Concentrations of Cobalt, Chromium and Titanium and Immunological Changes after Primary Total Knee Arthroplasty—A Cohort Study with an 18-Year Follow-Up
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design and Participants
2.2. Metal Ion Analysis
2.3. Immunological Analysis
2.4. Clinical and Radiographic Assessment
2.5. Ethics
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Metal Ion Concentrations
3.3. Immunological Analyses
3.4. Clinical and Radiographic Findings
4. Discussion
4.1. Principal Findings
4.2. Agreement and Disagreement with Other Studies
4.3. Strengths and Weaknesses of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scientific Committee on Emerging and Newly Identified Health Risks (CENIHR). The Safety of Metal-on-Metal Joint Replacements with a Particular Focus on Hip Implants; European Commission: Luxembourg, 2014.
- Knäföreningen, S.H.-O. Uppföljning Av Metall-Mot-Metall-Proteser I Sverige. 2023. Available online: https://slf.se/sof/app/uploads/2020/11/shkf-ytis-riktlinjer-120516001.pdf (accessed on 10 June 2023).
- European Union. Medical Device Regulation. In Europeiska Unionens Officiella Tidning; European Union: Brussel, Belgium, 2017. [Google Scholar]
- Reiner, T.; Sorbi, R.; Müller, M.; Nees, T.; Kretzer, J.P.; Rickert, M.; Moradi, B. Blood Metal Ion Release after Primary Total Knee Arthroplasty: A Prospective Study. Orthop. Surg. 2020, 12, 396–403. [Google Scholar] [CrossRef]
- Postler, A.; Beyer, F.; Lutzner, C.; Tille, E.; Lutzner, J. Similar outcome during short-term follow-up after coated and uncoated total knee arthroplasty: A randomized controlled study. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3459–3467. [Google Scholar] [CrossRef]
- Insall, J.N.; Dorr, L.D.; Scott, R.D.; Scott, W.N. Rationale of the Knee Society clinical rating system. Clin. Orthop. Relat. Res. 1989, 248, 13–14. [Google Scholar] [CrossRef]
- Dahlstrand, H.; Stark, A.; Anissian, L.; Hailer, N.P. Elevated Serum Concentrations of Cobalt, Chromium, Nickel, and Manganese After Metal-On-Metal Alloarthroplasty of the Hip: A Prospective Randomized Study. J. Arthroplast. 2009, 24, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Pietilainen, S.; Smedberg, E.; Laaksonen, I.; Venalainen, M.S.; Lankinen, P.; Makela, K.T. Repeated metal ion measurements and long-term outcome of Durom/MMC total hip arthroplasty. Acta Orthop. 2022, 93, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Pietilainen, S.; Linnovaara, A.; Venalainen, M.S.; Mäntymäki, H.; Laaksonen, I.; Lankinen, P.; Mäkelä, K.T. Median 10-year whole blood metal ion levels and clinical outcome of ReCap-M2a-Magnum metal-on-metal total hip arthroplasty. Acta Orthop. 2022, 93, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Arnholt, C.M.; MacDonald, D.W.; Malkani, A.L.; Klein, G.R.; Rimnac, C.M.; Kurtz, S.M.; Kocagoz, S.B.; Gilbert, J.L. Corrosion Damage and Wear Mechanisms in Long-Term Retrieved CoCr Femoral Components for Total Knee Arthroplasty. J. Arthroplast. 2016, 31, 2900–2906. [Google Scholar] [CrossRef] [PubMed]
