Radiological Outcomes of Magnetically Controlled Growing Rods for the Treatment of Children with Various Etiologies of Early-Onset Scoliosis—A Multicenter Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Patients
2.2. Outcome Parameters
2.3. Surgical Technique and Postoperative Use of MCGRs
2.4. Complications
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Radiological Measurements
3.3. Lengthening Period and Final Fusion
3.4. Analysis of the Subgroups
3.5. Complications
3.6. Posterior Spinal Fusion Outcomes
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helenius, I.J. Standard and magnetically controlled growing rods for the treatment of early onset scoliosis. Ann. Transl. Med. 2020, 8, 26. [Google Scholar] [CrossRef]
- Meyer, C.S.; Rickers, K.; Eiskjær, S.P. Magnetically controlled growing rods in early-onset scoliosis. Dan. Med. J. 2021, 69, A08210627. [Google Scholar]
- Karol, L.A. The Natural History of Early-onset Scoliosis. J. Pediatr. Orthop. 2019, 39 (Suppl. S1), S38–S43. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.E.; Karol, L.A.; Thornberg, D.; Jo, C.; Eamara, P. The 18-cm Thoracic-Height Threshold and Pulmonary Function in Non-Neuromuscular Early-Onset Scoliosis: A Reassessment. JBJS Open Access 2021, 6, e21.00093. [Google Scholar] [CrossRef] [PubMed]
- Dimeglio, A.; Canavese, F. The growing spine: How spinal deformities influence normal spine and thoracic cage growth. Eur. Spine J. 2012, 21, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Karol, L.A.; Johnston, C.; Mladenov, K.; Schochet, P.; Walters, P.; Browne, R.H. Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. J. Bone Jt. Surg. Am. 2008, 90, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Bess, S.; Akbarnia, B.A.; Thompson, G.H.; Sponseller, P.D.; Shah, S.A.; El Sebaie, H.; Boachie-Adjei, O.; Karlin, L.I.; Canale, S.; Poe-Kochert, C.; et al. Complications of growing-rod treatment for early-onset scoliosis: Analysis of one hundred and forty patients. J. Bone Jt. Surg. Am. 2010, 92, 2533–2543. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.M.; Cheung, J.P.; Samartzis, D.; Mak, K.C.; Wong, Y.W.; Cheung, W.Y.; Akbarnia, B.A.; Luk, K.D. Magnetically controlled growing rods for severe spinal curvature in young children: A prospective case series. Lancet 2012, 379, 1967–1974. [Google Scholar] [CrossRef] [PubMed]
- Wijdicks, S.P.J.; Tromp, I.N.; Yazici, M.; Kempen, D.H.R.; Castelein, R.M.; Kruyt, M.C. A comparison of growth among growth-friendly systems for scoliosis: A systematic review. Spine J. 2019, 19, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Stücker, R.; Mladenov, K.; Stücker, S. Mitwachsende Korrektursysteme bei Early-Onset-Skoliosen [Growth-preserving instrumentation for early onset scoliosis]. Oper. Orthop. Traumatol. 2023, in press. (In Germany). [CrossRef]
- Latalski, M.; Fatyga, M.; Sowa, I.; Wojciak, M.; Starobrat, G.; Danielewicz, A. Complications in growth-friendly spinal surgeries for early-onset scoliosis: Literature review. World J. Orthop. 2021, 12, 584–603. [Google Scholar] [CrossRef]
- Gurel, R.; Elbaz, E.; Sigal, A.; Gigi, R.; Otremski, H.; Lebel, D.E.; Ovadia, D. Magnetically Controlled Growing Rods Graduation: Lessons from a Single-center Series of 48 Patients. J. Pediatr. Orthop. 2023, in press. [CrossRef] [PubMed]
