Determination of Serum Arginase-1 Concentrations and Serum Arginase Activity for the Non-Invasive Diagnosis of Endometriosis
Abstract
:1. Introduction
1.1. Diagnostics
1.1.1. Imaging
1.1.2. Laboratory Diagnostic Methods
1.2. L-Arginine and Its Significance in Immune Response
1.3. Arginase and Its Importance in Pathology
1.4. Role of Arginine and Arginase in Endometriosis–Hypothesis
1.5. Objectives
2. Materials and Methods
2.1. Patients
2.1.1. Study Group GB
2.1.2. Control Groups
2.2. Serum Preparation
2.3. Arg-1 and Arg-2 ELISA and Arginase Activity
2.4. Statistical Analysis
3. Results
3.1. Evaluation of Assay Quality
3.2. Evaluation of Preoperative Serum Arginase Levels and Activity
3.3. Evaluation of Postoperative Serum Arginase Concentrations and Activities
3.4. Evaluation of Perioperative Serum Arg-1 Concentration Changes
3.5. Evaluation of Perioperative Serum Arginase Activity Changes
3.6. Analysis of Sensitivity and Specificity of Measurements of Arginase Concentrations and Activity in the Diagnosis of Endometriosis
3.7. Correlations
3.8. Recurrence Risk and Chance of Achieving Pregnancy
4. Discussion
4.1. Diagnostic Value of Arginase Concentration and Activity Measurements in Serum for the Diagnosis of Endometriosis
4.2. Limitations of This Study
4.3. Diagnostic Value of Arginase Compared to Other Proposed Non-Invasive Biochemical Markers of Endometriosis
4.4. Correlations of Arg-1 Concentrations and Serum Arginase Activity with Other Clinical Parameters
4.5. Perspectives for the Use of Arginase as a Biochemical Marker for Endometriosis
4.6. Summary of Prospects and Limitations of Using Arginase in the Diagnosis of Endometriosis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area Under the Curve |
Arg | Arginase |
Arg-1 | Arginase-1 |
Arg-2 | Arginase-2 |
ARGACT | Arginase Activity |
ASRM | American Society for Reproductive Medicine |
BRCA2 | Breast Cancer 2, a gene associated with increased risk of breast cancer |
CI | Confidence Interval |
DE | Deep Endometriosis |
ELISA | Enzyme-Linked Immunosorbent Assay |
GB | Group B (Patients with endometriosis) |
GK1 | Group K1 (Control Group 1) |
GK2 | Group K2 (Control Group 2) |
HLA | Human Leukocyte Antigen |
IFN-γ | Interferon-Gamma |
IL-2 | Interleukin-2 |
IL-6 | Interleukin-6 |
K1 | Control Group 1 |
K2 | Control Group 2 |
MCP-1 | Monocyte Chemoattractant Protein-1 |
MDSCs | Myeloid-Derived Suppressor Cells |
MIF | Macrophage Migration Inhibitory Factor |
miR-199a | MicroRNA-199a |
miR-542-3p | MicroRNA-542-3p |
MRI | Magnetic Resonance Imaging |
NOS | Nitric Oxide Synthase |
NO | Nitric Oxide |
NK | Natural Killer |
PON-1 | Paraoxonase-1 |
rASRM | Revised American Society for Reproductive Medicine |
ROC | Receiver Operating Characteristic |
ROS | Reactive Oxygen Species |
SM | Sclerosis Multiplex |
SnOUT | Sensitivity to rule OUT |
SpIN | Specificity to rule IN |
TCR | T-cell Receptor |
TNFα | Tumour Necrosis Factor-alpha |
TVUS | Transvaginal Ultrasound |
USG | Ultrasonography |
References
- Becker, C.M.; Bokor, A.; Heikinheimo, O.; Vermeulen, N.; ESHRE Endometriosis Guideline Group. ESHRE guideline: Endometriosis. Hum. Reprod. Open 2022, 2, hoac009. [Google Scholar] [CrossRef]
- Fourquet, J.; Báez, L.; Figueroa, M.; Iriarte, R.I.; Flores, I. Quantification of the impact of endometriosis symptoms on health-related quality of life and work productivity. Fertil. Steril. 2011, 96, 107–112. [Google Scholar] [CrossRef]
- Surrey, E.; Soliman, A.M.; Trenz, H.; Blauer-Peterson, C.; Sluis, A. Impact of Endometriosis Diagnostic Delays on Healthcare Resource Utilization and Costs. Adv. Ther. 2020, 37, 1087–1099. [Google Scholar] [CrossRef]
