Deterioration of Kidney Function Is Affected by Central Arterial Stiffness in Late Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Hemodynamics and Kidney Function
2.3. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Hemodynamic Parameters and Change in eGFR
3.3. Hemodynamic Parameters and Change in UACR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Mallappallil, M.; Friedman, E.A.; Delano, B.G.; McFarlane, S.I.; Salifu, M.O. Chronic kidney disease in the elderly: Evaluation and management. Clin. Pract. 2014, 11, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Jin, C.; Li, S.; Zheng, X.; Zhang, X.; Cui, L.; Gao, X. Aging, Arterial Stiffness, and Blood Pressure Association in Chinese Adults. Hypertension 2019, 73, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F. Arterial Stiffness in Aging: Does It Have a Place in Clinical Practice? Recent Advances in Hypertension. Hypertension 2021, 77, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Boutouyrie, P.; Cunha, P.G.; Lacolley, P.; Nilsson, P.M. Concept of Extremes in Vascular Aging. Hypertension 2019, 74, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F. Effects of central arterial aging on the structure and function of the peripheral vasculature: Implications for end-organ damage. J. Appl. Physiol. 1985 2008, 105, 1652–1660. [Google Scholar] [CrossRef]
- Sedaghat, S.; Mattace-Raso, F.U.; Hoorn, E.J.; Uitterlinden, A.G.; Hofman, A.; Ikram, M.A.; Franco, O.H.; Dehghan, A. Arterial Stiffness and Decline in Kidney Function. Clin. J. Am. Soc. Nephrol. 2015, 10, 2190–2197. [Google Scholar] [CrossRef]
- Lioufas, N.; Hawley, C.M.; Cameron, J.D.; Toussaint, N.D. Chronic Kidney Disease and Pulse Wave Velocity: A Narrative Review. Int. J. Hypertens. 2019, 2019, 9189362. [Google Scholar] [CrossRef]
- Hanberg, J.S.; Sury, K.; Wilson, F.P.; Brisco, M.A.; Ahmad, T.; Ter Maaten, J.M.; Broughton, J.S.; Assefa, M.; Tang, W.H.W.; Parikh, C.R.; et al. Reduced Cardiac Index Is Not the Dominant Driver of Renal Dysfunction in Heart Failure. J. Am. Coll. Cardiol. 2016, 67, 2199–2208. [Google Scholar] [CrossRef]
- Huang, N.; Foster, M.C.; Mitchell, G.F.; Andresdottir, M.B.; Eiriksdottir, G.; Gudmundsdottir, H.; Harris, T.B.; Launer, L.J.; Palsson, R.; Gudnason, V.; et al. Aortic stiffness and change in glomerular filtration rate and albuminuria in older people. Nephrol. Dial. Transplant. 2017, 32, 677–684. [Google Scholar] [CrossRef]
- Madero, M.; Peralta, C.; Katz, R.; Canada, R.; Fried, L.; Najjar, S.; Shlipak, M.; Simonsick, E.; Lakatta, E.; Patel, K.; et al. Association of arterial rigidity with incident kidney disease and kidney function decline: The Health ABC study. Clin. J. Am. Soc. Nephrol. 2013, 8, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Michener, K.H.; Mitchell, G.F.; Noubary, F.; Huang, N.; Harris, T.; Andresdottir, M.B.; Palsson, R.; Gudnason, V.; Levey, A.S. Aortic stiffness and kidney disease in an elderly population. Am. J. Nephrol. 2015, 41, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Temmar, M.; Liabeuf, S.; Renard, C.; Czernichow, S.; Esper, N.E.; Shahapuni, I.; Presne, C.; Makdassi, R.; Andrejak, M.; Tribouilloy, C.; et al. Pulse wave velocity and vascular calcification at different stages of chronic kidney disease. J. Hypertens. 2010, 28, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Corsonello, A.; Tap, L.; Roller-Wirnsberger, R.; Wirnsberger, G.; Zoccali, C.; Kostka, T.; Guligowska, A.; Mattace-Raso, F.; Gil, P.; Fuentes, L.G.; et al. Design and methodology of the screening for CKD among older patients across Europe (SCOPE) study: A multicenter cohort observational study. BMC Nephrol. 2018, 19, 260. [Google Scholar] [CrossRef]
- Schaeffner, E.S.; Ebert, N.; Delanaye, P.; Frei, U.; Gaedeke, J.; Jakob, O.; Kuhlmann, M.K.; Schuchardt, M.; Tölle, M.; Ziebig, R.; et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann. Intern. Med. 2012, 157, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Milan, A.; Zocaro, G.; Leone, D.; Tosello, F.; Buraioli, I.; Schiavone, D.; Veglio, F. Current assessment of pulse wave velocity: Comprehensive review of validation studies. J. Hypertens. 2019, 37, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Wassertheurer, S.; Hametner, B.; Parragh, S.; Eber, B. Noninvasive methods to assess pulse wave velocity: Comparison with the invasive gold standard and relationship with organ damage. J. Hypertens. 2015, 33, 1023–1031. [Google Scholar] [CrossRef]