- Gramlich, Y.; Hofmann, L.; Kress, S.; Ruckes, C.; Kemmerer, M.; Klug, A.; Hoffmann, R.; Kremer, M. Critically high metal ion levels found in metal-on-metal modular hinged knee arthroplasty: A comparison of two different systems. Bone Jt. J. 2022, 104, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, M.; Nieminen, J.; Reito, A.; Pakarinen, T.-K.; Suomalainen, P.; Pamilo, K.; Parkkinen, J.; Lont, T.; Eskelinen, A. High blood metal ion levels in 19 of 22 patients with metal-on-metal hinge knee replacements. Acta Orthop. 2017, 88, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Swiatkowska, I.; Martin, N.G.; Henckel, J.; Apthorp, H.; Hamshere, J.; Hart, A.J. Blood and plasma titanium levels associated with well-functioning hip implants. J. Trace Elem. Med. Biol. 2019, 57, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.R.; Hsu, A.R.; Skipor, A.K.; Hallab, N.J.; Paprosky, W.G.; Galante, J.O.; Jacobs, J.J. Ten-year outcome of serum metal ion levels after primary total hip arthroplasty: A concise follow-up of a previous report. J. Bone Jt. Surg. Am. 2013, 95, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Balcaen, L.; Bolea-Fernandez, E.; Resano, M.; Vanhaecke, F. Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS. Anal. Chim. Acta 2014, 809, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.J.; Silverton, C.; Hallab, N.J.; Skipor, A.K.; Patterson, L.; Black, J.; Galante, J.O. Metal release and excretion from cementless titanium alloy total knee replacements. Clin. Orthop. Relat. Res. 1999, 358, 173–180. [Google Scholar] [CrossRef]
- Xia, Z.; Ricciardi, B.F.; Liu, Z.; von Ruhland, C.; Ward, M.; Lord, A.; Hughes, L.; Goldring, S.R.; Purdue, E.; Murray, D.; et al. Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty. Nanomedicine 2017, 13, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Gudnason, A.; Hailer, N.P.; Annette, W.; Sundberg, M.; Robertsson, O. All-Polyethylene Versus Metal-Backed Tibial Components—An Analysis of 27,733 Cruciate-Retaining Total Knee Replacements from the Swedish Knee Arthroplasty Register. J. Bone Jt. Surg. Am. 2014, 96, 994–999. [Google Scholar] [CrossRef]
- Hailer, N.P.; Blaheta, R.A.; Dahlstrand, H.; Stark, A. Elevation of circulating HLA DR+ CD8+ T-cells and correlation with chromium and cobalt concentrations 6 years after metal-on-metal hip arthroplasty. Acta Orthop. 2011, 82, 6–12. [Google Scholar] [CrossRef]
- Hallab, N.J.; Caicedo, M.; McAllister, K.; Skipor, A.; Amstutz, H.; Jacobs, J.J. Asymptomatic prospective and retrospective cohorts with metal-on-metal hip arthroplasty indicate acquired lymphocyte reactivity varies with metal ion levels on a group basis. J. Orthop. Res. 2013, 31, 173–182. [Google Scholar] [CrossRef]
- Christiner, T.; Pabbruwe, M.B.; Kop, A.M.; Parry, J.; Clark, G.; Collopy, D. Taper Corrosion and Adverse Local Tissue Reactions in Patients with a Modular Knee Prosthesis. JBJS Open Access 2018, 3, e0019. [Google Scholar] [CrossRef]
- Kurmis, A.P.; Herman, A.; McIntyre, A.R.; Masri, B.A.; Garbuz, D.S. Pseudotumors and High-Grade Aseptic Lymphocyte-Dominated Vasculitis-Associated Lesions Around Total Knee Replacements Identified at Aseptic Revision Surgery: Findings of a Large-Scale Histologic Review. J. Arthroplast. 2019, 34, 2434–2438. [Google Scholar] [CrossRef]
