Comparison of En Masse Repair versus Separate Double-Layer Repair for Delaminated Rotator Cuff Tears: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
- Participants: The study included patients who underwent primary arthroscopic RCR specifically for delaminated full-thickness rotator cuff tears.
- Interventions: In the intervention group (SDLR group), the patients received arthroscopic RCR for the delaminated cuff tendon using the SDLR technique.
- Comparisons: The control group (EMR group) underwent arthroscopic RCR for the delaminated rotator cuff tendon using the EMR technique.
- Outcomes: The study assessed various outcomes, including rotator cuff retear rates (evaluated through magnetic resonance imaging or sonography) and functional outcomes measured by the Constant score, American Shoulder and Elbow Surgeons (ASES) score, University of California at Los Angeles (UCLA) score, Simple Shoulder Test (SST) score, visual analog scale (VAS), and postoperative range of motion (ROM).
- Follow-up: The included studies required a minimum clinical follow-up of 24 months.
- Study design: The study considered both randomized controlled trials (RCTs) and non-randomized case-control studies as eligible for inclusion.
2.2. Search Strategy
2.3. Data Collection and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Meta-Analysis Results
3.4.1. Retear
3.4.2. Functional Outcomes
3.4.3. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamamoto, A.; Takagishi, K.; Osawa, T.; Yanagawa, T.; Nakajima, D.; Shitara, H.; Kobayashi, T. Prevalence and risk factors of a rotator cuff tear in the general population. J. Shoulder Elb. Surg. 2010, 19, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Gazielly, D.F.; Gleyze, P.; Montagnon, C. Functional and anatomical results after rotator cuff repair. Clin. Orthop. Relat. Res. 1994, 304, 43–53. [Google Scholar] [CrossRef]
- Liu, S.H.; Baker, C.L. Arthroscopically assisted rotator cuff repair: Correlation of functional results with integrity of the cuff. Arthroscopy 1994, 10, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Codman, E.A. The Shoulder; Krieger Publishing: Malabar, FL, USA, 1934. [Google Scholar]
- Reilly, P.; Amis, A.A.; Wallace, A.L.; Emery, R.J.H. Mechanical factors in the initiation and propagation of tears of the rotator cuff. Quantification of strains of the supraspinatus tendon in vitro. J. Bone Joint Surg. Br. 2003, 85, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Shin, J.H.; Seok, C.W.; Lee, C.H.; Kim, S.H. Is posterior delamination in arthroscopic rotator cuff repair hidden to the posterior viewing portal? Arthroscopy 2013, 29, 1740–1747. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, S.H. Delaminated rotator cuff tear: Concurrent concept and treatment. Clin. Shoulder Elb. 2019, 22, 159–170. [Google Scholar] [CrossRef]
- Boileau, P.; Andreani, O.; Schramm, M.; Baba, M.; Barret, H.; Chelli, M. The effect of tendon delamination on rotator cuff healing. Am. J. Sports Med. 2019, 47, 1074–1081. [Google Scholar] [CrossRef]
- Sugaya, H.; Maeda, K.; Matsuki, K.; Moriishi, J. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair: A prospective outcome study. J. Bone Joint Surg. Am. 2007, 89, 953–960. [Google Scholar] [CrossRef]
- MacDougal, G.A.; Todhunter, C.R. Delamination tearing of the rotator cuff: Prospective analysis of the influence of delamination tearing on the outcome of arthroscopically assisted mini open rotator cuff repair. J. Shoulder Elb. Surg. 2010, 19, 1063–1069. [Google Scholar] [CrossRef]