- Weber, T.; Wassertheurer, S.; Rammer, M.; Maurer, E.; Hametner, B.; Mayer, C.C.; Kropf, J.; Eber, B. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension 2011, 58, 825–832. [Google Scholar] [CrossRef]
- Thomas, W.; Siegfried, W.; Jessica, M.; Carmel Mary, M.; Bernhard, H.; Christopher Clemens, M.; Ronald Karl, B.; Hans-Josef, F.; Gert, K.; Bernhard, M. Validation of a Method to Estimate Stroke Volume from Brachial-cuff Derived Pressure Waveforms. Artery Res. 2020, 26, 42–47. [Google Scholar] [CrossRef]
- Toyama, T.; Kitagawa, K.; Oshima, M.; Kitajima, S.; Hara, A.; Iwata, Y.; Sakai, N.; Shimizu, M.; Hashiba, A.; Furuichi, K.; et al. Age differences in the relationships between risk factors and loss of kidney function: A general population cohort study. BMC Nephrol. 2020, 21, 477. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z. Aging, arterial stiffness, and hypertension. Hypertension 2015, 65, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lacolley, P.; Protogerou, A.D.; Safar, M.E. Arterial stiffness in hypertension and function of large arteries. Am. J. Hypertens. 2020, 33, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Woodard, T.; Sigurdsson, S.; Gotal, J.D.; Torjesen, A.A.; Inker, L.A.; Aspelund, T.; Eiriksdottir, G.; Gudnason, V.; Harris, T.B.; Launer, L.J.; et al. Mediation analysis of aortic stiffness and renal microvascular function. J. Am. Soc. Nephrol. 2015, 26, 1181–1187. [Google Scholar] [CrossRef]
- Fan, F.; Qi, L.; Jia, J.; Xu, X.; Liu, Y.; Yang, Y.; Qin, X.; Li, J.; Li, H.; Zhang, Y.; et al. Noninvasive Central Systolic Blood Pressure Is More Strongly Related to Kidney Function Decline Than Peripheral Systolic Blood Pressure in a Chinese Community-Based Population. Hypertension 2016, 67, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Spina, R.J.; Martin, W.H., 3rd; Kohrt, W.M.; Schechtman, K.B.; Holloszy, J.O.; Ehsani, A.A. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation 1992, 86, 494–503. [Google Scholar] [CrossRef]
- Houghton, D.; Jones, T.W.; Cassidy, S.; Siervo, M.; MacGowan, G.A.; Trenell, M.I.; Jakovljevic, D.G. The effect of age on the relationship between cardiac and vascular function. Mech. Ageing Dev. 2016, 153, 1–6. [Google Scholar] [CrossRef]
- Mullens, W.; Nijst, P. Cardiac Output and Renal Dysfunction: Definitely More Than Impaired Flow. J. Am. Coll. Cardiol. 2016, 67, 2209–2212. [Google Scholar] [CrossRef]
- Vaes, B.; Beke, E.; Truyers, C.; Elli, S.; Buntinx, F.; Verbakel, J.Y.; Goderis, G.; Van Pottelbergh, G. The correlation between blood pressure and kidney function decline in older people: A registry-based cohort study. BMJ Open 2015, 5, e007571. [Google Scholar] [CrossRef]
- van Bemmel, T.; Woittiez, K.; Blauw, G.J.; van der Sman-de Beer, F.; Dekker, F.W.; Westendorp, R.G.; Gussekloo, J. Prospective study of the effect of blood pressure on renal function in old age: The Leiden 85-Plus Study. J. Am. Soc. Nephrol. 2006, 17, 2561–2566. [Google Scholar] [CrossRef]
- Avolio, A.P.; Kuznetsova, T.; Heyndrickx, G.R.; Kerkhof, P.L.M.; Li, J.K. Arterial Flow, Pulse Pressure and Pulse Wave Velocity in Men and Women at Various Ages. Adv. Exp. Med. Biol. 2018, 1065, 153–168. [Google Scholar]
- Benetos, A.; Petrovic, M.; Strandberg, T. Hypertension Management in Older and Frail Older Patients. Circ. Res. 2019, 124, 1045–1060. [Google Scholar] [CrossRef]
- Upadhyay, A.; Hwang, S.J.; Mitchell, G.F.; Vasan, R.S.; Vita, J.A.; Stantchev, P.I.; Meigs, J.B.; Larson, M.G.; Levy, D.; Benjamin, E.J.; et al. Arterial stiffness in mild-to-moderate CKD. J. Am. Soc. Nephrol. 2009, 20, 2044–2053. [Google Scholar] [CrossRef]
- The Kidney Disease: Improving Global Outcomes (KDIGO) 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease (CKD). Available online: https://kdigo.org/wp-content/uploads/2017/02/KDIGO_2012_CKD_GL.pdf (accessed on 19 September 2023).
