Predicting Long-Term Childhood Survival of Newborns with Congenital Heart Defects: A Population-Based, Prospective Cohort Study (EPICARD)
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Study Population
2.3. Outcome and Predictor Variables
2.4. Statistical Analysis
2.5. Model Fit
2.6. Assessment of Predictive Ability
2.7. Model Validation
2.8. Comparison with the General Population
2.9. Ethics Approval
3. Results
3.1. Descriptive Analysis
3.2. Predictive Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zipes, D.P.; Libby, P.; Bonow, R.O.; Mann, D.L.; Tomaselli, G.F.; Braunwald, E. (Eds.) Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 11th ed.; International Edition; Elsevier: Philadelphia, PA, USA, 2019; 1944p. [Google Scholar]
- Dolk, H.; Loan, M.; Garne, E.; A European Surveillance of Congenital Anomalies (EUROCAT) Working Group. Congenital Heart Defects in Europe, Prevalence and Morality, 2000 to 2005. Circulation 2011, 123, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Khoshnood, B.; Lelong, N.; Houyel, L.; Thieulin, A.-C.; Jouannic, J.-M.; Magnier, S.; Delezoide, A.-L.; Magny, J.-F.; Rambaud, C.; Bonnet, D.; et al. Prevalence, timing of diagnosis and mortality of newborns with congenital heart defects: A population-based study. Heart 2012, 98, 1667–1673. [Google Scholar] [CrossRef]
- Van der Bom, T.; Zomer, A.C.; Zwinderman, A.H.; Meijboom, F.J.; Bouma, B.J.; Mulder, B.J.M. The changing epidemiology of congenital heart disease. Nat. Rev. Cardiol. 2011, 8, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi, H.; Oster, M.; Reefhuis, J. Long-Term Outcomes in Children with Congenital Heart Disease: National Health Interview Survey. J. Pediatr. 2015, 166, 119–124.e1. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Zühlke, L.; Black, G.C.; Choy, M.-K.; Li, N.; Keavney, B.D. Global birth prevalence of congenital heart defects 1970–2017: Updated systematic review and meta-analysis of 260 studies. Int. J. Epidemiol. 2019, 48, 455–463. [Google Scholar] [CrossRef]
- van der Linde, D.; Konings, E.E.M.; Slager, M.A.; Witsenburg, M.; Helbing, W.A.; Takkenberg, J.J.M.; Roos-Hesselink, J.W. Birth Prevalence of Congenital Heart Disease Worldwide. J. Am. Coll. Cardiol. 2011, 58, 2241–2247. [Google Scholar] [CrossRef]
- Tararbit, K.; Bui, T.T.T.; Lelong, N.; Thieulin, A.-C.; Goffinet, F.; Khoshnood, B. Clinical and socioeconomic predictors of pregnancy termination for fetuses with congenital heart defects: A population-based evaluation. Prenat. Diagn. 2013, 33, 179–186. [Google Scholar] [CrossRef]
- Blue, G.M.; Kirk, E.P.; Sholler, G.F.; Harvey, R.P.; Winlaw, D.S. Congenital heart disease: Current knowledge about causes and inheritance. Med. J. Aust. 2012, 197, 155–159. [Google Scholar] [CrossRef]
- Jenkins, K.J.; Correa, A.; Feinstein, J.A.; Botto, L.; Britt, A.E.; Daniels, S.R.; Elixson, M.; Warnes, C.A.; Webb, C.L. Noninherited Risk Factors and Congenital Cardiovascular Defects: Current Knowledge: A Scientific Statement from the American Heart Association Council on Cardiovascular Disease in the Young: Endorsed by the American Academy of Pediatrics. Circulation 2007, 115, 2995–3014. [Google Scholar] [CrossRef] [PubMed]
- Houyel, L.; Khoshnood, B.; Anderson, R.H.; Lelong, N.; Thieulin, A.-C.; Goffinet, F.; Bonnet, D. Population-based evaluation of a suggested anatomic and clinical classification of congenital heart defects based on the International Paediatric and Congenital Cardiac Code. Orphanet J. Rare Dis. 2011, 6, 64. [Google Scholar] [CrossRef] [PubMed]