- Boileau, P.; Brassart, N.; Watkinson, D.J.; Carles, M.; Hatzidakis, A.M.; Krishnan, S.G. Arthroscopic repair of full-thickness tears of the supraspinatus: Does the tendon really heal? J. Bone Joint Surg. Am. 2005, 87, 1229–1240. [Google Scholar] [CrossRef]
- Flurin, P.-H.; Landreau, P.; Gregory, T.; Boileau, P.; Lafosse, L.; Guillo, S.; Kempf, J.-F.; Toussaint, B.; Courage, O.; Brassart, N.; et al. Cuff integrity after arthroscopic rotator cuff repair: Correlation with clinical results in 576 cases. Arthroscopy 2007, 23, 340–346. [Google Scholar] [CrossRef]
- Mochizuki, T.; Sugaya, H.; Uomizu, M.; Maeda, K.; Matsuki, K.; Sekiya, I.; Muneta, T.; Akita, K. Humeral insertion of the supraspinatus and infraspinatus. New anatomical findings regarding the footprint of the rotator cuff. J. Bone Joint Surg. Am. 2008, 90, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Nimura, A.; Kato, A.; Yamaguchi, K.; Mochizuki, T.; Okawa, A.; Sugaya, H.; Akita, K. The superior capsule of the shoulder joint complements the insertion of the rotator cuff. J. Shoulder Elb. Surg. 2012, 21, 867–872. [Google Scholar] [CrossRef]
- Park, J.Y.; Lhee, S.H.; Oh, K.S.; Moon, S.G.; Hwang, J.T. Clinical and ultrasonographic outcomes of arthroscopic suture bridge repair for massive rotator cuff tear. Arthroscopy 2013, 29, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Jung, K.H.; Kwon, H.M. Comparison of structural integrity and functional outcome between delaminated and nondelaminated rotator cuff tears after en masse arthroscopic repair: A retrospective cohort study with propensity score matching. Am. J. Sports Med. 2019, 47, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Hepp, P.; Engel, T.; Osterhoff, G.; Marquass, B.; Josten, C. Knotless anatomic double-layer double-row rotator cuff repair: A novel technique re-establishing footprint and shape of full-thickness tears. Arch. Orthop. Trauma Surg. 2009, 129, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Opsomer, G.J.; Gupta, A.; Haeni, D.L.; Schubert, T.; Lejeune, E.; Petkin, K.; Maharaj, J.; Lafosse, L. Arthroscopic Double-Layer Lasso Loop Technique to Repair Delaminated Rotator Cuff Tears. Arthroscopy 2018, 34, 2943–2951. [Google Scholar] [CrossRef] [PubMed]
- Pauzenberger, L.; Heuberer, P.R.; Dyrna, F.; Obopilwe, E.; Kriegleder, B.; Anderl, W.; Mazzocca, A.D. Double-layer rotator cuff repair: Anatomic reconstruction of the superior capsule and rotator cuff improves biomechanical properties in repairs of delaminated rotator cuff tears. Am. J. Sports Med. 2018, 46, 3165–3173. [Google Scholar] [CrossRef]
- Kakoi, H.; Izumi, T.; Fujii, Y.; Nagano, S.; Setoguchi, T.; Ishidou, Y.; Komiya, S. Clinical outcomes of arthroscopic rotator cuff repair: A retrospective comparison of double-layer, double-row and suture bridge methods. BMC Musculoskelet. Disord. 2018, 19, 324. [Google Scholar] [CrossRef]
- Nakamizo, H.; Horie, R. Comparison of En Masse Versus Dual-Layer Suture Bridge Procedures for Delaminated Rotator Cuff Tears. Arthroscopy 2018, 34, 3150–3156. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, Y.R.; Lee, H.H.; Chun, Y.M. Surgical Results of Delaminated Rotator Cuff Repair Using Suture-Bridge Technique with All-Layers or Bursal Layer-Only Repair. Am. J. Sports Med. 2016, 44, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Lee, H.J.; Jin, H.K.; Kim, S.E.; Lee, J.W. Conventional En Masse Repair Versus Separate Double-Layer Double-Row Repair for the Treatment of Delaminated Rotator Cuff Tears. Am. J. Sports Med. 2016, 44, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zheng, Z.Y.; Ren, Y.M. Separate double-layer repair versus en masse repair for delaminated rotator cuff tears: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2020, 15, 171. [Google Scholar] [CrossRef]