- Lamceva, J.; Uljanovs, R.; Strumfa, I. The Main Theories on the Pathogenesis of Endometriosis. Int. J. Mol. Sci. 2023, 24, 4254. [Google Scholar] [CrossRef]
- Abramiuk, M.; Grywalska, E.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Niedźwiedzka-Rystwej, P. The Role of the Immune System in the Development of Endometriosis. Cells 2022, 11, 2028. [Google Scholar] [CrossRef]
- Semino, C.; Semino, A.; Pietra, G.; Mingari, M.C.; Barocci, S.; Venturini, P.L.; Ragni, N.; Melioli, G. Role of major histocompatibility complex class I expression and natural killer-like T cells in the genetic control of endometriosis. Fertil. Steril. 1995, 64, 909–916. [Google Scholar] [CrossRef]
- Guerriero, S.; Condous, G.; van den Bosch, T.; Valentin, L.; Leone, F.P.G.; Van Schoubroeck, D.; Exacoustos, C.; Installé, A.J.F.; Martins, W.P.; Abrao, M.S.; et al. Systematic approach to sonographic evaluation of the pelvis in women with suspected endometriosis, including terms, definitions and measurements: A consensus opinion from the International Deep Endometriosis Analysis (IDEA) group. Ultrasound Obstet. Gynecol. 2016, 48, 318–332. [Google Scholar] [CrossRef]
- Avery, J.C.; Deslandes, A.; Freger, S.M.; Leonardi, M.; Lo, G.; Carneiro, G.; Condous, G.; Hull, M.L.; Imagendo Study Group. Non-invasive Diagnostic Imaging for Endometriosis Part 1: A Systematic review of recent developments in Ultrasound, Combination Imaging and Artificial Intelligence. Fertil. Steril. 2023, 121, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Dunselman, G.A.J.; Vermeulen, N.; Becker, C.; Calhaz-Jorge, C.; D’Hooghe, T.; De Bie, B.; Heikinheimo, O.; Horne, A.W.; Kiesel, L.; Nap, A.; et al. ESHRE guideline: Management of women with endometriosis. Hum. Reprod. 2014, 29, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Wykes, C.B.; Clark, T.J.; Khan, K.S. Accuracy of laparoscopy in the diagnosis of endometriosis: A systematic quantitative review. BJOG Int. J. Obstet. Gynaecol. 2004, 111, 1204–1212. [Google Scholar] [CrossRef]
- Komorowski, A.S.; Feinberg, E.C. Changing the “scope” of diagnosing endometriosis: The new frontier of noninvasive markers. Fertil. Steril. 2023, 121, 137–139. [Google Scholar] [CrossRef]
- Nisenblat, V.; Bossuyt, P.M.; Shaikh, R.; Farquhar, C.; Jordan, V.; Scheffers, C.S.; Cochrane Gynaecology Fertility Group. Blood biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016, 5, CD012179. [Google Scholar] [CrossRef]
- Liu, E.; Nisenblat, V.; Farquhar, C.; Fraser, I.; Bossuyt, P.M.; Johnson, N.; Hull, M.L. Urinary biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2015, 12, CD012019. [Google Scholar] [CrossRef]
- Gupta, D.; Hull, M.L.; Fraser, I.; Miller, L.; Bossuyt, P.M.; Johnson, N.; Nisenblat, V. Endometrial biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016, 4, CD012165. [Google Scholar] [CrossRef]
- Dorien, F.O.; Flores, I.; Waelkens, E.; D’Hooghe, T. Noninvasive diagnosis of endometriosis: Review of current peripheral blood and endometrial biomarkers. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 50, 72–83. [Google Scholar]
- Bendifallah, S.; Suisse, S.; Puchar, A.; Delbos, L.; Poilblanc, M.; Descamps, P.; Golfier, F.; Jornea, L.; Bouteiller, D.; Touboul, C.; et al. Salivary MicroRNA Signature for Diagnosis of Endometriosis. J. Clin. Med. 2022, 11, 612. [Google Scholar] [CrossRef]
- Agrawal, S.; Tapmeier, T.; Rahmioglu, N.; Kirtley, S.; Zondervan, K.; Becker, C. The miRNA Mirage: How Close Are We to Finding a Non-Invasive Diagnostic Biomarker in Endometriosis? A Systematic Review. Int. J. Mol. Sci. 2018, 19, 599. [Google Scholar] [CrossRef]