- Hailer, N.P.; Garland, A.; Gordon, M.; Kärrholm, J.; Sköldenberg, O.; Eriksson, N.; Garmo, H.; Holmberg, L. No generally increased risk of cancer after total hip arthroplasty performed due to osteoarthritis. Int. J. Cancer 2020, 147, 76–83. [Google Scholar] [CrossRef]
- Hailer, Y.D.; Karrholm, J.; Eriksson, N.; Holmberg, L.; Hailer, N.P. Similar risk of cancer in patients younger than 55 years with or without a total hip arthroplasty (THA): A population- based cohort study on 18,771 exposed to THA and 87,683 controls. Acta Orthop. 2022, 93, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Deere, K.; Matharu, G.S.; Ben-Shlomo, Y.; Wilkinson, J.M.; Blom, A.W.; Sayers, A.; Whitehouse, M.R. The risk of all-cause mortality, heart outcomes, cancer, and neurodegenerative disorders with cobalt-chrome-containing total hip arthroplasty implants: An analysis of the National Joint Registry. Bone Jt. J. 2022, 104, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Holy, C.E.; Zhang, S.; Perkins, L.E.; Hasgall, P.; Katz, L.B.; Brown, J.R.; Orlandini, L.; Fessel, G.; Nasseri-Aghbosh, B.; Eichenbaum, G.; et al. Site-specific cancer risk following cobalt exposure via orthopedic implants or in occupational settings: A systematic review and meta-analysis. Regul. Toxicol. Pharmacol. 2021, 129, 105096. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Dahlstrand, H.; Stark, A.; Wick, M.C.; Anissian, L.; Hailer, N.P.; Weiss, R.J. Comparison of metal ion concentrations and implant survival after total hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations. Acta Orthop. 2017, 88, 490–495. [Google Scholar] [CrossRef]
- Yao, J.J.; Lewallen, E.A.; Thaler, R.; Dudakovic, A.; Wermers, M.; Day, P.; Eckdahl, S.; Jannetto, P.; Bornhorst, J.A.; Larson, A.N.; et al. Challenges in the Measurement and Interpretation of Serum Titanium Concentrations. Biol. Trace Elem. Res. 2020, 196, 20–26. [Google Scholar] [CrossRef]
All-Poly (N = 10) | Metal-Backed (N = 16) | Overall (N = 26) | |
---|---|---|---|
Sex | |||
Male | 1 (10.0%) | 6 (37.5%) | 7 (26.9%) |
Female | 9 (90.0%) | 10 (62.5%) | 19 (73.1%) |
Side | |||
Right | 5 (50.0%) | 12 (75.0%) | 17 (65.4%) |
Left | 5 (50.0%) | 4 (25.0%) | 9 (34.6%) |
Age at Surgery | |||
Mean (range) | 64 (53–73) | 66 (57–75) | 65 (53–75) |
Follow up [years] | |||
Mean (range) | 18 (17–19) | 18 (17–21) | 18 (17–21) |
All-Poly (N = 10) | Metal-Backed (N = 16) | Overall (N = 26) | |
---|---|---|---|
Cobalt | |||
Median (IQR *; range) | 0.56 (0.35; 0.13–3.2) | 0.89 (1.1; 0.14–13) | 0.71 (0.89; 0.13–13) |
Chrome | |||
Median (IQR; range) | 0.62 (0.51; 0.37–1.9) | 1.0 (1.0; 0.37–5.0) | 0.91 (0.85; 0.37–5.0) |
Titanium | |||
Median (IQR; range) | 0.42 (0.61; 0.16–13) | 1.0 (0.38; 0.22–1.7) | 1.0 (0.63; 0.16–13) |
Singular TKA * (N = 8) | Multiple Arthroplasties (N = 18) | Overall (N = 26) | |
---|---|---|---|
Cobalt | |||
Median (IQR **; range) | 1.1 (0.49; 0.53–2.7) | 0.59 (0.50; 0.13–13) | 0.71 (0.89; 0.13–13) |
Chrome | |||
Median (IQR; range) | 1.3 (0.60; 0.44–5.0) | 0.62 (0.53; 0.37–3.9) | 0.91 (0.85; 0.37–5.0) |
Titanium | |||