- Botto, L.D.; Lin, A.E.; Riehle-Colarusso, T.; Malik, S.; Correa, A. Seeking Causes: Classifying and Evaluating Congenital Heart Defects in Etiologic Studies. Birth Defects Res. Clin. Mol. Teratol. 2007, 79, 714–727. [Google Scholar] [CrossRef]
- Kattan, M.W.; Gönen, M. The prediction philosophy in statistics. Urol. Oncol. Semin. Orig. Investig. 2008, 26, 316–319. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Royston, P.; Vergouwe, Y.; Grobbee, D.E.; Altman, D.G. Prognosis and prognostic research: What, why, and how? BMJ 2009, 338, b375. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; Lambert, P.C. Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model; Stata Press: College Station, TX, USA, 2011; 347p. [Google Scholar]
- Peduzzi, P.; Concato, J.; Feinstein, A.R.; Holford, T.R. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J. Clin. Epidemiol. 1995, 48, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and Cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; Moons, K.G.M.; Altman, D.G.; Vergouwe, Y. Prognosis and prognostic research: Developing a prognostic model. BMJ 2009, 338, b604. [Google Scholar] [CrossRef]
- Choodari-Oskooei, B.; Royston, P.; Parmar, M.K.B. A simulation study of predictive ability measures in a survival model I: Explained variation measures. Stat. Med. 2012, 31, 2627–2643. [Google Scholar] [CrossRef]
- Altman, D.G.; Vergouwe, Y.; Royston, P.; Moons, K.G.M. Prognosis and prognostic research: Validating a prognostic model. BMJ 2009, 338, b605. [Google Scholar] [CrossRef] [PubMed]
- Harrell, F.E.; Lee, K.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- INSEE. Tables de Mortalité par Niveau de Vie. Available online: https://www.insee.fr/fr/statistiques/3311422?sommaire=3311425 (accessed on 22 October 2021).
- Al-Radi, O.O.; Harrell, F.E.; Caldarone, C.A.; McCrindle, B.W.; Jacobs, J.P.; Williams, M.G.; Van Arsdell, G.S.; Williams, W.G. Case Complexity Scores in Congenital Heart Surgery: A Comparative Study of the Aristotle Basic Complexity Score and the Risk Adjustment in Congenital Heart Surgery (RACHS-1) System. J. Thorac. Cardiovasc. Surg. 2007, 133, 865–875. [Google Scholar] [CrossRef]
- Kang, N.; Tsang, V.T.; Elliott, M.J.; de Leval, M.R.; Cole, T.J. Does the Aristotle Score Predict Outcome in Congenital Heart Surgery? Eur. J. Cardiothorac. Surg. 2006, 29, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Lacour-Gayet, F.D.; Clarke, D.; Jacobs, J.; Gaynor, W.; Hamilton, L.; Jasobs, M.; Maruszewski, B.; Pozzi, M.; Spray, T.; Tchervenkov, C.; et al. The Aristotle Score for Congenital Heart Surgery. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card Surg. Annu. 2004, 7, 185–191. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.M.; Clarke, D.R.; Jacobs, J.P.; Jacobs, M.L.; Lacour-Gayet, F.G.; Pizarro, C.; Welke, K.F.; Maruszewski, B.; Tobota, Z.; Miller, W.J.; et al. An Empirically Based Tool for Analyzing Mortality Associated with Congenital Heart Surgery. J. Thorac. Cardiovasc. Surg. 2009, 138, 1139–1153. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.M.; Jacobs, J.P.; Clarke, D.R.; Maruszewski, B.; Jacobs, M.L.; Walters, H.L.; Tchervenkov, C.I.; Welke, K.F.; Tobota, Z.; Stellin, G.; et al. Accuracy of the Aristotle Basic Complexity Score for Classifying the Mortality and Morbidity Potential of Congenital Heart Surgery Operations. Ann. Thorac. Surg. 2007, 84, 2027–2037. [Google Scholar] [CrossRef]