- Tomkins, N.E.; Girling, J.E.; Boughton, B.; Holdsworth-Carson, S.J. Is there a role for small molecule metabolite biomarkers in the development of a diagnostic test for endometriosis? Syst. Biol. Reprod. Med. 2022, 68, 89–112. [Google Scholar] [CrossRef]
- Bansal, V.; Ochoa, J.B. Arginine availability, arginase and immune response. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 223–228. [Google Scholar] [CrossRef]
- Yang, Z.; Ming, X.F. Endothelial arginase: A new target in atherosclerosis. Curr. Hypertens. Rep. 2006, 8, 54–59. [Google Scholar] [CrossRef]
- Zhang, T.; He, Y.; Man, G.C.W.; Ding, Y.; Wang, C.C.; Chung, J.P.W. Myeloid-derived suppressor cells: A new emerging player in endometriosis. Int. Rev. Cell Mol. Biol. 2023, 375, 191–220. [Google Scholar]
- Moein Mahini, S.; Younesi, M.; Mortazavi, G.; Samare-Najaf, M.; Karim Azadbakht, M.; Jamali, N. Non-invasive diagnosis of endometriosis: Immunologic and genetic markers. Clin. Chim. Acta. 2023, 538, 70–86. [Google Scholar] [CrossRef]
- Martí, I.; Líndez, A.A.; Reith, W. Arginine-dependent immune responses. Cell Mol. Life Sci. 2021, 78, 5303–5324. [Google Scholar] [CrossRef]
- Zea, A.H.; Rodriguez, P.C.; Culotta, K.S.; Hernandez, C.P.; DeSalvo, J.; Ochoa, J.B.; Ochoa, A.C. L-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell. Immunol. 2004, 232, 21–31. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Pinzon-Guzman, C.; Barbul, A. Arginine-Dual roles as an onconutrient and immunonutrient. J. Surg. Oncol. 2017, 115, 273–280. [Google Scholar] [CrossRef]
- Clemente, G.S.; van Waarde, A.; Antunes, I.F.; Dömling, A.; Elsinga, P.H. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int. J. Mol. Sci. 2020, 21, 5291. [Google Scholar] [CrossRef] [PubMed]
- Ashamiss, F.; Wierzbicki, Z.; Chrzanowska, A.; Scibior, D.; Pacholczyk, M.; Kosieradzki, M.; Lagiewska, B.; Porembska, Z.; Rowiński, W. Clinical significance of arginase after liver transplantation. Ann. Transplant. 2004, 9, 58–60. [Google Scholar] [PubMed]
- Ikemoto, M.; Tsunekawa, S.; Tanaka, K.; Tanaka, A.; Yamaoka, Y.; Ozawa, K.; Fukuda, Y.; Moriyasu, F.; Totani, M.; Kasai, Y.; et al. Liver-type arginase in serum during and after liver transplantation: A novel index in monitoring conditions of the liver graft and its clinical significance. Clin. Chim. Acta 1998, 271, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Grzywa, T.M.; Sosnowska, A.; Matryba, P.; Rydzynska, Z.; Jasinski, M.; Nowis, D.; Golab, J. Myeloid Cell-Derived Arginase in Cancer Immune Response. Front. Immunol. 2020, 11, 938. [Google Scholar] [CrossRef] [PubMed]
- Tsui, S.-M.; Lam, W.-M.; Lam, T.-L.; Chong, H.-C.; So, P.-K.; Kwok, S.-Y.; Arnold, S.; Cheng, P.N.-M.; Wheatley, D.N.; Lo, W.-H.; et al. Pegylated derivatives of recombinant human arginase (rhArg1) for sustained in vivo activity in cancer therapy: Preparation, characterization and analysis of their pharmacodynamics in vivo and in vitro and action upon hepatocellular carcinoma cell (HCC). Cancer Cell Int. 2009, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Dane Wittrup, K.; Gregory, L. Verdine (Red.), Protein Engineering for Therapeutics, 1st ed.; Academic Press: Cambridge, MA, USA, 2012; p. 310. [Google Scholar]
- Caldwell, R.W.; Rodriguez, P.C.; Toque, H.A.; Narayanan, S.P. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol. Rev. 2018, 98, 641–665. [Google Scholar] [CrossRef]
