Cardiac Rehabilitation Increases Plasma Klotho Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. Biomarker and Analytical Studies
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Modulation of Biomarkers after Six Months
4. Discussion
4.1. Characteristics of the Population
4.2. Adjusted Comparison of Changes in Biomarkers between Groups
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.-D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Emergencias 2016, 2016, CD001800. [Google Scholar] [CrossRef]
- Salzwedel, A.; Jensen, K.; Rauch, B.; Doherty, P.; Metzendorf, M.-I.; Hackbusch, M.; Völler, H.; Schmid, J.-P.; Davos, C.H. Effectiveness of comprehensive cardiac rehabilitation in coronary artery disease patients treated according to contemporary evidence based medicine: Update of the Cardiac Rehabilitation Outcome Study (CROS-II). Eur. J. Prev. Cardiol. 2020, 27, 1756–1774. [Google Scholar] [CrossRef]
- Navarro-García, J.A.; Fernández-Velasco, M.; Delgado, C.; Delgado, J.F.; Kuro-O, M.; Ruilope, L.M.; Ruiz-Hurtado, G. PTH, vitamin D, and the FGF-23–klotho axis and heart: Going beyond the confines of nephrology. Eur. J. Clin. Investig. 2018, 48, e12902. [Google Scholar] [CrossRef]
- Kuro-O, M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat. Rev. Nephrol. 2013, 9, 650–660. [Google Scholar] [CrossRef]
- Scialla, J.J.; Xie, H.; Rahman, M.; Anderson, A.H.; Isakova, T.; Ojo, A.; Zhang, X.; Nessel, L.; Hamano, T.; Grunwald, J.E.; et al. Fibroblast Growth Factor-23 and Cardiovascular Events in CKD. J. Am. Soc. Nephrol. 2014, 25, 349–360. [Google Scholar] [CrossRef]
- Mehta, R.; Cai, X.; Lee, J.; Scialla, J.J.; Bansal, N.; Sondheimer, J.H.; Chen, J.; Hamm, L.L.; Ricardo, A.C.; Navaneethan, S.D.; et al. Association of Fibroblast Growth Factor 23 with Atrial Fibrillation in Chronic Kidney Disease, from the Chronic Renal Insufficiency Cohort Study. JAMA Cardiol. 2016, 1, 548–556. [Google Scholar] [CrossRef]
- Gutiérrez, O.M.; Januzzi, J.L.; Isakova, T.; Laliberte, K.; Smith, K.; Collerone, G.; Sarwar, A.; Hoffmann, U.; Coglianese, E.; Christenson, R.; et al. Fibroblast Growth Factor 23 and Left Ventricular Hypertrophy in Chronic Kidney Disease. Circulation 2009, 119, 2545–2552. [Google Scholar] [CrossRef] [PubMed]
- Akhabue, E.; Montag, S.; Reis, J.P.; Pool, L.R.; Mehta, R.; Yancy, C.W.; Zhao, L.; Wolf, M.; Gutierrez, O.M.; Carnethon, M.R.; et al. FGF23 (Fibroblast Growth Factor-23) and Incident Hypertension in Young and Middle-Aged Adults. Hypertension 2018, 72, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ärnlöv, J.; Carlsson, A.C.; Sundström, J.; Ingelsson, E.; Larsson, A.; Lind, L.; Larsson, T.E. Higher fibroblast growth factor-23 increases the risk of all-cause and cardiovascular mortality in the community. Kidney Int. 2013, 83, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Ix, J.H.; Katz, R.; Kestenbaum, B.R.; de Boer, I.H.; Chonchol, M.; Mukamal, K.J.; Rifkin, D.; Siscovick, D.S.; Sarnak, M.J.; Shlipak, M.G. Fibroblast Growth Factor-23 and Death, Heart Failure, and Cardiovascular Events in Community-Living Individuals: CHS (Cardiovascular Health Study). J. Am. Coll. Cardiol. 2012, 60, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.D.; Schurgers, L.; Schurgers, L.J.; Brandenburg, V.M.; Christenson, R.H.; Vermeer, C.; Ketteler, M.; Shlipak, M.G.; Whooley, M.A.; Ix, J.H. The Associations of Fibroblast Growth Factor 23 and Uncarboxylated Matrix Gla Protein with Mortality in Coronary Artery Disease: The Heart and Soul Study. Ann. Intern. Med. 2010, 152, 640–648. [Google Scholar] [CrossRef] [PubMed]