- Varley, E.S.; Pawelek, J.B.; Mundis, G.M., Jr.; Oetgen, M.E.; Sturm, P.F.; Akbarnia, B.A.; Pediatric Spine Study Group; Yaszay, B. The role of traditional growing rods in the era of magnetically controlled growing rods for the treatment of early-onset scoliosis. Spine Deform. 2021, 9, 1465–1472. [Google Scholar] [CrossRef]
- Lebel, D.E.; Rocos, B.; Helenius, I.; Sigal, A.; Struder, D.; Yazici, M.; Bekmez, S.; Hasler, C.C.; Pesenti, S.; Jouve, J.L.; et al. Magnetically Controlled Growing Rods Graduation: Deformity Control with High Complication Rate. Spine 2021, 46, E1105–E1112. [Google Scholar] [CrossRef] [PubMed]
- Akbarnia, B.A.; Cheung, K.; Noordeen, H.; Elsebaie, H.; Yazici, M.; Dannawi, Z.; Kabirian, N. Next generation of growth-sparing techniques: Preliminary clinical results of a magnetically controlled growing rod in 14 patients with early-onset scoliosis. Spine 2013, 38, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.P.Y.; Yiu, K.; Kwan, K.; Cheung, K.M.C. Mean 6-year follow-up of magnetically controlled growing rod patients with early onset scoliosis: A glimpse of what happens to graduates. Neurosurgery 2019, 84, 1112–1123. [Google Scholar] [CrossRef]
- Grabala, P.; Helenius, I.J.; Chamberlin, K.; Galgano, M. Less-Invasive Approach to Early-Onset Scoliosis-Surgical Technique for Magnetically Controlled Growing Rod (MCGR) Based on Treatment of 2-Year-Old Child with Severe Scoliosis. Children 2023, 10, 555. [Google Scholar] [CrossRef]
- Chamberlin, K.; Galgano, M.; Grabala, P. Magnetically Controlled Growing Rods for Early-Onset Scoliosis: 2-Dimensional Operative Video. Oper. Neurosurg. 2023, 25, e279. [Google Scholar] [CrossRef]
- Guan, D.; Zhang, Y.; Xu, J. Clinical Outcome of Magnetically Controlled Growing Rod in Early-onset Scoliosis: A Systematic Review. Clin. Spine Surg. 2020, 33, 150–155. [Google Scholar] [CrossRef]
- Urbański, W.; Tucker, S.; Ember, T.; Nadarajah, R. Single vs. dual rod constructs in early onset scoliosis treated with magnetically controlled growing rods. Adv. Clin. Exp. Med. 2020, 29, 1169–1174. [Google Scholar] [CrossRef]
- Welborn, M.C.; Bouton, D. Outcomes of MCGR at >3 year average follow-up in severe scoliosis: Who undergoes elective revision vs. UPROR? Spine Deform. 2022, 10, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Matsumoto, H.; McCalla, D.J.; Akbarnia, B.A.; Blakemore, L.C.; Betz, R.R.; Flynn, J.M.; Johnston, C.E.; McCarthy, R.E.; Roye, D.P., Jr. Development and initial validation of the Classification of Early-Onset Scoliosis (C-EOS). J. Bone Jt. Surg. Am. 2014, 96, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Dahl, B.; Dragsted, C.; Ohrt-Nissen, S.; Andersen, T.; Gehrchen, M. Use of a distraction-to-stall lengthening procedure in magnetically controlled growing rods: A single-center cohort study. J. Orthop. Surg. 2018, 26, 2309499018779833. [Google Scholar] [CrossRef] [PubMed]
- Lebon, J.; Batailler, C.; Wargny, M.; Choufani, E.; Violas, P.; Fron, D.; Kieffer, J.; Accadbled, F.; Cunin, V.; De Gauzy, J.S. Magnetically controlled growing rod in early onset scoliosis: A 30-case multicenter study. Eur. Spine J. 2017, 26, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Heydar, A.M.; Şirazi, S.; Bezer, M. Magnetic Controlled Growing Rods as a Treatment of Early Onset Scoliosis: Early Results with Two Patients. Spine 2016, 41, E1336–E1342. [Google Scholar] [CrossRef] [PubMed]