- Bedoya, A.M.; Tate, D.J.; Baena, A.; Córdoba, C.M.; Borrero, M.; Pareja, R.; Rojas, F.; Patterson, J.R.; Herrero, R.; Zea, A.H.; et al. Immunosuppression in cervical cancer with special reference to arginase activity. Gynecol. Oncol. 2014, 135, 74–80. [Google Scholar] [CrossRef]
- Swangphon, P.; Pientong, C.; Sunthamala, N.; Bumrungthai, S.; Azuma, M.; Kleebkaow, P.; Ekalaksananan, T. Correlation of Circulating CD64+/CD163+ Monocyte Ratio and stroma/peri-tumoral CD163+ Monocyte Density with Human Papillomavirus Infected Cervical Lesion Severity. Cancer Microenviron. 2017, 10, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Souid, M.; Ghedira, R.; Souissi, S.; Bouzgarrou, N.; Gabbouj, S.; Shini-Hadhri, S.; Rhim, M.-S.; Boukadida, A.; Toumi, D.; Faleh, R.; et al. Arginase is involved in cervical lesions progression and severity. Immunobiology 2022, 227, 152189. [Google Scholar] [CrossRef]
- Vanderstraeten, A.; Luyten, C.; Verbist, G.; Tuyaerts, S.; Amant, F. Mapping the immunosuppressive environment in uterine tumors: Implications for immunotherapy. Cancer Immunol. Immunother. 2014, 63, 545–557. [Google Scholar] [CrossRef]
- Tran, D.N.; Rozen, V.; Hunter, M.I.; Kim, T.H.; Jeong, J.W. ARG1 is a potential prognostic marker in metastatic and recurrent endometrial cancer. Res. Sq. 2023, Preprint. [Google Scholar] [CrossRef]
- Coosemans, A.; Decoene, J.; Baert, T.; Laenen, A.; Kasran, A.; Verschuere, T.; Seys, S.; Vergote, I. Immunosuppressive parameters in serum of ovarian cancer patients change during the disease course. OncoImmunology 2015, 5, e1111505. [Google Scholar] [CrossRef]
- Bak, S.P.; Alonso, A.; Turk, M.J.; Berwin, B. Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression. Mol. Immunol. 2008, 46, 258–268. [Google Scholar] [CrossRef]
- Czystowska-Kuzmicz, M.; Sosnowska, A.; Nowis, D.; Ramji, K.; Szajnik, M.; Chlebowska-Tuz, J.; Golab, J. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat. Commun. 2019, 10, 3000. [Google Scholar] [CrossRef]
- Ibana, J.A.; Cutay, S.J.; Romero, M.; Schust, D.J. Parallel Expression of Enzyme Inhibitors of CD8T Cell Activity in Tumor Microenvironments and Secretory Endometrium. Reprod. Sci. 2016, 23, 289–301. [Google Scholar] [CrossRef]
- Ness, R.B. Endometriosis and ovarian cancer: Thoughts on shared pathophysiology. Am. J. Obstet. Gynecol. 2003, 189, 280–294. [Google Scholar] [CrossRef]
- Soroczynska, K.; Zareba, L.; Dlugolecka, M.; Czystowska-Kuzmicz, M. Immunosuppressive Extracellular Vesicles as a Linking Factor in the Development of Tumor and Endometriotic Lesions in the Gynecologic Tract. Cells 2022, 11, 1483. [Google Scholar] [CrossRef]
- Kropf, P.; Baud, D.; Marshall, S.E.; Munder, M.; Mosley, A.; Fuentes, J.M.; Müller, I. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur. J. Immunol. 2007, 37, 935–945. [Google Scholar] [CrossRef]
- Encalada Soto, D.; Rassier, S.; Green, I.C.; Burnett, T.; Khan, Z.; Cope, A. Endometriosis biomarkers of the disease: An update. Curr. Opin. Obstet. Gynecol. 2022, 34, 210–219. [Google Scholar] [CrossRef]
- Gibbons, T.; Rahmioglu, N.; Zondervan, K.T.; Becker, C.M. Crimson clues: Advancing endometriosis detection and management with novel blood biomarkers. Fertil. Steril. 2024, 121, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Foda, A.A.; Aal, I.A.A. Role of some biomarkers in chronic pelvic pain for early detection of endometriosis in infertile women. Middle East Fertil. Soc. J. 2012, 17, 187–194. [Google Scholar] [CrossRef]
- Verit, F.F.; Erel, O.; Celik, N. Serum paraoxonase-1 activity in women with endometriosis and its relationship with the stage of the disease. Hum. Reprod. 2008, 23, 100–104. [Google Scholar] [CrossRef]
