol for a multicentre randomised clinical study. Trials 2019, 20, 190. [Google Scholar] [CrossRef]
- Biler, A.; Yucebilgin, S.; Sendag, F.; Akman, L.; Akdemir, A.; Ates, U.; Uyianigkil, Y.; Yilmaz-Dilsiz, O.; Sezer, E. The Effects of Different Intraabdominal Pressure Protocols in Laparoscopic Procedures on Oxidative Stress Markers and Morphology in Rat Ovaries. Adv. Clin. Exp. Med. 2014, 2014, 885–892. [Google Scholar] [CrossRef]
- Cevrioglu, A.S.; Yilmaz, S.; Koken, T.; Tokyol, C.; Yilmazer, M.; Fenkci, I.V. Comparison of the effects of low intra-abdominal pressure and ischaemic preconditioning on the generation of oxidative stress markers and inflammatory cytokines during laparoscopy in rats. Hum. Reprod. 2004, 19, 2144–2151. [Google Scholar] [CrossRef]
- Mulier, J.P.J.; Dillemans, B.; Van Cauwenberge, S. Impact of the patient’s body position on the intraabdominal workspace during laparoscopic surgery. Surg. Endosc. 2010, 24, 1398–1402. [Google Scholar] [CrossRef]
- Barrio, J.; Errando, C.L.; San Miguel, G.; Salas, B.I.; Raga, J.; Carrión, J.L.; García-Ramón, J.; Gallego, J. Effect of depth of neuromuscular blockade on the abdominal space during pneumoperitoneum establishment in laparoscopic surgery. J. Clin. Anesth. 2016, 34, 197–203. [Google Scholar] [CrossRef]
- Fuchs-Buder, T.; Schreiber, J.U.; Meistelman, C. Monitoring neuromuscular block: An update. Anaesthesia 2009, 64 (Suppl. S1), 82–89. [Google Scholar] [CrossRef]
- Martini, C.H.; Boon, M.; Bevers, R.F.; Aarts, L.P.; Dahan, A. Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br. J. Anaesth. 2014, 112, 498–505. [Google Scholar] [CrossRef]
- Krijtenburg, P.; Bruintjes, M.H.D.; Fütterer, J.J.; van de Steeg, G.; d’Ancona, F.; Scheffer, G.J.; Keijzer, C.; Warlé, M.C. MRI measurement of the effects of moderate and deep neuromuscular blockade on the abdominal working space during laparoscopic surgery, a clinical study. BMC Anesthesiol. 2023, 23, 238. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.; Fuchs-Buder, T. Surgical Stillness—When, Why, and How? Front. Surg. 2019, 6, 61. [Google Scholar] [CrossRef] [PubMed]
- Hristovska, A.M.; Duch, P.; Allingstrup, M.; Afshari, A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst. Rev. 2017, 8, CD012763. [Google Scholar] [CrossRef] [PubMed]
- Raval, A.D.; Anupindi, V.R.; Ferrufino, C.P.; Arper, D.L.; Bash, L.D.; Brull, S.J. Epidemiology and outcomes of residual neuromuscular blockade: A systematic review of observational studies. J. Clin. Anesth. 2020, 66, 109962. [Google Scholar] [CrossRef]
- Kotake, Y.; Ochiai, R.; Suzuki, T.; Ogawa, S.; Takagi, S.; Ozaki, M.; Nakatsuka, I.; Takeda, J. Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block. Anesth. Analg. 2013, 117, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, H.; Verdonck, M.; Cools, W.; Geerts, L.; Forget, P.; Poelaert, J. Forty years of neuromuscular monitoring and postoperative residual curarisation: A meta-analysis and evaluation of confidence in network meta-analysis. Br. J. Anaesth. 2020, 125, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Cambronero, Ó.; Mazzinari, G.; Errando, C.L.; Garutti, I.; Abad-Gurumeta, A.; Serrano, A.B.; Esteve, N.; Montañes, M.V.; Neto, A.S.; Hollmann, M.W.; et al. An educational intervention to reduce the incidence of postoperative residual curarisation: A cluster randomised crossover trial in patients undergoing general anaesthesia. Br. J. Anaesth. 