Standard Parametric Models | Flexible Parametric Scale |
---|---|
Weibull | Hazard |
ln{−ln S(t; xi)} = ln{−ln S0(t)} + xiβ | ln{−ln S0(t; xi)} = s(ln t; γ) + xiβ |
Loglogistic | Odds |
logit{1 − S(t; xi)} = logit{1 − S0(t)} + xiβ | logit{1 − S(t; xi)} = s(ln t; γ) + xiβ |
Lognormal | Probit |
−Φ−1{S(ln t)} = −Φ−1{S0(ln t)} + xiβ | −Φ−1{S(ln t)} = s(ln t; γ) + xiβ |
Number of Interior Knots | dfs | Centiles (Uncensored Log Event-Time) |
---|---|---|
1 | 2 | 50 |
2 | 3 | 33, 67 |
3 | 4 | 25, 50, 75 |
4 | 5 | 20, 40, 60, 80 |
5 | 6 | 17, 33, 50, 67, 83 |
6 | 7 | 14, 29, 43, 57, 71, 86 |
7 | 8 | 12.5, 25, 37.5, 50, 62.5, 75, 87.5 |
8 | 9 | 11.1, 22.2, 33.3, 44.4, 55.6, 66.7, 77.8, 88.9 |
9 | 10 | 10, 20, 30, 40, 50, 60, 70, 80, 90 |
N (%) or Mean ± SD | 8-Year Survival Rate (%) | |
---|---|---|
Female | 1018 (54.1) | 96 |
SGA † (<10th percentile of Audipog curve) | 205 (10.9) | 93 * |
Surgery during 1st year of life | 382 (20.3) | 92 * |
Preterm (<37 weeks of gestation) | 240 (12.8) | 91 * |
ACC-CHD Groups | N (%) | S(t) * |
---|---|---|
Heterotaxy, including isomerism and mirror-imagery + complex anomalies of atrioventricular connections + congenital anomalies of the coronary arteries (heterotaxy + AV connections + coronary anomalies) | 22 (1.2) | 0.68 [0.45–0.83] |
Anomalies of the venous return | 20 (1.1) | 0.80 [0.55–0.92] |
Anomalies of the atria and interatrial communications + ventricular septal defects (IAC + VSD) | 1311 (69.7) | 0.99 [0.988–0.997] |
Anomalies of the atrioventricular junctions and valves | 48 (2.5) | 0.77 [0.62–0.87] |
Functionally univentricular hearts | 34 (1.8) | 0.44 [0.27–0.60] |
Anomalies of the ventricular outflow tracts (ventriculo-arterialconnections) | 360 (19.1) | 0.94 [0.91–0.96] |
Anomalies of the extrapericardial arterial trunks | 86 (4.6) | 0.92 [0.84–0.96] |
Model 1 | Model 2 | |
---|---|---|
Original dataset | ||
Royston’s D | 1.43 | 1.60 |
R2 | 0.45 [0.36–0.52] | 0.50 [0.41–0.58] |
Bootstrap sampling | ||
Royston’s D | 1.40 | 1.49 |
R2 | 0.44 [0.35–0.51] | 0.47 [0.38–0.55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahshenas, M.; Lelong, N.; Bonnet, D.; Houyel, L.; Choodari-Oskooei, B.; Gonen, M.; Goffinet, F.; Khoshnood, B. Predicting Long-Term Childhood Survival of Newborns with Congenital Heart Defects: A Population-Based, Prospective Cohort Study (EPICARD). J. Clin. Med. 2024, 13, 1623. https://doi.org/10.3390/jcm13061623
Rahshenas M, Lelong N, Bonnet D, Houyel L, Choodari-Oskooei B, Gonen M, Goffinet F, Khoshnood B. Predicting Long-Term Childhood Survival of Newborns with Congenital Heart Defects: A Population-Based, Prospective Cohort Study (EPICARD). Journal of Clinical Medicine. 2024; 13(6):1623. https://doi.org/10.3390/jcm13061623
Chicago/Turabian StyleRahshenas, Makan, Nathalie Lelong, Damien Bonnet, Lucile Houyel, Babak Choodari-Oskooei, Mithat Gonen, Francois Goffinet, and Babak Khoshnood. 2024. "Predicting Long-Term Childhood Survival of Newborns with Congenital Heart Defects: A Population-Based, Prospective Cohort Study (EPICARD)" Journal of Clinical Medicine 13, no. 6: 1623. https://doi.org/10.3390/jcm13061623
APA StyleRahshenas, M., Lelong, N., Bonnet, D., Houyel, L., Choodari-Oskooei, B., Gonen, M., Goffinet, F., & Khoshnood, B. (2024). Predicting Long-Term Childhood Survival of Newborns with Congenital Heart Defects: A Population-Based, Prospective Cohort Study (EPICARD). Journal of Clinical Medicine, 13(6), 1623. https://doi.org/10.3390/jcm13061623