- Thakar, C.; Kieser, D.C.; Mardare, M.; Haleem, S.; Fairbank, J.; Nnadi, C. Systematic review of the complications associated with magnetically controlled growing rods for the treatment of early onset scoliosis. Eur. Spine J. 2018, 27, 2062–2071. [Google Scholar] [CrossRef] [PubMed]
- Akbarnia, B.A.; Pawelek, J.B.; Cheung, K.M.; Demirkiran, G.; Elsebaie, H.; Emans, J.B.; Johnston, C.E.; Mundis, G.M.; Noordeen, H.; Skaggs, D.L.; et al. Traditional Growing Rods Versus Magnetically Controlled Growing Rods for the Surgical Treatment of Early-Onset Scoliosis: A Case-Matched 2-Year Study. Spine Deform. 2014, 2, 493–497. [Google Scholar] [CrossRef]
- Abdelaal, A.; Munigangaiah, S.; Trivedi, J.; Davidson, N. Magnetically Controlled Growing Rods in Treatment of Early-Onset Scoliosis: A Single Center Study with a Minimum of 2-Year-Follow up and Preliminary Results after Converting Surgery. Spine 2019, 44, 1201–1210. [Google Scholar] [CrossRef]
- Keskinen, H.; Helenius, I.; Nnadi, C.; Cheung, K.; Ferguson, J.; Mundis, G.; Pawelek, J.; Akbarnia, B.A. Preliminary comparison of primary and conversion surgery with magnetically controlled growing rods in children with early onset scoliosis. Eur. Spine J. 2016, 25, 3294–3300. [Google Scholar] [CrossRef]
- Subramanian, T.; Ahmad, A.; Mardare, D.M.; Kieser, D.C.; Mayers, D.; Nnadi, C. A six-year observational study of 31 children with early-onset scoliosis treated using magnetically controlled growing rods with a minimum follow-up of two years. Bone Jt. J. 2018, 100-B, 1187–1200. [Google Scholar] [CrossRef]
- Theologis, A.A.; Smith, J.; Kerstein, M.; Gregory, J.R.; Luhmann, S.J. Normative Data of Pulmonary Function Tests and Radiographic Measures of Chest Development in Children without Spinal Deformity: Is a T1–T12 Height of 22 cm Adequate? Spine Deform. 2019, 7, 857–864. [Google Scholar] [CrossRef]
- Upasani, V.V.; Parvaresh, K.C.; Pawelek, J.B.; Miller, P.E.; Thompson, G.H.; Skaggs, D.L.; Emans, J.B.; Glotzbecker, M.P.; Growing Spine Study Group. Age at initiation and deformity magnitude influence complication rates of surgical treatment with traditional growing rods in early-onset scoliosis. Spine Deform. 2016, 4, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Sankar, W.N.; Skaggs, D.L.; Yazici, M.; Johnston, C.E., 2nd; Shah, S.A.; Javidan, P.; Kadakia, R.V.; Day, T.F.; Akbarnia, B.A. Lengthening of dual growing rods and the law of diminishing returns. Spine 2011, 36, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Cahill, P.J.; Marvil, S.; Cuddihy, L.; Schutt, C.; Idema, J.; Clements, D.H.; Antonacci, M.D.; Asghar, J.; Samdani, A.F.; Betz, R.R. Autofusion in the immature spine treated with growing rods. Spine 2010, 35, E1199–E1203. [Google Scholar] [CrossRef]
- Flynn, J.M.; Tomlinson, L.A.; Pawelek, J.; Thompson, G.H.; McCarthy, R.; Akbarnia, B.A.; Growing Spine Study Group. Growing-rod graduates: Lessons learned from ninety-nine patients who completed lengthening. J. Bone Jt. Surg. Am. 2013, 95, 1745–1750. [Google Scholar] [CrossRef]