- Heuberer, P.R.; Pauzenberger, L.; Gruber, M.S.; Kriegleder, B.; Ostermann, R.C.; Laky, B.; Anderl, W. The knotless cinch-bridge technique for delaminated rotator cuff tears leads to a high healing rate and a more favorable short-term clinical outcome than suture-bridge repair. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 3920–3928. [Google Scholar] [CrossRef] [PubMed]
- Okubo, A.; Yotsumoto, T.; Watanabe, N.; Kajikawa, T.; Nakajima, S.; Oshima, Y.; Iizawa, N.; Majima, T. Comparison of three suture-bridge techniques for large or massive rotator cuff tear with delamination. SICOT-J 2021, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, S.B.; Song, H.S. A Propensity Score-Matched Comparison between Knotless Layer-by-Layer and En Masse Suture Bridge Techniques for Delaminated Rotator Cuff Tears. Am. J. Sports Med. 2022, 50, 2219–2226. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.; Polisena, J.; Husereau, D.; Moulton, K.; Clark, M.; Fiander, M.; Mierzwinski-Urban, M.; Clifford, T.; Hutton, B.; Rabb, D. The effect of English-language restriction on systematic review-based meta-analyses: A systematic review of empirical studies. Int. J. Technol. Assess. Health Care 2012, 28, 138–144. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Macaskill, P.; Irwig, L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J. Clin. Epidemiol. 2005, 58, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Gwak, H.C.; Kim, C.W.; Kim, J.H.; Choo, H.J.; Sagong, S.Y.; Shin, J. Delaminated rotator cuff tear: Extension of delamination and cuff integrity after arthroscopic rotator cuff repair. J. Shoulder Elb. Surg. 2015, 24, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kim, J.M.; Bigliani, L.U.; Kim, H.J.; Jung, H.W. In vivo strain analysis of the intact supraspinatus tendon by ultrasound speckles tracking imaging. J. Orthop. Res. 2011, 29, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.A.; Rivenburgh, D.W. Rotator cuff repair tension as a determinant of functional outcome. J. Shoulder Elb. Surg. 2000, 9, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Park, S.G.; Shim, B.J.; Seok, H.G. How Much Will High Tension Adversely Affect Rotator Cuff Repair Integrity? Arthroscopy 2019, 35, 2992–3000. [Google Scholar] [CrossRef]
- Kim, D.H.; Jang, Y.H.; Choi, Y.E.; Lee, H.R.; Kim, S.H. Evaluation of Repair Tension in Arthroscopic Rotator Cuff Repair: Does It Really Matter to the Integrity of the Rotator Cuff? Am. J. Sports Med. 2016, 44, 2807–2812. [Google Scholar] [CrossRef]
- Takeda, Y.; Fujii, K.; Suzue, N.; Miyatake, K.; Kawasaki, Y.; Yokoyama, K. Repair Tension During Arthroscopic Rotator Cuff Repair is Correlated with Preoperative Tendon Retraction and Postoperative Rotator Cuff Integrity. Arthroscopy 2021, 37, 2735–2742. [Google Scholar] [CrossRef]
- Adams, C.R.; DeMartino, A.M.; Rego, G.; Denard, P.J.; Burkhart, S.S. The rotator cuff and the superior capsule: Why we need both. Arthroscopy 2016, 32, 2628–2637. [Google Scholar] [CrossRef]