- Wang, W.T.; Zhao, Y.N.; Han, B.W.; Hong, S.J.; Chen, Y.Q. Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis [Study on polymorphism of human leukocyte antigen I in patients with endometriosis]. J. Clin. Endocrinol. Metab. 2013, 98, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Li, Z.; Li, W.; Fan, X.; Han, F.; Huang, Y.; Yu, Y.; Qian, L.; Xiong, Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. Oxidative Med. Cell. Longev. 2022, 2022, 2419412. [Google Scholar] [CrossRef]
- Morris, S.M., Jr.; You, H.; Gao, T.; Vacher, J.; Cooper, T.K.; Awad, A.S. Distinct roles of arginases 1 and 2 in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. 2017, 313, F899–F905. [Google Scholar] [CrossRef]
- Shosha, E.; Fouda, A.Y.; Narayanan, S.P.; Caldwell, R.W.; Caldwell, R.B. Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy? J. Clin. Med. 2020, 9, 425. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.W.; Chang, K.L.; Chen, C.J.; Liu, H.W. Arginase levels are increased in patients with rheumatoid arthritis. Kaohsiung J. Med. Sci. 2001, 17, 358–363. [Google Scholar] [PubMed]
- Zaric, B.L.; Radovanovic, J.N.; Gluvic, Z.; Stewart, A.J.; Essack, M.; Motwalli, O.; Gojobori, T.; Isenovic, E.R. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front. Immunol. 2020, 11, 551758. [Google Scholar] [CrossRef] [PubMed]
- Steggerda, S.M.; Bennett, M.K.; Chen, J.; Emberley, E.; Huang, T.; Janes, J.R.; Gross, M.I. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J. Immunother. Cancer 2017, 5, 101. [Google Scholar] [CrossRef]
ARG-1 Concentration | AUC | SE | AUC Lower 95% CI | AUC Upper 95% CI | p |
---|---|---|---|---|---|
GB vs. GK1 | 0.848 | 0.040 | 0.769 | 0.926 | <0.0001 |
GB vs. GK2 | 0.912 | 0.027 | 0.859 | 0.965 | <0.0001 |
Potential Marker (Cutoff) | Sensitivity | 95% CI | Specificity | 95% CI | RT | SpIN | SnOUT | Ref. |
---|---|---|---|---|---|---|---|---|
IL-6 (>12.2 pg/mL) | 0.95 | 0.87–0.99 | 0.83 | 0.65–0.94 | (+) | n.p | (+) | [47] |
Paraoksonase-1 (<141.5 U/L) | 0.98 | 0.89–1.00 | 0.80 | 0.64–0.91 | (+) | n.p. | (+) | [48] |
miR-199a+miR-542-3p (n.p.) | 0.97 | 0.88–1.00 | 0.88 | 0.69–0.97 | (+) | n.p. | (+) | [49] |
Arg-1 (38.15 ng/mL) | 0.95 | 0.89–0.98 | 0.74 | 0.60–0.85 | (−) | (−) | (+) | |
Arg-1 (78.4 ng/mL) | 0.61 | 0.51–0.70 | 0.96 | 0.87–0.99 | (−) | (+) | (−) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pliszkiewicz, M.; Czystowska-Kuzmicz, M.; Soroczynska, K.; Siekierski, B.P.; Safranow, K. Determination of Serum Arginase-1 Concentrations and Serum Arginase Activity for the Non-Invasive Diagnosis of Endometriosis. J. Clin. Med. 2024, 13, 1489. https://doi.org/10.3390/jcm13051489
Pliszkiewicz M, Czystowska-Kuzmicz M, Soroczynska K, Siekierski BP, Safranow K. Determination of Serum Arginase-1 Concentrations and Serum Arginase Activity for the Non-Invasive Diagnosis of Endometriosis. Journal of Clinical Medicine. 2024; 13(5):1489. https://doi.org/10.3390/jcm13051489
Chicago/Turabian StylePliszkiewicz, Maciej, Malgorzata Czystowska-Kuzmicz, Karolina Soroczynska, Bogumił Paweł Siekierski, and Krzysztof Safranow. 2024. "Determination of Serum Arginase-1 Concentrations and Serum Arginase Activity for the Non-Invasive Diagnosis of Endometriosis" Journal of Clinical Medicine 13, no. 5: 1489. https://doi.org/10.3390/jcm13051489
APA StylePliszkiewicz, M., Czystowska-Kuzmicz, M., Soroczynska, K., Siekierski, B. P., & Safranow, K. (2024). Determination of Serum Arginase-1 Concentrations and Serum Arginase Activity for the Non-Invasive Diagnosis of Endometriosis. Journal of Clinical Medicine, 13(5), 1489. https://doi.org/10.3390/jcm13051489