- Helenius, I.J.; Sponseller, P.D.; McClung, A.; Pawelek, J.B.; Yazici, M.; Emans, J.B.; Thompson, G.H.; Johnston, C.E.; Shah, S.A.; Akbarnia, B.A. Surgical and health-related quality-of-life outcomes of growing rod “Graduates” with severe versus moderate early-onset scoliosis. Spine 2019, 44, 698–706. [Google Scholar] [CrossRef]
- Bouton, D.; Karol, L.; Poppino, K.; Johnston, C. Continued deterioration in pulmonary function at average 23-year follow-up from early thoracic fusion in non-neuromuscular scoliosis. Spine Deform. 2021, 9, 587–594. [Google Scholar] [CrossRef] [PubMed]
- ElBromboly, Y.; Hurry, J.; Johnston, C.; McClung, A.; Samdani, A.; Glotzbecker, M.; Hilaire, T.S.; Flynn, T.; Pediatric Spine Study Group; El-Hawary, R. Can distraction-based surgeries achieve minimum 18 cm thoracic height for patients with early onset scoliosis? Spine Deform. 2021, 9, 603–608. [Google Scholar] [CrossRef]
- Kan, M.M.P.; Negrini, S.; Di Felice, F.; Cheung, J.P.Y.; Donzelli, S.; Zaina, F.; Samartzis, D.; Cheung, E.T.C.; Wong, A.Y.L. Is impaired lung function related to spinal deformities in patients with adolescent idiopathic scoliosis? A systematic review and meta-analysis-SOSORT 2019 award paper. Eur. Spine J. 2023, 32, 118–139. [Google Scholar] [CrossRef]
- Johnston, C.E.; Richards, B.S.; Sucato, D.J.; Bridwell, K.H.; Lenke, L.G.; Erickson, M.; Spinal Deformity Study Group. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine 2011, 36, 1096–1102. [Google Scholar] [CrossRef]
- Ridderbusch, K.; Rupprecht, M.; Kunkel, P.; Hagemann, C.; Stücker, R. Preliminary Results of Magnetically Controlled Growing Rods for Early Onset Scoliosis. J. Pediatr. Orthop. 2017, 37, e575–e580. [Google Scholar] [CrossRef] [PubMed]
- Luhmann, S.J.; Skaggs, D.L.; Pahys, J.; Samdani, A.; El-Hawary, R. Single distraction-rod constructs in severe early-onset scoliosis: Indications and outcomes. Spine J. 2022, 22, 305–312. [Google Scholar] [CrossRef]
- Samadov, F.; Ozdemir, H.M.; Talmac, M.A.; Erinc, S.; Cakirturk, S.; Cengiz, B. Traditional versus magnetically controlled growing rods in early onset scoliosis surgical treatment. Eur. Spine J. 2023, 32, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.P.Y.; Bow, C.; Cheung, K.M.C. “Law of Temporary Diminishing Distraction Gains”: The Phenomenon of Temporary Diminished Distraction Lengths with Magnetically Controlled Growing Rods That Is Reverted with Rod Exchange. Glob. Spine J. 2022, 12, 221–228. [Google Scholar] [CrossRef] [PubMed]
Demographic n = 161 | All Patients n = 161 |
---|---|
N (%) | 161 (100%) |
Age in years (SD) at insertion of MCGRs | 7.08 (2.32) |
Mean (SD) FU, months | 32.8 (27.5) |
Gender, n (%) | |
Male | 71 (44%) |
Female | 90 (56%) |
Etiology, n (%) | |
Congenital | 10 (6%) |
Idiopathic | 58 (36%) |
Neuromuscular | 51 (32%) |
Syndromic | 42 (26%) |
Rod diameter, n (%) of rods | |
a. 4.5 mm, 5.0 mm | 66 (22%) |
b. 5.5 mm, 6.0 mm | 236 (78%) |
Rod length, n (%) of rods | |
a. 70 mm | 114 (38%) |
b. 90 mm | 188 (62%) |
Number of pts in which rods inserted | |
a. Single rod | 20 (12.5%) |
b. Double rods | 141 (87.5%) |
Patients, n (%) | |
a. Under six years of age | 73 (45%) |
b. Over six years of age | 88 (55%) |
p-value (a vs. b) | |
MC, n (%) | |
a. More than 90° | 66 (41%) |
b. Less than 90° | 95 (59%) |