- Ishihara, Y.; Mihata, T.; Tamboli, M.; Nguyen, L.; Park, K.J.; McGarry, M.H.; Takai, S.; Lee, T.Q. Role of the superior shoulder capsule in passive stability of the glenohumeral joint. J. Shoulder Elb. Surg. 2014, 23, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Mihata, T.; McGarry, M.H.; Kahn, T.; Goldberg, I.; Neo, M.; Lee, T.Q. Biomechanical role of capsular continuity in superior capsule reconstruction for irreparable tears of the supraspinatus tendon. Am. J. Sports Med. 2016, 44, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, H.; Hiyama, K.; Uomizu, M.; Ueki, H. Anatomic restoration of the articular deep layer is a definitive factor for repair status in delaminated rotator cuff tear. J. Shoulder Elb. Surg. 2023, 32, 832–841. [Google Scholar] [CrossRef]
- Mori, D.; Kizaki, K.; Funakoshi, N.; Yamashita, F.; Mizuno, Y.; Shirai, T.; Kobayashi, M. Clinical and Radiographic Outcomes After Arthroscopic Lamina-Specific Double-Row Repair of Large Delaminated Rotator Cuff Tears in Active Patients. Orthop. J. Sports Med. 2019, 7, 2325967119838249. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, T.; Nimura, A.; Miyamoto, T.; Koga, H.; Akita, K.; Muneta, T. Repair of Rotator Cuff Tear with Delamination: Independent Repairs of the Infraspinatus and Articular Capsule. Arthrosc. Tech. 2016, 5, e1129–e1134. [Google Scholar] [CrossRef] [PubMed]
- Buyukdogan, K.; Koyuncu, O.; Eren, I.; Birsel, O.; Fox, M.A.; Demirhan, M. Arthroscopic Knotless Separate Layer Transosseous Equivalent Repair of Delaminated Rotator Cuff Tears. Arthrosc. Tech. 2019, 8, e1193–e1200. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.J.; Kim, J.H.; Gwak, H.C.; Kim, C.W.; Kim, J.K.; Park, J.H. Comparison of histologic healing and biomechanical characteristics between repair techniques for a delaminated rotator cuff tear in rabbits. J. Shoulder Elb. Surg. 2017, 26, 838–845. [Google Scholar] [CrossRef]
- Lee, Y.S.; Jeong, J.Y.; Park, C.D.; Kang, S.G.; Yoo, J.C. Evaluation of the Risk Factors for a Rotator Cuff Retear After Repair Surgery. Am. J. Sports Med. 2017, 45, 1755–1761. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, M.; Pan, J.; Liang, G.; Feng, W.; Zeng, L.; Yang, W.; Liu, J. Risk factors affecting rotator cuff retear after arthroscopic repair: A meta-analysis and systematic review. J. Shoulder Elb. Surg. 2021, 30, 2660–2670. [Google Scholar] [CrossRef]
- Sonnabend, D.H.; Watson, E.M. Structural factors affecting the outcome of rotator cuff repair. J. Shoulder Elb. Surg. 2002, 11, 212–218. [Google Scholar] [CrossRef]
- Shrier, I.; Boivin, J.F.; Steele, R.J.; Platt, R.W.; Furlan, A.; Kakuma, R.; Brophy, J.; Rossignol, M. Should meta-analyses of interventions include observational studies in addition to randomized controlled trials? A critical examination of underlying principles. Am. J. Epidemiol. 2007, 166, 1203–1209. [Google Scholar] [CrossRef]
First Author (Year) | Study Design | Country | Level of Evidence | Sample Size (n) | Mean Age (Years) | Male n (%) | Follow Up | Type of Injury | Outcome Measurement | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Separate Double-Layer Repair | En Masse Repair | Separate Double-Layer Repair | En Masse Repair | Separate Double-Layer Repair | En Masse Repair | Separate Double-Layer Repair | En Masse Repair | ||||||
Kim et al. (2016) [23] | RCT | South Korea | II | 34 | 48 | 65.5 | 65.2 | 11 (32.3) | 16 (33.3) | Mean 25.9 months | Mean 25.8 months | Medium to large (tear size <5 cm) full-thickness supraspinatus tear with delamination | Retear rate at 12 months, VAS, ASES, SST, Constant, ROM |