2023, 131, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I. Perioperative Temperature Monitoring. Anesthesiology 2021, 134, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.F.; de Moerloose, P.; Samama, C.M.; Members of the Groupe d’Intérêt en Hémostase Périopératoire. Massive transfusion and coagulopathy: Pathophysiology and implications for clinical management. Can. J. Anesth. 2006, 53, S40–S58. [Google Scholar] [CrossRef]
- Schmied, H.; Kurz, A.; Sessler, D.I.; Kozek, S.; Reiter, A. Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 1996, 347, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.M.; Fleisher, L.A.; Breslow, M.J.; Higins, M.S.; Olson, K.F.; Beattie, C. Perioperative Maintenance of Normothermia Reduces the Incidence of Morbid Cardiac Events A Randomized Clinical Trial. JAMA 1997, 277, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I.; Sessler, A.M. Experimental determination of heat flow parameters during induction of general anesthesia. Anesthesiology 1998, 89, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Kurz, A.; Sessler, D.I.; Lenhardt, R. Perioeperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. NEJM 1996, 334, 1209–1215. [Google Scholar] [CrossRef]
- Melling, A.C.; Ali, B.; Scott, E.M.; Leaper, D.J. Effects of preoperative warming on the incidence of wound infection after clean surgery: A randomised controlled trial. Lancet 2001, 358, 876–880. [Google Scholar] [CrossRef]
- Leslie, K.; Sessler, D.I.; Bjorksten, A.R.; Moayeri, A. Mild Hypothermia Alters Propofol Pharmacokinetics and Increases the Duration of Action of Atracurium. Anesth. Analg. 1995, 80, 1007–1021. [Google Scholar] [CrossRef]
- Roth, J.V.; Sea, S.; Laparosc, S.; Percutan, E. An Assessment by Calorimetric Calculations of the Potential Thermal Benefit of Warming and Humidification of Insufflated Carbon Dioxide. Surg. Laparosc. Endosc. Percutaneous Tech. 2014, 24, e106. [Google Scholar] [CrossRef]
- De Csepel, J.; Wilson, E. Heating and humidifying carbon dioxide is indicated. Surg. Endosc. 2007, 21, 340–341. [Google Scholar] [CrossRef]
- Besseil, J.R.; Karatassas, A.; Patterson, J.R.; Jamieson, G.G.; Maddern, G.J. Hypothermia Induced by Laparoscopic Insufflation A Randomized Study in a Pig Model. Surg. Endosc. 1995, 9, 791–796. [Google Scholar] [CrossRef]
- Hazerbroek, E.; Schreve, M.; Visser, P.; De Bruin, R.; Marquet, R.; Bonjer, H. Impact of Temperature and Humidity of Carbon Dioxide Pneumoperitoneum on Body Temperature and Peritoneal Morphology. J. Laparoendosc. Adv. Surg. Tech. 2002, 12, 355–364. [Google Scholar] [CrossRef]
- Mouton, W.G.; Bessell, J.R.; Pfitzner, J.; Dymock, R.B.; Brealey, J.; Maddern, G.J. A Randomized Controlled Trial to Determine the Effects of Humidified Carbon Dioxide Insufflation during Thoracoscopy. Surg. Endosc. 1999, 13, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.S.; Mikami, D.J.; Newlin, M.; Needleman, B.J.; Barret, M.S.; Fries, R.; Larson, T.; Dundon, J.; Goldblatt, M.I.; Melvin, W.S. Heating and humidifying of carbon dioxide during pneumoperitoneum is not indicated: A prospective randomized trial. Surg. Endosc. 