Tackling Post-COVID-19 Rehabilitation Challenges: A Pilot Clinical Trial Investigating the Role of Robotic-Assisted Hand Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Robotics Hand Exoskeleton
2.2. Recruitment
2.3. Study Protocol and Setup
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Outcomes Measures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coronavirus Update (Live)-Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 7 November 2023).
- KFF Global COVID-19 Tracker. Available online: https://www.kff.org/coronavirus-covid-19/issue-brief/global-covid-19-tracker/ (accessed on 10 February 2024).
- Msemburi, W.; Karlinsky, A.; Knutson, V.; Aleshin-Guendel, S.; Chatterji, S.; Wakefield, J. The WHO Estimates of Excess Mortality Associated with the COVID-19 Pandemic. Nature 2023, 613, 130–137. [Google Scholar] [CrossRef]
- de Sire, A.; Giray, E.; Ozyemisci Taskiran, O. Chelsea Physical Assessment Tool for Evaluating Functioning in Post-Intensive Care Unit COVID-19 Patients. J. Med. Virol. 2021, 93, 2620–2622. [Google Scholar] [CrossRef] [PubMed]
- Halpin, S.J.; McIvor, C.; Whyatt, G.; Adams, A.; Harvey, O.; McLean, L.; Walshaw, C.; Kemp, S.; Corrado, J.; Singh, R.; et al. Postdischarge Symptoms and Rehabilitation Needs in Survivors of COVID-19 Infection: A Cross-Sectional Evaluation. J. Med. Virol. 2021, 93, 1013–1022. [Google Scholar] [CrossRef]
- Coraci, D.; Fusco, A.; Frizziero, A.; Giovannini, S.; Biscotti, L.; Padua, L. Global Approaches for Global Challenges: The Possible Support of Rehabilitation in the Management of COVID-19. J. Med. Virol. 2020, 92, 1739–1740. [Google Scholar] [CrossRef] [PubMed]
- Wostyn, P. COVID-19 and Chronic Fatigue Syndrome: Is the Worst yet to Come? Med. Hypotheses 2021, 146, 110469. [Google Scholar] [CrossRef]
- Gruther, W.; Benesch, T.; Zorn, C.; Paternostro-Sluga, T.; Quittan, M.; Fialka-Moser, V.; Spiss, C.; Kainberger, F.; Crevenna, R. Muscle Wasting in Intensive Care Patients: Ultrasound Observation of the M. Quadriceps Femoris Muscle Layer. J. Rehabil. Med. 2008, 40, 185–189. [Google Scholar] [CrossRef]
- Plapler, P.G.; de Souza, D.R.; Kaziyama, H.H.S.; Battistella, L.R.; de Barros-Filho, T.E.P. Relationship between the Coronavirus Disease 2019 Pandemic and Immobilization Syndrome. Clinics 2021, 76, e2652. [Google Scholar] [CrossRef]
- Parry, S.M.; Puthucheary, Z.A. The Impact of Extended Bed Rest on the Musculoskeletal System in the Critical Care Environment. Extrem. Physiol. Med. 2015, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-Month Consequences of COVID-19 in Patients Discharged from Hospital: A Cohort Study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Kiekens, C.; Boldrini, P.; Andreoli, A.; Avesani, R.; Gamna, F.; Grandi, M.; Lombardi, F.; Lusuardi, M.; Molteni, F.; Perboni, A.; et al. Rehabilitation and Respiratory Management in the Acute and Early Post-Acute Phase “Instant Paper from the Field” on Rehabilitation Answers to the COVID-19 Emergency. Eur. J. Phys. Rehabil. Med. 2020, 56, 323–326. [Google Scholar] [CrossRef]
- Belli, S.; Balbi, B.; Prince, I.; Cattaneo, D.; Masocco, F.; Zaccaria, S.; Bertalli, L.; Cattini, F.; Lomazzo, A.; Dal Negro, F.; et al. Low Physical Functioning and Impaired Performance of Activities of Daily Life in COVID-19 Patients Who Survived Hospitalisation. Eur. Respir. J. 2020, 56, 2002096. [Google Scholar] [CrossRef]