- González-Parra, E.; Aceña, A.; Lorenzo, O.; Tarín, N.; González-Casaus, M.L.; Cristóbal, C.; Huelmos, A.; Mahíllo-Fernández, I.; Pello, A.M.; Carda, R.; et al. Important abnormalities of bone mineral metabolism are present in patients with coronary artery disease with a mild decrease of the estimated glomerular filtration rate. J. Bone Miner. Metab. 2015, 34, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Tuñón, J.; Cristóbal, C.; Vicente, M.N.T.; Aceña, Á.; Gonzalez-Casaus, M.L.; Huelmos, A.; Alonso, J.J.; Lorenzo, Ó.; González-Parra, E.; Mahíllo-Fernández, I.; et al. Coexistence of Low Vitamin D and High Fibroblast Growth Factor-23 Plasma Levels Predicts an Adverse Outcome in Patients with Coronary Artery Disease. PLoS ONE 2014, 9, e95402. [Google Scholar] [CrossRef]
- Corsetti, G.; Pasini, E.; Scarabelli, T.M.; Romano, C.; Agrawal, P.R.; Chen-Scarabelli, C.; Knight, R.; Saravolatz, L.; Narula, J.; Ferrari-Vivaldi, M.; et al. Decreased expression of Klotho in cardiac atria biopsy samples from patients at higher risk of atherosclerotic cardiovascular disease. J. Geriatr. Cardiol. 2016, 13, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Meng, W.; Ding, J.; Cheng, M. Klotho inhibits angiotensin II-induced cardiomyocyte hypertrophy through suppression of the AT1R/beta catenin pathway. Biochem. Biophys. Res. Commun. 2016, 473, 455–461. [Google Scholar] [CrossRef]
- Kuro-O, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, E.; et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997, 390, 45–51. [Google Scholar] [CrossRef]
- Kurosu, H.; Ogawa, Y.; Miyoshi, M.; Yamamoto, M.; Nandi, A.; Rosenblatt, K.P.; Baum, M.G.; Schiavi, S.; Hu, M.-C.; Moe, O.W.; et al. Regulation of Fibroblast Growth Factor-23 Signaling by Klotho. J. Biol. Chem. 2006, 281, 6120–6123. [Google Scholar] [CrossRef]
- Matsumuraab, Y.; Aizawaab, H.; Shiraki-Iida, T.; Nagaibd, R.; Kuro-O, M.; Nabeshima, Y.-I. Identification of the Human Klotho Gene and Its Two Transcripts Encoding Membrane and Secreted Klotho Protein. Biochem. Biophys. Res. Commun. 1998, 242, 626–630. [Google Scholar] [CrossRef]
- Kuro-O, M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 2019, 15, 27–44. [Google Scholar] [CrossRef]
- Saito, Y.; Yamagishi, T.; Nakamuraa, T.; Ohyamaa, Y.; Aizawaa, H.; Sugaa, T.; Matsumuraab, Y.; Masudaab, H.; Kurabayashia, M.; Kuro-Ob, M.; et al. Klotho Protein Protects against Endothelial Dysfunction. Biochem. Biophys. Res. Commun. 1998, 248, 324–329. [Google Scholar] [CrossRef]
- Semba, R.D.; Cappola, A.R.; Sun, K.; Bandinelli, S.; Dalal, M.; Crasto, C.; Guralnik, J.M.; Ferrucci, L. Plasma Klotho and Cardiovascular Disease in Adults. J. Am. Geriatr. Soc. 2011, 59, 1596–1601. [Google Scholar] [CrossRef]