p-value (a vs. b) | |
Number of pts who underwent preop with Halo Gravity Traction before MCGR insertion, n (%) | 32 (20%) |
Number of pts who underwent anterior release before MCGR insertion, n (%) | 16 (10%) |
Variable | IS (n = 58) A | SS (n = 42) B | NS (n = 51) C | CS (n = 10) D | Total (n = 161) | p-Value |
---|---|---|---|---|---|---|
Mean (SD) age at MCGR implantation in years | 7.2 (2.8) | 8.3 (2.3) | 7.6 (3.1) | 8.4 (2.2) | 7.08 (2.3) | 0.9743 |
FFU (SD) in months | 39.5 (29.2) | 34.5 (26.8) | 34.5 (28.8) | 39.5 (29.8) | 32.8 (27.5) | 0.9819 |
Mean (SD) preoperative major curve, degrees | 85.3 (22) | 82.5 (24) | 88.2 (25) | 81.9 (19) | 86.2 (21) | 0.4134 |
Mean (SD) postoperative major curve, degrees | 45.3 (12) | 51.2 (16) | 44.8 (11) | 44.6 (10) | 46.9 (14) | 0.4323 |
Mean (SD) major curve at FFU, degrees | 43.1 (13) | 48.7 (14) | 47.7 (15) | 45.2 (12) | 45.8 (12) | 0.5271 |
Preoperative vs. FFU comparisons | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Mean (SD) preoperative thoracic kyphosis, degrees | 55.2 (21) | 39.4 (19) | 35.3 (17) | 47.1 (19) | 47.2 (20) | 0.4139 |
Mean (SD) postoperative thoracic kyphosis, degrees | 40.1 (18) | 38.4 (16) | 33.2 (15) | 39.3 (14) | 47.1 (17) | 0.3627 |
Mean (SD) max. thoracic kyphosis at FFU, degrees | 32.8 (16) | 36.4 (15) | 37.5 (14) | 41.2 (14) | 44.5 (15) | 0.3988 |
Preoperative vs. FFU comparisons | p < 0.001 | p > 0.05 | p > 0.05 | p < 0.001 | p > 0.05 | |
Mean (SD) preoperative lumbar lordosis, degrees | 45.7 (16) | 40.2 (15) | 45.8 (14) | 41.7 (13) | 44.2 (14) | 0.8863 |
Mean (SD) postoperative lumbar lordosis, degrees | 41.9 (12) | 42.4 (11) | 36.9 (12) | 37.7 (13) | 39 (12) | 0.8928 |
Mean (SD) lumbar lordosis at FFU, degrees | 48.9 (13) | 38.9 (12) | 37.8 (11) | 40.2 (12) | 45.8 (11) | 0.9469 |
Preoperative vs. FFU comparisons | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
Variable | IS (n = 58) A | SS (n = 42) B | NS (n = 51) C | CS (n = 10) D | Total (n = 161) |
---|---|---|---|---|---|
Mean (SD) preoperative T1–T12 height in mm | 138 (34) | 158 (38) | 165 (41) | 142 (38) | 166 (36) |
Mean (SD) postoperative T1–T12 height in mm | 165 (37) | 183 (39) | 190 (38) | 171 (38) | 188 (39) |
Mean T1–T12 height in mm at FFU | 202 (36) | 205 (37) | 204 (36) | 193 (36) | 208 (38) |
Preoperative vs. FFU comparisons | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Postoperative comparisons | |||||
A vs. B | A vs. C | A vs. D | B vs. C | B vs. D | C vs. D |
p > 0.05 | p > 0.05 | p < 0.001 | p > 0.05 | p < 0.001 | p < 0.001 |
Mean (SD) preoperative T1–S1 height in mm | 282 (58) | 293 (62) | 282 (65) | 262 (58) | 295 (65) |
Mean (SD) postoperative T1–S1 height in mm | 317 (55) | 328 (58) | 315 (58) | 297 (54) | 328 (63) |
Mean (SD) T1–S1 height in mm at FFU | 334 (48) | 364 (53) | 351 (52) | 342 (49) | 368 (55) |
Preoperative vs. FFU comparisons | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Postoperative comparisons | |||||
A vs. B | A vs. C | A vs. D | B vs. C | B vs. D | C vs. D |
p < 0.001 | p < 0.001 | p > 0.05 | p > 0.05 | p < 0.001 | p > 0.05 |
Variable | IS (n = 58) A | SS (n = 42) B | NS (n = 51) C | CS (n = 10) D | Total (n = 161) |
---|---|---|---|---|---|
Mean (SD) length of distraction phase, months | 36.5 (14.2) | 33.9 (9.8) | 29.7 (11.2) | 26.8 (8.8) | 37.5 (13.8) |