Nakamizo et al. (2018) [21] | Retrospective case-control study | Japan | III | 46 | 52 | 64.1 | 65.8 | 20 (43.4) | 28 (53.8) | Mean 27.6 months (minimum 24 months) | Mean 29.0 months (minimum 24 months) | Medium to large full-thickness supraspinatus and infraspinatus tear with delamination | Retear rate at 12 months, UCLA, SST, VAS, ROM |
Heuberer et al. (2019) [25] | Prospective comparative study | Austria | III | 17 | 20 | 62.8 | 64.8 | 5 (29.4) | 10 (50) | 12 and 24 months | Medium to large (2.0–3.5 cm) full-thickness supraspinatus and infraspinatus tear with delamination | Retear rate at 12 months, Constant, ASES, SST, VAS, ROM, SSV | |
Okubo et al. (2021) [26] | Retrospective case-control study | Japan | III | 24 | 18 | 69.6 | 69.0 | 11 (45.8) | 12 (66.7) | Mean 31.5 months (minimum 24 months) | Mean 34.9 months (minimum 24 months) | Large or massive rotator cuff tear with delamination | Retear rate, Constant, ROM |
Kim et al. (2022) [27] | Retrospective case-control study | South Korea | III | 33 | 33 | 63.9 | 64.7 | 14 (42.4) | 13 (39.4) | Mean 29.1 months (minimum 24 months) | Medium to large (<5 cm) full-thickness supraspinatus tears with delamination | Retear rate at 12 months, VAS, ASES, Constant, UCLA, ROM |
First Author (Year) | Repair Technique (SDLR Group) | Repair Technique (EMR Group) | Concomitant Procedures | Rehabilitation | |||
---|---|---|---|---|---|---|---|
Immobilization | Passive Motion Exercises | Active Motion Exercises | Strengthening Exercises | ||||
Kim et al. (2016) [23] | 1 > Inverted mattress sutures configuration with medial knotless anchors 2 > Lateral anchors inserted into the lateral aspect of the footprint of the greater tuberosity for repair of the bursal layer | Suture bridge repair technique with medial row tension-free tying | Footprint preparation using burr until bleeding surface was exposed Acromioplasty for all type 2 and 3 acromions | Immobilization using a sling for 4 weeks postoperatively | From 4 weeks postoperatively for range-of-motion exercise program (passive, active-assisted, and active motion) | When passive shoulder range of motion was restored to 90% | |
Nakamizo et al. (2018) [21] | 1 > Single row repair using a standard sliding knot and 2 half-hitches without cutting 2 > Medial sutures were passed through the bursal layer and fixed to the lateral row anchors using suture bridge repair technique without medial-row knot tying | Suture bridge repair technique without medial-row knot tying | Footprint preparation using shaver until bleeding surface was exposed Acromioplasty for a heel-type acromion | Immobilization using a sling for 4 to 6 weeks postoperatively | From 1 week postoperatively | From 4 to 6 weeks postoperatively after immobilization period | From 12 weeks postoperatively |
Heuberer et al. (2019) [25] | 1 > Articular layer repair by cinch loop configuration using medial anchors with looped sutures 2 > Medial sutures were passed through the bursal layer and fixed to the lateral row anchors using suture bridge repair technique without medial-row knot tying | Suture bridge repair technique with medial row knot tying | Footprint preparation using shaver and nanodrilling with a 1.4 mm K-wire Subacromial decompression and a tenodesis of the long head of the biceps were performed in every patient | Immobilization using a sling for 4 weeks postoperatively | Passive range of motion exercises were allowed immediately. | From 4 weeks postoperatively after immobilization period | From 12 weeks postoperatively |