- Ferraro, F.; Calafiore, D.; Dambruoso, F.; Guidarini, S.; de Sire, A. COVID-19 Related Fatigue: Which Role for Rehabilitation in Post-COVID-19 Patients? A Case Series. J. Med. Virol. 2021, 93, 1896–1899. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, E.; Peleg, S.; Bartur, G.; Elbo, E.; Vatine, J.-J. HandTutorTM Enhanced Hand Rehabilitation after Stroke—A Pilot Study. Physiother. Res. Int. 2011, 16, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Ueki, S.; Kawasaki, H.; Ito, S.; Nishimoto, Y.; Abe, M.; Aoki, T.; Ishigure, Y.; Ojika, T.; Mouri, T. Development of a Hand-Assist Robot with Multi-Degrees-of-Freedom for Rehabilitation Therapy. IEEE/ASME Trans. Mechatron. 2012, 17, 136–146. [Google Scholar] [CrossRef]
- Kutner, N.G.; Zhang, R.; Butler, A.J.; Wolf, S.L.; Alberts, J.L. Quality-of-Life Change Associated with Robotic-Assisted Therapy to Improve Hand Motor Function in Patients with Subacute Stroke: A Randomized Clinical Trial. Phys. Ther. 2010, 90, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.L.; Winstein, C.J.; Miller, J.P.; Taub, E.; Uswatte, G.; Morris, D.; Giuliani, C.; Light, K.E.; Nichols-Larsen, D. Effect of Constraint-Induced Movement Therapy on Upper Extremity Function 3 to 9 Months after Stroke: The EXCITE Randomized Clinical Trial. J. Am. Med. Assoc. 2006, 296, 2095–2104. [Google Scholar] [CrossRef]
- Caliandro, P.; Molteni, F.; Simbolotti, C.; Guanziroli, E.; Iacovelli, C.; Reale, G.; Giovannini, S.; Padua, L. Exoskeleton-Assisted Gait in Chronic Stroke: An EMG and Functional near-Infrared Spectroscopy Study of Muscle Activation Patterns and Prefrontal Cortex Activity. Clin. Neurophysiol. 2020, 131, 1775–1781. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.J.; Krebs, H.I. Effects of Robot-Assisted Therapy on Upper Limb Recovery after Stroke: A Systematic Review. Neurorehabil. Neural Repair 2008, 22, 111–121. [Google Scholar] [CrossRef]
- Rietman, J.S.; Prange, G.; Kottink, A.; Ribbers, G.; Buurke, J. The Effect of an Arm Supporting Training Device in Sub-Acute Stroke Patients: Randomized Clinical Trial. Arch. Phys. Med. Rehabil. 2014, 95, e8. [Google Scholar] [CrossRef]
- Bosecker, C.; Dipietro, L.; Volpe, B.; Igo Krebs, H. Kinematic Robot-Based Evaluation Scales and Clinical Counterparts to Measure Upper Limb Motor Performance in Patients with Chronic Stroke. Neurorehabil. Neural. Repair 2010, 24, 62–69. [Google Scholar] [CrossRef]
- Kahn, L.E.; Lum, P.S.; Rymer, W.Z.; Reinkensmeyer, D.J. Robot-Assisted Movement Training for the Stroke-Impaired Arm: Does It Matter What the Robot Does? J. Rehabil. Res. Dev. 2006, 43, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.K. Virtual Environments for Motor Rehabilitation: Review. CyberPsychology Behav. 2005, 8, 187–211. [Google Scholar] [CrossRef] [PubMed]
- Andrenelli, E.; Negrini, F.; de Sire, A.; Patrini, M.; Lazzarini, S.G.; Ceravolo, M.G. Rehabilitation and COVID-19: A Rapid Living Systematic Review 2020 by Cochrane Rehabilitation Field. Update as of September 30th, 2020. Eur. J. Phys. Rehabil. Med. 2020, 56, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Cevei, M.; Onofrei, R.R.; Gherle, A.; Gug, C.; Stoicanescu, D. Rehabilitation of Post-COVID-19 Musculoskeletal Sequelae in Geriatric Patients: A Case Series Study. Int. J. Environ. Res. Public Health 2022, 19, 15350. [Google Scholar] [CrossRef] [PubMed]
- Tay, S.S.; Visperas, C.A.; Zaw, E.M.; Tan, M.M.J.; Samsudin, F.; Koh, X.H. Functional Outcomes of COVID-19 Patients Who Underwent Acute Inpatient Rehabilitation and the Exploration of the Benefits of Adjunct Robotic Therapy and the Effects of Frailty. Proc. Singap. Health 2023, 32, 20101058221150078. [Google Scholar] [CrossRef]
- Zasadzka, E.; Tobis, S.; Trzmiel, T.; Marchewka, R.; Kozak, D.; Roksela, A.; Pieczyńska, A.; Hojan, K. Application of an EMG-Rehabilitation Robot in Patients with Post-Coronavirus Fatigue Syndrome (COVID-19)—A Feasibility Study. Int. J. Environ. Res. Public Health 2022, 19, 10398. [Google Scholar] [CrossRef]