A vs. B p > 0.05 | A vs. C p < 0.001 | A vs. D p < 0.001 | B vs. C p > 0.05 | B vs. D p > 0.05 | C vs. D p > 0.05 |
Mean (SD) number of times a patient underwent lengthening per year | 6.5 (1.5) | 5.5 (2.2) | 5.8 (1.2) | 6.2 (1.4) | 6.7 (1.3) |
A vs. B p > 0.05 | A vs. C p > 0.05 | A vs. D p > 0.05 | B vs. C p > 0.05 | B vs. D p > 0.05 | C vs. D p > 0.05 |
Variable | IS (n = 58) A | SS (n = 42) B | NS (n = 51) C | CS (n = 10) D | Total (n = 161) |
---|---|---|---|---|---|
Mean (SD) T1–T12 growth in mm/year at FFU | 6.2 (1.8) | 5.8 (1.2) | 5.5 (1.5) | 5.2 (1.1) | 5.95 (2.2) |
A vs. B p < 0.001 | A vs. C p < 0.001 | A vs. D p < 0.001 | B vs. C p > 0.05 | B vs. D p > 0.05 | C vs. D p < 0.001 |
Mean (SD) T1–S1 growth in mm/year at FFU | 10.8 (3.2) | 9.1 (2.8) | 9.8 (2.6) | 8.8 (2.8) | 10.1 (3.4) |
A vs. B p > 0.05 | A vs. C p > 0.05 | A vs. D p < 0.001 | B vs. C p > 0.05 | B vs. D p > 0.05 | C vs. D p < 0.001 |
Complications | IS (n = 58) | SS (n = 42) | NS (n = 51) | CS (n = 10) | Total Value |
---|---|---|---|---|---|
infection | 1 | 1 | 4 | 1 | 7 |
anchor pull-out | 2 | 2 | 3 | 1 | 8 |
rod breakage | 4 | 2 | 4 | 1 | 11 |
pin fracture | 1 | 2 | 3 | 0 | 6 |
distraction failure | 7 | 3 | 5 | 3 | 18 |
adding-on | 0 | 1 | 0 | 0 | 1 |
PJK | 1 | 2 | 2 | 1 | 6 |
Total | 16 (10%) | 13 (8%) | 21 (13%) | 7 (4%) | 57 (35%) |
Variable Total (n = 48) | Final MCGR | PSF | p-Value |
---|---|---|---|
Mean (SD) major curve at FFU, degrees | 48.8 (12) | 25 (13) | p < 0.001 |
Mean (SD) max. thoracic kyphosis at FFU, degrees | 44.5 (15) | 32.5 (14) | p < 0.001 |
Mean (SD) lumbar lordosis at FFU, degrees | 45.8 (13) | 41 (11) | p > 0.05 |
Mean (SD) T1–T12 height in mm at FFU | 212 (36) | 241 (48) | p < 0.001 |
Mean (SD) T1–S1 height in mm at FFU | 358 (61) | 392 (45) | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabala, P.; Gupta, M.C.; Pereira, D.E.; Latalski, M.; Danielewicz, A.; Glowka, P.; Grabala, M. Radiological Outcomes of Magnetically Controlled Growing Rods for the Treatment of Children with Various Etiologies of Early-Onset Scoliosis—A Multicenter Study. J. Clin. Med. 2024, 13, 1529. https://doi.org/10.3390/jcm13061529
Grabala P, Gupta MC, Pereira DE, Latalski M, Danielewicz A, Glowka P, Grabala M. Radiological Outcomes of Magnetically Controlled Growing Rods for the Treatment of Children with Various Etiologies of Early-Onset Scoliosis—A Multicenter Study. Journal of Clinical Medicine. 2024; 13(6):1529. https://doi.org/10.3390/jcm13061529
Chicago/Turabian StyleGrabala, Pawel, Munish C. Gupta, Daniel E. Pereira, Michal Latalski, Anna Danielewicz, Pawel Glowka, and Michal Grabala. 2024. "Radiological Outcomes of Magnetically Controlled Growing Rods for the Treatment of Children with Various Etiologies of Early-Onset Scoliosis—A Multicenter Study" Journal of Clinical Medicine 13, no. 6: 1529. https://doi.org/10.3390/jcm13061529
APA StyleGrabala, P., Gupta, M. C., Pereira, D. E., Latalski, M., Danielewicz, A., Glowka, P., & Grabala, M. (2024). Radiological Outcomes of Magnetically Controlled Growing Rods for the Treatment of Children with Various Etiologies of Early-Onset Scoliosis—A Multicenter Study. Journal of Clinical Medicine, 13(6), 1529. https://doi.org/10.3390/jcm13061529