- Palmefors, H.; DuttaRoy, S.; Rundqvist, B.; Börjesson, M. The effect of physical activity or exercise on key biomarkers in atherosclerosis—A systematic review. Atherosclerosis 2014, 235, 150–161. [Google Scholar] [CrossRef]
- Tuñón, J.; Blanco-Colio, L.M.; Cristóbal, C.; Tarín, N.; Higueras, J.; Huelmos, A.; Alonso, J.J.; Egido, J.; Asensio, D.; Lorenzo, Ó.; et al. Usefulness of a Combination of Monocyte Chemoattractant Protein-1, Galectin-3, and N-Terminal Probrain Natriuretic Peptide to Predict Cardiovascular Events in Patients with Coronary Artery Disease. Am. J. Cardiol. 2014, 113, 434–440. [Google Scholar] [CrossRef]
- Kallmeyer, A.; Pello, A.; Cánovas, E.; Aceña, A.; González-Casaus, M.L.; Tarín, N.; Cristóbal, C.; Gutiérrez-Landaluce, C.; Huelmos, A.; Rodríguez-Valer, A.; et al. Fibroblast growth factor 23 independently predicts adverse outcomes after an acute coronary syndrome. ESC Heart Fail. 2023, 11, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F.; Merz, N.B.; Barnes, P.J.; Brinton, R.D.; Carrero, J.-J.; DeMeo, D.L.; De Vries, G.J.; Epperson, C.N.; Govindan, R.; Klein, S.L.; et al. Sex and gender: Modifiers of health, disease, and medicine. Lancet 2020, 396, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Puymirat, E.; Simon, T.; Cayla, G.; Cottin, Y.; Elbaz, M.; Coste, P.; Lemesle, G.; Motreff, P.; Popovic, B.; Khalife, K.; et al. Acute Myocardial Infarction. Circulation 2017, 136, 1908–1919. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; Jurado-Fasoli, L.; Sanchez-Delgado, G.; García-Lario, J.V.; Castillo, M.J.; Ruiz, J.R. Relationship between plasma S-Klotho and cardiometabolic risk in sedentary adults. Aging 2020, 12, 2698–2710. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Lee, H.-J.; Choi, J.-Y.; Min, J.-Y.; Min, K.-B. Association between serum klotho levels and cardiovascular disease risk factors in older adults. BMC Cardiovasc. Disord. 2022, 22, 442. [Google Scholar] [CrossRef]
- Castillo-Garzón, M.J.; Ruiz, J.R.; Ortega, F.B.; Gutiérrez, A. Anti-aging therapy through fitness enhancement. Clin. Interv. Aging 2006, 1, 213–220. [Google Scholar] [CrossRef]
- Mostafidi, E.; Moeen, A.; Nasri, H.; Hagjo, A.G.; Ardalan, M. Serum Klotho Levels in Trained Athletes. Nephro-Urology Mon. 2016, 8, e30245. [Google Scholar] [CrossRef]
- Tan, S.-J.; Chu, M.M.; Toussaint, N.D.; Cai, M.M.; Hewitson, T.D.; Holt, S.G. High-intensity physical exercise increases serum α-klotho levels in healthy volunteers. J. Circ. Biomark. 2018, 7, 1849454418794582. [Google Scholar] [CrossRef]
- Corrêa, H.d.L.; Raab, A.T.O.; Araújo, T.M.; Deus, L.A.; Reis, A.L.; Honorato, F.S.; Rodrigues-Silva, P.L.; Neves, R.V.P.; Brunetta, H.S.; Mori, M.A.d.S.; et al. A systematic review and meta-analysis demonstrating Klotho as an emerging exerkine. Sci. Rep. 2022, 12, 17587. [Google Scholar] [CrossRef] [PubMed]
- Pako, J.; Barta, I.; Balogh, Z.; Kerti, M.; Drozdovszky, O.; Bikov, A.; Antus, B.; Horvath, I.; Varga, J. Assessment of the Anti-Aging Klotho Protein in Patients with COPD Undergoing Pulmonary Rehabilitation. COPD J. Chronic Obstr. Pulm. Dis. 2017, 14, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Castañeda, J.R.; Rodelo-Haad, C.; de Mier, M.V.P.-R.; Martin-Malo, A.; Santamaria, R.; Rodriguez, M. Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins 2020, 12, 185. [Google Scholar] [CrossRef]