2006, 20, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Balayssac, D.; Pereira, B.; Bazin, J.E.; Roy BLe Pezet, D.; Gagnière, J. Warmed and humidified carbon dioxide for abdominal laparoscopic surgery: Meta-analysis of the current literature. Surg. Endosc. 2017, 31, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Birch, D.W.; Dang, J.T.; Switzer, N.J.; Manoucheheri, N.; Shi, X.; Hadi, G.; Karmali, S. Heated insufflation with or without humidification for laparoscopic abdominal surgery. Cochrane Database Syst. Rev. 2016, 2016, CD007821. [Google Scholar] [CrossRef] [PubMed]
- Dean, M.; Ramsay, R.; Heriot, A.; Mackay, J.; Hiscock, R.; Lynch, A.C. Warmed, humidified CO2 insufflation benefits intraoperative core temperature during laparoscopic surgery: A meta-analysis. Asian J. Endosc. Surg. 2017, 10, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Groene, P.; Gündogar, U.; Hofmann-Kiefer, K.; Ladurner, R. Influence of insufflated carbon dioxide on abdominal temperature compared to oesophageal temperature during laparoscopic surgery. Surg. Endosc. 2021, 35, 6892–6896. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.T.; Shah, P.C.; Birkett, D.H.; Brams, D.M. Peritoneal pH during laparoscopy is dependent on ambient gas environment: Helium and nitrous oxide do not cause peritoneal acidosis. Surg. Endosc. 2005, 19, 60–64. [Google Scholar] [CrossRef]
- Taskin, O.; Buhur, A.; Birincioglu, M.; Burak, F.; Atmaca, R.; Yilmaz, I.; Wheeler, J.M. The Effects of Duration of CO2 Insufflation and Irrigation on Peritoneal Microcirculation Assessed by Free Radical Scavengers andTotal Glutathion Levels During Operative Laparoscopy. J. Am. Assoc. Gynecol. Laparosc. 1998, 5, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Yesildaglar, N.; Koninckx, P.R.; Gasthuisberg, H. Adhesion formation in intubated rabbits increases with high insufflation pressure during endoscopic surgery Adhesions are a major cause of infertility. Hum. Reprod. 2000, 15, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zheng, M.; Ye, Q.; Chen, X.; Yu, B.; Liu, B. Heated and Humidified CO2 Prevents Hypothermia, Peritoneal Injury, and Intra-Abdominal Adhesions During Prolonged Laparoscopic Insufflations. J. Surg. Res. 2009, 151, 40–47. [Google Scholar] [CrossRef]
- Binda, M.M.; Molinas, C.R.; Hansen, P.; Koninckx, P.R. Effect of desiccation and temperature during laparoscopy on adhesion formation in mice. Fertil. Steril. 2006, 86, 166–175. [Google Scholar] [CrossRef]
- Ott, D.E. Correction of Laparoscopic Insufflation Hypothermia. J. Laparoendosc. Surg. 1991, 1, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Lawrentschuk, N.; Fleshner, N.E.; Bolton, D.M. Laparoscopic Lens Fogging: A Review of Etiology and Methods to Maintain a Clear Visual Field. J. Endourol. 2010, 24, 905–913. [Google Scholar] [CrossRef]
- Bessell, J.R.; Flemming, E.; Kunert, W.; Buess, G. Maintenance of clear vision during laparoscopic surgery. Minim. Invasive Ther. Allied Technol. 1996, 5, 450–455. [Google Scholar] [CrossRef]
- Flemming, E.; Bessell, J.R.; Kunert, W.; Eibl, H.; Buess, G. Principles determining optical clarity in endoscopic surgery. Minim. Invasive Ther. Allied Technol. 1996, 5, 440–444. [Google Scholar] [CrossRef]