- Schwartz, J.E.; Feig, P.U.; Izzo, J.L. Pulse Wave Velocities Derived From Cuff Ambulatory Pulse Wave Analysis. Hypertension 2019, 74, 111–116. [Google Scholar] [CrossRef]
All Participants (n = 252) | aPWV ≤ 12.2 m/s (n = 131) | aPWV > 12.2 m/s (n = 121) | p Value | |
---|---|---|---|---|
Age, years | 79.1 [76.6–83.0] | 76.9 [75.5–78.4] | 83.0 [79.6–85.9] | p < 0.001 |
Women, % | 41.3 | 42.7 | 39.7 | p = ns |
BMI, kg/m2 | 26.2 (3.9) | 26.4 (3.9) | 26.1 (3.9) | p = ns |
MMSE, score | 29 [27–30] | 29 [28–30] | 28 [28–30] | p = ns |
ADL independent, % | 83.3 | 86.3 | 80.2 | p = ns |
iADL independent, % | 47.2 | 58.0 | 35.5 | p = ns |
Alcohol | p = ns | |||
no, (%) | 64.3 | 64.1 | 64.5 | |
1–2 units/day, % | 26.2 | 26.7 | 25.6 | |
>2 units/day, % | 9.5 | 9.2 | 9.9 | |
Smoking | p = ns | |||
No, % | 29.8 | 32.1 | 27.3 | |
Former, % | 65.1 | 62.6 | 67.8 | |
Current, % | 9.5 | 5.3 | 5.0 | |
Medication | ||||
Antihypertensives, % | 71.8 | 74.0 | 69.4 | p = ns |
ACE inhibitor, % | 19.8 | 17.6 | 22.3 | p = ns |
Beta blocker, % | 41.7 | 50.4 | 32.2 | p = 0.004 |
CA channel blocker, % | 23.0 | 22.1 | 24.0 | p = ns |
Diuretics, % | 19.8 | 21.4 | 18.2 | p = ns |
Statins, % | 46.4 | 57.3 | 34.7 | p < 0.001 |
Comorbidities | ||||
Hypertension, % | 69.8 | 64.1 | 76.0 | p = 0.040 |
CVA, % | 7.9 | 6.1 | 9.9 | p = ns |
TIA, % | 14.7 | 13.0 | 16.5 | p = ns |
HF, % | 12.7 | 13.0 | 12.4 | p = ns |
MI, % | 17.9 | 18.3 | 17.4 | p = ns |
AF, % | 17.1 | 17.6 | 16.5 | p = ns |
DM, % | 25.8 | 29.8 | 21.5 | p = ns |
CIRS, severity index | 1.8 (0.3) | 1.8 (0.3) | 1.8 (0.3) | p = ns |
CIRS, total | 12.7 (4.9) | 12.8 (4.9) | 12.5 (5.0) | p = ns |
All Participants (n = 252) | aPWV ≤ 12.2 m/s (n = 131) | aPWV > 12.2 m/s (n =121) | p Value | |
---|---|---|---|---|
Hemodynamics | ||||
SBP, mmHg | 147.0 [135.0–160.0] | 141.0 [129.0–151.0] | 158.0 [144.0–171.0] | p < 0.001 |
DBP, mmHg | 86.2 (11.2) | 83.3 (10.1) | 89.4 (11.5) | p < 0.001 |
cSBP, mmHg | 130.9 (17.5) | 123.2 (12.9) | 139.3 (18.0) | p < 0.001 |
cDBP, mmHg | 86.8 (11.4) | 84.0 (10.1) | 89.9 (11.9) | p < 0.001 |
MAP, mmHg | 113.3 (14.1) | 107.6 (11.3) | 119.4 (14.3) | p < 0.001 |
HR, beats/min | 69.8 (12.1) | 67.9 (11.3) | 71.8 (12.7) | p = 0.014 |
Stroke volume, mL | 75.3 (13.2) | 76.5 (14.3) | 74.0 (11.9) | p = ns |
CO, L/min | 5.2 (1.0) | 5.1 (0.9) | 5.3 (1.1) | p = ns |