- Neves, R.V.P.; Corrêa, H.L.; Deus, L.A.; Reis, A.L.; Souza, M.K.; Simões, H.G.; Navalta, J.W.; Moraes, M.R.; Prestes, J.; Rosa, T.S. Dynamic not isometric training blunts osteo-renal disease and improves the sclerostin/FGF23/Klotho axis in maintenance hemodialysis patients: A randomized clinical trial. J. Appl. Physiol. 2021, 130, 508–516. [Google Scholar] [CrossRef]
- Corrêa, H.L.; Neves, R.V.P.; Deus, L.A.; Souza, M.K.; Haro, A.S.; Costa, F.; Silva, V.L.; Santos, C.A.R.; Moraes, M.R.; Simões, H.G.; et al. Blood Flow Restriction Training Blunts Chronic Kidney Disease Progression in Humans. Med. Sci. Sports Exerc. 2020, 53, 249–257. [Google Scholar] [CrossRef]
- Zhou, Y.; Hellberg, M.; Hellmark, T.; Höglund, P.; Clyne, N. Twelve months of exercise training did not halt abdominal aortic calcification in patients with CKD—A sub-study of RENEXC-a randomized controlled trial. BMC Nephrol. 2020, 21, 233. [Google Scholar] [CrossRef] [PubMed]
- Ghuman, J.; Cai, X.; Patel, R.B.; Khan, S.S.; Hecktman, J.; Redfield, M.M.; Lewis, G.; Shah, S.J.; Wolf, M.; Isakova, T.; et al. Fibroblast Growth Factor 23 and Exercise Capacity in Heart Failure with Preserved Ejection Fraction. J. Card. Fail. 2020, 27, 309–317. [Google Scholar] [CrossRef]
- Bergmark, B.A.; Udell, J.A.; Morrow, D.A.; Cannon, C.P.; Steen, D.L.; Jarolim, P.; Budaj, A.; Hamm, C.; Guo, J.; Im, K.; et al. Association of Fibroblast Growth Factor 23 with Recurrent Cardiovascular Events in Patients after an Acute Coronary Syndrome. JAMA Cardiol. 2018, 3, 473–480. [Google Scholar] [CrossRef]
- Vergaro, G.; Aimo, A.; Taurino, E.; Del Franco, A.; Fabiani, I.; Prontera, C.; Masotti, S.; Musetti, V.; Emdin, M.; Passino, C. Discharge FGF23 level predicts one year outcome in patients admitted with acute heart failure. Int. J. Cardiol. 2021, 336, 98–104. [Google Scholar] [CrossRef]
- Liu, M.; Xia, P.; Tan, Z.; Song, T.; Mei, K.; Wang, J.; Ma, J.; Jiang, Y.; Zhang, J.; Zhao, Y.; et al. Fibroblast growth factor-23 and the risk of cardiovascular diseases and mortality in the general population: A systematic review and dose-response meta-analysis. Front. Cardiovasc. Med. 2022, 9, 989574. [Google Scholar] [CrossRef]
- Wu, G.; Hu, Y.; Ding, K.; Li, X.; Li, J.; Shang, Z. The Effect of Cardiac Rehabilitation on Lipid Levels in Patients with Coronary Heart Disease. A Systematic Review and Meta-Analysis. Glob. Heart 2022, 17, 83. [Google Scholar] [CrossRef]
- Javaherian, M.; Dabbaghipour, N.; Mohammadpour, Z.; Moghadam, B.A. The Role of the Characteristics of Exercise-Based Cardiac Rehabilitation Program in the Improvement of Lipid Profile Level: A Systematic Review and Meta-Analysis. ARYA Atheroscler. 2020, 16, 192–207. [Google Scholar] [CrossRef]
- Snow, R.; LaLonde, M.; Hindman, L.; Falko, J.; Caulin-Glaser, T. Independent Effect of Cardiac Rehabilitation on Lipids in Coronary Artery Disease. J. Cardiopulm. Rehab. 2005, 25, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Leon, A.S.; Sanchez, O.A. Response of blood lipids to exercise training alone or combined with dietary intervention. Med. Sci. Sports Exerc. 2001, 33, S502–S515. [Google Scholar] [CrossRef]