- Tittel, A.; Schippers, E.; Grablowitz, V.; Pollivoda, M.; Anurov, M.; Ottinger, A.; Schumpelick, V. Intraabdominal humidity and electromyographic activity of the gastrointestinal tract Laparoscopy versus laparotomy. Surg. Endosc. 1995, 9, 786–790. [Google Scholar] [CrossRef]
- Manning, T.G.; Perera, M.; Christidis, D.; Kinnear, N.; McGrath, S.; O’Beirne, R.; Zotov, P.; Bolton, D.; Lawrentschuck, N. Visual occlusion during minimally invasive surgery: A contemporary review of methods to reduce laparoscopic and robotic lens fogging and other sources of optical loss. J. Endourol. 2017, 31, 327–333. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Furdui, G.; Fleming, N.W.; Lee, S.J.; Goldman, C.D.; Singh, A.; Wolfe, B.M. Effect of heated and humidified carbon dioxide gas on core temperature and postoperative pain: A randomized trial. Surg. Endosc. 2002, 16, 1050–1054. [Google Scholar] [CrossRef]
- Farley, D.R.; Greenlee, S.M.; Larson, D.R.; Harrington, J.R. Double-blind, Prospective, Randomized Study of Warmed, Humidified Carbon Dioxide Insufflation vs Standard Carbon Dioxide for Patients Undergoing Laparoscopic Cholecystectomy. Arch. Surg. 2004, 139, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, C.H.; Armache, A.K.; El-Asmar, J.M.; El-Achkar, A.; Abdulfattah, S.; Bidikian, S.; Chawareb, E.A.; Hoyek, E.; El-Hajj, A. The impact of AirSeal® on complications and pain management during robotic-assisted radical prostatectomy: A single-tertiary center study. World J. Urol. 2023, 41, 2685–2692. [Google Scholar] [CrossRef] [PubMed]
- Saway, J.P.; McCaul, M.; Mulekar, M.S.; McMahon, D.P.; Richards, W.O. Review of outcomes of low verses standard pressure pneumoperitoneum in laparoscopic surgery. Am. Surg. 2022, 88, 1832–1837. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, N.; Sistla, S.C.; Kundra, P.; Ananthanarayan, P.H.; Karthikeyan, V.S.; Ali, S.M.; Sasi, S.P.; Vikram, K. Comparison of Standard-pressure and Low-pressure Pneumoperitoneum in Laparoscopic Cholecystectomy: A Double Blinded Randomized Controlled Study. Surg. Laparosc. Endosc. Percutaneous Tech. 2014, 24, 127–133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzinari, G.; Rovira, L.; Albers-Warlé, K.I.; Warlé, M.C.; Argente-Navarro, P.; Flor, B.; Diaz-Cambronero, O. Underneath Images and Robots, Looking Deeper into the Pneumoperitoneum: A Narrative Review. J. Clin. Med. 2024, 13, 1080. https://doi.org/10.3390/jcm13041080
Mazzinari G, Rovira L, Albers-Warlé KI, Warlé MC, Argente-Navarro P, Flor B, Diaz-Cambronero O. Underneath Images and Robots, Looking Deeper into the Pneumoperitoneum: A Narrative Review. Journal of Clinical Medicine. 2024; 13(4):1080. https://doi.org/10.3390/jcm13041080
Chicago/Turabian StyleMazzinari, Guido, Lucas Rovira, Kim I. Albers-Warlé, Michiel C. Warlé, Pilar Argente-Navarro, Blas Flor, and Oscar Diaz-Cambronero. 2024. "Underneath Images and Robots, Looking Deeper into the Pneumoperitoneum: A Narrative Review" Journal of Clinical Medicine 13, no. 4: 1080. https://doi.org/10.3390/jcm13041080
APA StyleMazzinari, G., Rovira, L., Albers-Warlé, K. I., Warlé, M. C., Argente-Navarro, P., Flor, B., & Diaz-Cambronero, O. (2024). Underneath Images and Robots, Looking Deeper into the Pneumoperitoneum: A Narrative Review. Journal of Clinical Medicine, 13(4), 1080. https://doi.org/10.3390/jcm13041080