CI, L/min/m2 | 2.8 [2.3–3.2] | 2.7 [2.3–3.2] | 2.8 [2.4–3.3] | p = ns |
TPR, s·mmHg/mL | 1.3 [1.1–1.6] | 1.3 [1.1–1.5] | 1.5 [1.2–1.7] | P = 0.008 |
cPP, mmHg | 44.0 (12.8) | 39.1 (9.3) | 49.4 (13.9) | p < 0.001 |
aPWV, m/s | 12.4 (1.2) | 11.6 (0.5) | 13.4 (0.9) | p < 0.001 |
Kidney function | ||||
eGFR, mL/min | 47.6 (13.7) | 49.0 (13.6) | 46.2 (13.7) | p = ns |
UACR, g/mol 1 | 2.7 [0.9–10.7] | 1.9 [0.6–7.5] | 3.4 [1.2–12.3] | p = 0.008 |
Parameter (Median) | Low Group % Change in eGFR (95%CI) | High Group % Change in eGFR (95%CI) | Difference between Groups (95%CI) |
---|---|---|---|
SBP (147) | −3.6 (−5.6,−1.6) | −5.6 (−7.1, −3.9) | 2.0 (−0.6, 4.5) |
DBP (85) | −4.2 (−6.0, −2.4) | −5.0 (−6.8, −3.1) | 0.8 (−1.8, 3.4) |
cSBP (129) | −3.2 (−5.0, −1.4) | −5.9 (−7.7, −4.1) | 2.7 (0.1, 5.2) |
cDBP (85) | −4.5 (−6.3, −2.7) | −4.6 (−6.4, −2.8) | 0.1 (−2.5, 2.7) |
Stroke volume (74.6) | −4.0 (−5.8, −2.2) | −5.1 (−6.9, −3.3) | 1.1 (−1.5, 3.7) |
CO (5.1) | −3.8 (−5.6, −2.0) | −5.3 (−7.1, −3.5) | 1.5 (−1.1, 4.1) |
CI (2.8) | −4.1 (−6.0, −2.3) | −5.0 (−6.8, −3.2) | 0.8 (−1.7, 3.4) |
TVR (1.3) | −4.7 (−6.6, −2.7) | −4.5 (−6.2, −2.7) | −0.2 (−2.8, 2.4) |
cPP (42) | −3.9 (−5.7, −2.1) | −5.3 (−7.1, −3.4) | 1.4 (−1.2, 4.0) |
aPWV (12.2) | −2.8 (−4.6, −1.0) | −6.5 (−8.3, −4.6) | 3.7 (1.1, 6.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tap, L.; Borsboom, K.; Corsonello, A.; Lattanzio, F.; Mattace-Raso, F. Deterioration of Kidney Function Is Affected by Central Arterial Stiffness in Late Life. J. Clin. Med. 2024, 13, 1334. https://doi.org/10.3390/jcm13051334
Tap L, Borsboom K, Corsonello A, Lattanzio F, Mattace-Raso F. Deterioration of Kidney Function Is Affected by Central Arterial Stiffness in Late Life. Journal of Clinical Medicine. 2024; 13(5):1334. https://doi.org/10.3390/jcm13051334
Chicago/Turabian StyleTap, Lisanne, Kim Borsboom, Andrea Corsonello, Fabrizia Lattanzio, and Francesco Mattace-Raso. 2024. "Deterioration of Kidney Function Is Affected by Central Arterial Stiffness in Late Life" Journal of Clinical Medicine 13, no. 5: 1334. https://doi.org/10.3390/jcm13051334
APA StyleTap, L., Borsboom, K., Corsonello, A., Lattanzio, F., & Mattace-Raso, F. (2024). Deterioration of Kidney Function Is Affected by Central Arterial Stiffness in Late Life. Journal of Clinical Medicine, 13(5), 1334. https://doi.org/10.3390/jcm13051334