Okubo et al. (2021) [26] | 1 > Single row repair using a standard sliding knot and 2 half-hitches without cutting 2 > Medial sutures were passed through the bursal layer and fixed to the lateral row anchors using suture bridge repair technique without medial-row knot tying | Suture bridge repair technique without medial-row knot tying | Subacromial bursectomy and subacromial osteophyte resection were performed | Immobilization using a sling for 3 to 4 weeks postoperatively | Passive range of motion exercises were allowed immediately | From 3 to 4 weeks postoperatively after immobilization period | From 12 weeks postoperatively |
Kim et al. (2022) [27] | 1 > Mattress sutures configuration with medial knotless anchors 2 > The “tip retention suture” of the medial knotless anchor was passed through the bursal layer and fixed to the lateral row anchors using suture bridge repair technique with medial-row knot tying | Suture bridge repair technique with medial-row knot tying | Footprint preparation using shaver and burr until bleeding surface was exposed Acromioplasty was performed if large and sharp subacromial bony spurs were seen after bursectomy Biceps tenotomy or tenodesis was performed based on the patient’s age and daily activities | Immobilization using a sling for 6 weeks postoperatively | From 4 weeks postoperatively | From 4–6 weeks postoperatively | From 12 weeks postoperatively |
OR or SMD | LL 95%CI | UL 95%CI | p Value | Number of Studies | Heterogeneity (%) | Analysis Model | Egger’s Test (p-Value) | |
---|---|---|---|---|---|---|---|---|
Retear rate | 0.73 | 0.35 | 1.49 | 0.38 | 5 | 0 | Random | 0.81 |
VAS | −0.14 | −0.45 | 0.17 | 0.37 | 2 | 0 | Random | NA |
Constant score | 0.68 | 0.35 | 1.02 | <0.01 | 3 | 0 | Random | 0.32 |
SST score | 0.37 | 0.02 | 0.71 | 0.04 | 2 | 0 | Random | NA |
ASES score | 0.28 | −0.11 | 0.66 | 0.16 | 2 | 0 | Random | NA |
UCLA score | 0.24 | −0.14 | 0.63 | 0.22 | 2 | 35 | Random | NA |
ROM (forward flexion) | 0.09 | −0.22 | 0.40 | 0.56 | 3 | 19 | Random | 0.60 |
ROM (abduction) | 0.34 | 0.03 | 0.64 | 0.03 | 2 | 0 | Random | NA |
ROM (external rotation) | 0.22 | −0.16 | 0.60 | 0.26 | 2 | 0 | Random | NA |
First Author (Year) | Sample Size (n) | Preoperative Functional Outcomes | Postoperative Functional Outcomes | Follow Up | ||||
---|---|---|---|---|---|---|---|---|
Separate Double-Layer Repair | En Masse Repair | Separate Double-Layer Repair | En Masse Repair | Separate Double-Layer Repair | En Masse Repair | Separate Double-Layer Repair | En Masse Repair | |
Kim et al. (2016) [23] | 34 | 48 | VAS; mean 5.7 ASES; mean 47.9 SST; mean 51.2 Constant score; mean 62.7 | VAS; mean 6.5 ASES; mean 45.3 SST; mean 38.1 Constant score; mean 57.7 | VAS; mean 1.2 ASES; mean 89.6 SST; mean 66.7 Constant score; mean 84.5 | VAS; mean 2.0 ASES; mean 84.9 SST; mean 79.4 Constant score; mean 80.5 | Mean 25.9 months | Mean 25.8 months |