- Moreno-San Juan, V.; Cisnal, A.; Fraile, J.; Pérez-Turiel, J.; de la Fuente, E. Design and Characterization of a Lightweight Underactuated RACA Hand Exoskeleton for Neurorehabilitation. Robot. Auton. Syst. 2021, 143, 103828. [Google Scholar] [CrossRef]
- Barria, P.; Riquelme, M.; Reppich, H.; Cisnal, A.; Fraile, J.C.; Pérez-Turiel, J.; Sierra, D.; Aguilar, R.; Andrade, A.; Nuñez-Espinosa, C. Hand Rehabilitation Based on the RobHand Exoskeleton in Stroke Patients: A Case Series Study. Front. Robot. AI 2023, 10, 1146018. [Google Scholar] [CrossRef]
- Cisnal, A.; Moreno-SanJuan, V.; Fraile, J.C.; Turiel, J.P.; de-la-Fuente, E.; Sánchez-Brizuela, G. Assessment of the Patient’s Emotional Response with the RobHand Rehabilitation Platform: A Case Series Study. J. Clin. Med. 2022, 11, 4442. [Google Scholar] [CrossRef]
- Cisnal, A.; Perez-Turiel, J.; Fraile, J.C.; Sierra, D.; De La Fuente, E. RobHand: A Hand Exoskeleton with Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation. IEEE Access 2021, 9, 137809–137823. [Google Scholar] [CrossRef]
- Granger, C.V.; Dewis, L.S.; Peters, N.C.; Sherwood, C.C.; Barrett, J.E. Stroke Rehabilitation: Analysis of Repeated Barthel Index Measures. Arch. Phys. Med. Rehabil. 1979, 60, 14–17. [Google Scholar]
- Fiedler, R.C.; Granger, C.V. The Functional Independence Measure: A Measurement of Disability and Medical Rehabilitation. In Functional Evaluation of Stroke Patients; Springer: Tokyo, Japan, 1996; pp. 75–92. [Google Scholar] [CrossRef]
- Ware, J.E.; Snow, K.K.; Kosinski, M.; Gandek, B. SF36 Health Survey: Manual and Interpretation Guide; The Health Institute, New England Medical Center: Boston, MA, USA, 1993. [Google Scholar]
- Rodríguez-Hernández, M.; Fernández-Panadero, C.; López-Martín, O.; Polonio-López, B. Hand Rehabilitation after Chronic Brain Damage: Effectiveness, Usability and Acceptance of Technological Devices: A Pilot Study. In Physical Disabilities; Tan, U., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp. 57–72. [Google Scholar] [CrossRef]
- Hsueh, I.P.; Lin, J.H.; Jeng, J.S.; Hsieh, C.L. Comparison of the Psychometric Characteristics of the Functional Independence Measure, 5 Item Barthel Index, and 10 Item Barthel Index in Patients with Stroke. J. Neurol. Neurosurg. Psychiatry 2002, 73, 188–190. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.; Polonio-López, B.; Corregidor-Sánchez, A.I.; Martín-Conty, J.L.; Mohedano-Moriano, A.; Criado-Álvarez, J.J. Can Specific Virtual Reality Combined with Conventional Rehabilitation Improve Poststroke Hand Motor Function? A Randomized Clinical Trial. J. Neuroeng. Rehabil. 2023, 20, 38. [Google Scholar] [CrossRef]
- Olczak, A.; Truszczyńska-Baszak, A. Influence of the Passive Stabilization of the Trunk and Upper Limb on Selected Parameters of the Hand Motor Coordination, Grip Strength and Muscle Tension, in Post-Stroke Patients. J. Clin. Med. 2021, 10, 2402. [Google Scholar] [CrossRef]
- Grassi, A.; Pizza, N.; Lopomo, N.F.; Marcacci, M.; Capozzi, M.; Marcheggiani Muccioli, G.M.; Colle, F.; Zaffagnini, S. No Differences in Knee Kinematics between Active and Passive Flexion-Extension Movement: An Intra-Operative Kinematic Analysis Performed during Total Knee Arthroplasty. J. Exp. Orthop. 2020, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Karasu, A.U.; Karataş, L.; Yıldız, Y.; Günendi, Z. Natural Course of Muscular Strength, Physical Performance, and Musculoskeletal Symptoms in Hospitalized Patients with COVID-19. Arch. Phys. Med. Rehabil. 2023, 104, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, S.; Coraci, D.; Loreti, C.; Castelli, L.; Caro, F. Di Prehabilitation and Heart Failure: Main Outcomes in the COVID-19 Era. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4131–4139. [Google Scholar] [CrossRef] [PubMed]