Median (IQR; range) | 0.46 (0.72; 0.22–1.2) | 1.0 (0.54; 0.16–13) | 1.0 (0.63; 0.16–13) |
Correlations | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cobalt | Chrome | Titanium | |||||||
Median | Min. | Max. | Rho | p | Rho | p | Rho | p | |
Leukocyte count | 7.65 | 4.8 | 13 | −0.18 | 0.37 | −0.26 | 0.2 | −0.32 | 0.11 |
CD3 (%) | 72.65 | 41 | 83 | −0.04 | 0.85 | −0.05 | 0.8 | −0.12 | 0.56 |
CD3 | 1099.5 | 390 | 1906 | −0.36 | 0.07 | −0.23 | 0.25 | −0.3 | 0.14 |
CD3CD8 (%) | 18.75 | 5.1 | 38.1 | 0.15 | 0.47 | 0.08 | 0.7 | −0.08 | 0.68 |
CD3CD8 | 341.5 | 47.3 | 716 | −0.07 | 0.73 | −0.07 | 0.73 | −0.07 | 0.73 |
CD3CD4 (%) | 51.55 | 25.9 | 67.3 | −0.31 | 0.12 | −0.26 | 0.2 | −0.09 | 0.66 |
CD3CD4 | 782.5 | 246 | 1446 | −0.47 | 0.02 | −0.32 | 0.11 | −0.29 | 0.15 |
CD3CD4CD8 (%) | 1.015 | 0.18 | 4.6 | −0.5 | 0.01 | −0.59 | 0.002 | −0.15 | 0.48 |
CD3CD4CD8 | 15.55 | 1.7 | 103 | −0.55 | 0.003 | −0.59 | 0.001 | −0.16 | 0.44 |
CD16CD56 (%) | 16.85 | 7.3 | 42.3 | 0.14 | 0.49 | 0.14 | 0.49 | −0.08 | 0.68 |
CD16CD56 | 272.5 | 112 | 609 | −0.05 | 0.82 | 0.07 | 0.72 | −0.14 | 0.49 |
CD19 (%) | 9.1 | 2.2 | 23 | −0.08 | 0.68 | −0.12 | 0.56 | 0.24 | 0.24 |
CD19 | 165.5 | 28 | 305 | −0.33 | 0.1 | −0.28 | 0.17 | 0.06 | 0.77 |
CD45 | 1496 | 937 | 2716 | −0.39 | 0.05 | −0.25 | 0.23 | −0.28 | 0.17 |
Ratio CD4/CD8 | 2.77 | 0.95 | 11.13 | −0.24 | 0.23 | −0.17 | 0.41 | −0.04 | 0.84 |
DR/CD4 (%) | 3.8 | 1.7 | 24 | 0.45 | 0.03 | 0.37 | 0.07 | 0.37 | 0.07 |
DR/CD8 (%) | 1.4 | 0.1 | 14 | 0.21 | 0.32 | 0.14 | 0.5 | 0.31 | 0.14 |
Variable | Mann–Whitney U Statistic | p |
---|---|---|
Leukocyte count | 122 | 0.03 |
CD3 (%) | 106 | 0.18 |
CD3 | 126 | 0.01 |
CD3CD8 (%) | 99.5 | 0.3 |
CD3CD8 | 111 | 0.1 |
CD3CD4 (%) | 98.5 | 0.34 |
CD3CD4 | 121 | 0.03 |
CD3CD4CD8 (%) | 114 | 0.07 |
CD3CD4CD8 | 124 | 0.02 |
CD16CD56 (%) | 73 | 0.73 |
CD16CD56 | 102 | 0.26 |
CD19 (%) | 54 | 0.18 |
CD19 | 78 | 0.94 |
CD45 | 124 | 0.02 |
Ratio CD4/CD8 | 71 | 0.66 |
DR/CD4 (%) | 19 | 0.002 |
DR/CD8 (%) | 52 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brüggemann, A.; Hailer, N.P. Concentrations of Cobalt, Chromium and Titanium and Immunological Changes after Primary Total Knee Arthroplasty—A Cohort Study with an 18-Year Follow-Up. J. Clin. Med. 2024, 13, 951. https://doi.org/10.3390/jcm13040951
Brüggemann A, Hailer NP. Concentrations of Cobalt, Chromium and Titanium and Immunological Changes after Primary Total Knee Arthroplasty—A Cohort Study with an 18-Year Follow-Up. Journal of Clinical Medicine. 2024; 13(4):951. https://doi.org/10.3390/jcm13040951
Chicago/Turabian StyleBrüggemann, Anders, and Nils P. Hailer. 2024. "Concentrations of Cobalt, Chromium and Titanium and Immunological Changes after Primary Total Knee Arthroplasty—A Cohort Study with an 18-Year Follow-Up" Journal of Clinical Medicine 13, no. 4: 951. https://doi.org/10.3390/jcm13040951
APA StyleBrüggemann, A., & Hailer, N. P. (2024). Concentrations of Cobalt, Chromium and Titanium and Immunological Changes after Primary Total Knee Arthroplasty—A Cohort Study with an 18-Year Follow-Up. Journal of Clinical Medicine, 13(4), 951. https://doi.org/10.3390/jcm13040951