Nakamizo et al. (2018) [21] | 46 | 52 | VAS; 54.1 ± 19.4 SST; 5.1 ± 0.9 UCLA; 14.8 ± 2.2 Forward flexion; 145.6 ± 29.5 Abduction; 117.3 ± 36.4 External rotation; 43.6 ± 12.6 Internal rotation; L1 | VAS; 52.6 ± 17.0 SST; 4.1 ± 1.9 UCLA; 13.7 ± 2.8 Forward flexion; 137.8 ± 38.8 Abduction; 112.0 ± 39.8 External rotation; 39.4 ± 14.5 Internal rotation; L2 | VAS; 10.7 ± 11.9 SST; 10.0 ± 1.0 UCLA; 33.2 ± 2.3 Forward flexion; 165.8 ± 5.9 Abduction; 160.1 ± 9.1 External rotation; 53.7 ± 8.5 Internal rotation; T11 | VAS; 13.4 ± 11.0 SST; 9.5 ± 1.2 UCLA; 32.0 ± 3.3 Forward flexion; 163.9 ± 6.0 Abduction; 154.8 ± 19.8 External rotation; 46.1 ± 9.4 Internal rotation; T12 | Mean 27.6 months (minimum 24 months) | Mean 29.0 months (minimum 24 months) |
Heuberer et al. (2019) [25] | 17 | 20 | VAS; 6 (range 2–10) ASES; 45.6 ± 15.1 SST; 5.1 ± 2.5 Constant; 49.1 ± 15.0 Forward flexion; 150 (range 60–170) Abduction; 150 (range 70–170) External rotation; 50 (range 30–80) SSV; 51.5 ± 20.7 | VAS; 6.5 (range 2–10) ASES; 38.3 ± 18.4 SST; 4.2 ± 3.1 Constant; 42.9 ± 16.2 Forward flexion; 110 (range 10–170) Abduction; 140 (range 20–170) External rotation; 50 (range 5–90) SSV; 45.5 ± 17.0 | VAS; 1 (range 0–4) ASES; 88.4 ± 11.2 SST; 9.4 ± 2.7 Constant; 78.8 ± 11.2 Forward flexion; 170 (range 90–180) Abduction; 160 (range 90–180) External rotation; 70 (range 60–90) SSV; 88.5 ± 14.8 | VAS; 0 (range 0–5) ASES; 83.4 ± 16.5 SST; 9.0 ± 2.8 Constant; 68.8 ± 15.8 Forward flexion; 155 (range 110–180) Abduction; 152.5 (range 90–170) External rotation; 70 (range 50–80) SSV; 85.2 ± 11.7 | 12 and 24 months | |
Okubo et al. (2021) [26] | 24 | 18 | Constant score; 45.5 ± 11.6 Forward flexion; 109 ± 30.1 External rotation; 47.2 ± 20.0 Internal rotation; L4.5 | Constant score; 45.5 ± 14.3 Forward flexion; 105.6 ± 50.0 External rotation; 49.7 ± 16.8 Internal rotation; L4.8 | Constant score; 87.6 ± 11.4 Forward flexion; 159.6 ± 19.7 External rotation; 71.4 ± 14.9 Internal rotation; L2 | Constant score; 77.4 ± 13.6 Forward flexion; 158.9 ± 20.5 External rotation; 67.2 ± 13.7 Internal rotation; L2 | Mean 31.5 months (minimum 24 months) | Mean 34.9 months (minimum 24 months) |
Kim et al. (2022) [27] | 33 | 33 | VAS; 5.2 ± 2.0 ASES; 50.2 ± 19.9 UCLA; 17.6 ± 6.4 Constant; 62.4 ± 16.9 Forward flexion; 145.5 ± 43.3 Internal rotation; 3.3 ± 1.0 | VAS; 5.3 ± 1.5 ASES; 49.1 ± 12.3 UCLA; 18.7 ± 5.0 Constant; 63.2 ± 12.3 Forward flexion; 152.1 ± 30.2 Internal rotation; 3.6 ± 1.3 | VAS; 1.1 ± 0.9 ASES; 91.4 ± 6.8 UCLA; 31.2 ± 3.3 Constant; 91.4 ± 6.0 Forward flexion; 164.7 ± 7.5 Internal rotation; 3.7 ± 0.9 | VAS; 1.1 ± 1.1 ASES; 88.3 ± 17.4 UCLA; 31.1 ± 6.0 Constant; 84.3 ± 16.4 Forward flexion; 165.9 ± 5.9 Internal rotation; 3.8 ± 0.8 | Mean 29.1 months (minimum 24 months) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, K.-H.; Jang, I.-T.; Han, S.-B. Comparison of En Masse Repair versus Separate Double-Layer Repair for Delaminated Rotator Cuff Tears: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 1393. https://doi.org/10.3390/jcm13051393
Shin K-H, Jang I-T, Han S-B. Comparison of En Masse Repair versus Separate Double-Layer Repair for Delaminated Rotator Cuff Tears: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2024; 13(5):1393. https://doi.org/10.3390/jcm13051393
Chicago/Turabian StyleShin, Kyun-Ho, Il-Tae Jang, and Seung-Beom Han. 2024. "Comparison of En Masse Repair versus Separate Double-Layer Repair for Delaminated Rotator Cuff Tears: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 13, no. 5: 1393. https://doi.org/10.3390/jcm13051393
APA StyleShin, K. -H., Jang, I. -T., & Han, S. -B. (2024). Comparison of En Masse Repair versus Separate Double-Layer Repair for Delaminated Rotator Cuff Tears: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 13(5), 1393. https://doi.org/10.3390/jcm13051393