Domains | Components | Outcome Measure 1 |
---|---|---|
Body functions and structures | Genitourinary | FIM, sphincter control |
Mental functions | SF-36, mental health SF-36, vitality | |
Sensory functions and pain | SF-36, bodily pain SF-36, general health SF-36, physical functioning SF-36, role-physical | |
Neuromusculoskeletal and movement-related functions | Motion analysis, goniometry | |
Activities and participation | Communication | FIM, communication |
Mobility | BI, mobility FIM, locomotion FIM, transfers | |
Personal care | BI, health care FIM, self-care | |
Community, social, and civic life | FIM, social cognition SF-36, social functioning | |
Emotional role | SF-36, role-emotional | |
Domestic life | Interview, living arrangements | |
Environmental factors | Products and technology | Interview, electronic devices |
Personal factor | Level of education | Interview |
Demographic Characteristics | |
---|---|
Age (years) | 60.2 ± 16.0 [range 41–83] |
Gender | Male: 8 (61.5%); Female: 5 (38.5%) |
Clinical information | |
Upper limb impairments | Left: 5 (38.5%); Right: 8 (61.5%) |
Infection to study initiation time (months) | 3.8 ± 2.1 [range 1–8.5] |
Hospitalization duration (days) | 52.2 ± 40.1 [range 10–109] |
Ward stay duration (days) | 38.7 ± 27.0 [range 10–78] |
ICU admission required | Yes: 5 (38.5%); No: 8 (61.5%) |
ICU stay duration (days) | 27.0 ± 11.2 [range 7–33] |
Other clinical complications | |
Stroke | Yes: 5 (38.5%); No: 8 (61.5%) |
Stroke to study initialization time (months) | 2.8 ± 2.3 [range 1–7] |
Lymphoma | Yes: 1 (7.7%); No: 12 (92.3%) |
Lymphoma to study initiation time (months) | 12 |
Living situation | |
Living place | Residential/hospital facilities: 3; House: 10 |
Living arrangement in house | Family member/partner: 8; Alone: 2 |
Educational background | |
University: 4; Primary: 4; Secondary: 1; High school: 2; Professional training: 2 | |
Use of electronic devices | |
Mobile phone | Rarely: 4; Occasional: 2; Frequent: 7 |
Video game console | Never: 11; Occasional: 2 |
Computers | Never: 7; Occasional: 1; Frequent: 5 |
Barthel Index | Level of Dependence | Number of Participants | |
---|---|---|---|
Initial Evaluation | Follow-Up | ||
0–20 | Total dependence | 2 | 1 |
21–60 | Severe dependence | 6 | 1 |
61–90 | Moderate dependence | 4 | 5 |
91–99 | Slight dependence | 1 | 1 |
100 | Independence | 0 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisnal, A.; Alonso-Linaje, G.; Fraile, J.C.; Pérez-Turiel, J.; Álvarez, P.; Martinez, S. Tackling Post-COVID-19 Rehabilitation Challenges: A Pilot Clinical Trial Investigating the Role of Robotic-Assisted Hand Rehabilitation. J. Clin. Med. 2024, 13, 1543. https://doi.org/10.3390/jcm13061543
Cisnal A, Alonso-Linaje G, Fraile JC, Pérez-Turiel J, Álvarez P, Martinez S. Tackling Post-COVID-19 Rehabilitation Challenges: A Pilot Clinical Trial Investigating the Role of Robotic-Assisted Hand Rehabilitation. Journal of Clinical Medicine. 2024; 13(6):1543. https://doi.org/10.3390/jcm13061543
Chicago/Turabian StyleCisnal, Ana, Gonzalo Alonso-Linaje, Juan Carlos Fraile, Javier Pérez-Turiel, Pablo Álvarez, and Socorro Martinez. 2024. "Tackling Post-COVID-19 Rehabilitation Challenges: A Pilot Clinical Trial Investigating the Role of Robotic-Assisted Hand Rehabilitation" Journal of Clinical Medicine 13, no. 6: 1543. https://doi.org/10.3390/jcm13061543
APA StyleCisnal, A., Alonso-Linaje, G., Fraile, J. C., Pérez-Turiel, J., Álvarez, P., & Martinez, S. (2024). Tackling Post-COVID-19 Rehabilitation Challenges: A Pilot Clinical Trial Investigating the Role of Robotic-Assisted Hand Rehabilitation. Journal of Clinical Medicine, 13(6), 1543. https://doi.org/10.3390/jcm13061543