- Kraus, W.E.; Houmard, J.A.; Duscha, B.D.; Knetzger, K.J.; Wharton, M.B.; McCartney, J.S.; Bales, C.W.; Henes, S.; Samsa, G.P.; Otvos, J.D.; et al. Effects of the Amount and Intensity of Exercise on Plasma Lipoproteins. N. Engl. J. Med. 2002, 347, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.F. Cardiac Rehabilitation and Getting to Lipid Goals. J. Cardiopulm. Rehabil. 2005, 25, 264–265. [Google Scholar] [CrossRef] [PubMed]
Overall (N = 174) | Control Group (N = 116) | Rehabilitation Group (N = 58) | p | |
---|---|---|---|---|
Age (years), median (IQR) | 56 (47–63) | 56 (47–63) | 56 (47–63) | 0.969 |
Male gender, n (%) | 138 (79.3) | 92 (79.3) | 46 (79.3) | 1 |
Hypertension, n (%) | 79 (45.4) | 59 (50.9) | 20 (34.5) | 0.039 |
Tobacco consumption, n (%): | 0.185 | |||
Former | 51 (29.3) | 39 (33.6) | 12 (20.7) | |
Active | 94 (54.0) | 58 (50.0) | 36 (62.1) | |
Never | 29 (16.7) | 19 (16.4) | 10 (17.2) | |
Diabetes, n (%) | 27 (15.5) | 18 (15.5) | 9 (15.5) | 1 |
Hypercholesterolemia, n (%) | 113 (64.9) | 74 (63.8) | 39 (67.2) | 0.652 |
BMI (kg/m2), median (IQR) | 27.6 (25.3–30.5) | 27.5 (25.3–29.9) | 27.8 (25.1–32.6) | 0.84 |
Previous heart failure, n (%) | 0 (0) | 0 (0) | 0 (0) | - |
Atrial fibrillation, n (%) | 2 (1.1) | 1 (0.9) | 1 (1.7) | 1 |
Ischemic heart disease, n (%) | 19 (10.9) | 15 (12.9) | 4 (6.9) | 0.213 |
LVEF < 40%, n (%) | 7 (4.0) | 5 (4.3) | 2 (3.4) | 1 |
Previous stroke, n (%) | 2 (1.1) | 1 (0.9) | 1 (1.7) | 1 |
COPD or SAHS, n (%) | 15 (8.6) | 8 (6.9) | 7 (12.1) | 0.263 |
Peripheral vascular disease, n (%) | 4 (2.3) | 4 (3.4) | 0 | 0.303 |
Functional class I, n (%) | 155 (92.8) | 103 (90.4) | 52 (98.1) | 0.106 |
Type of index event, n (%): | <0.001 | |||
- NSTEMI | 88 (50.6) | 47 (40.5) | 41 (70.7) | |
- STEMI | 86 (49.4) | 47 (40.5) | 17 (29.3) | |
Full revascularization, n (%) | 127 (73.0) | 90 (77.6) | 37 (63.8) | 0.056 |
Number of vessels involved, n (%) | 0.036 | |||
- 0 | 14 (8.0) | 12 (10.3) | 2 (3.4) | |
- 1 | 103 (59.2) | 70 (60.3) | 33 (56.9) | |
- 2 | 40 (23.0) | 26 (22.4) | 14 (24.1) | |
- 3 | 17 (9.8) | 8 (6.9) | 9 (15.5) | |
Type of revascularization, n (%) | 0.028 | |||
- None | 20 (11.5) | 18 (15.5) | 2 (3.4) | |
- Percutaneous | 147 (84.5) | 92 (79.3) | 55 (94.8) | |
- CABG | 7 (4.0) | 6 (5.2%) | 1 (1.7) |
Control Group (N = 116) | Rehabilitation Group (N = 58) | p * | |
---|---|---|---|
Biochemical Biomarkers (V1-V0): | |||
Glucose (mg/dL) | −3.4 (27.3) | −7.3 (43.51) | 0.249 |
Creatinine (mg/dL) | −0.02 (0.32) | −0.01 (0.13) | 0.911 |
eGFR (mL/min/1.73 m2) | +1.5 (21.9) | +0.5 (10.0) | 0.681 |
Glycosylated hemoglobin (%) | −0.2 (0.5) | −0.1 (0.7) | 0.320 |
Proteins (g/dL) | −0.3 (0.8) | −0.3 (1.0) | 0.284 |
NT-ProBNP (pg/mL) | −442 (903) | −422 (822) | 0.725 |
HS-CRP (mg/dL) | −19.9 (22.9) | −14.7 (20.7) | 0.076 |
MM Biomarkers: | |||
Phosphate (mg/dL) | −0.2 (0.7) | −0.1 (0.7) | 0.306 |
Calcidiol (ng/dL) | +2.3 (11.9) | +3.7 (12.5) | 0.482 |
Parathormone (pg/dL) | +9.8 (20.3) | +10.6 (23.3) | 0.477 |
FGF-23 (RU/dL) | −17.3 (113.5) | +0.2 (86.8) | 0.003 |
Klotho (pg/mL) | −49 (223) | +63 (129) | <0.001 |
Lipid Profile: | |||
Triglycerides (mg/dL) | −37 (81) | −22 (61) | 0.177 |
HDL cholesterol (mg/dL) | +0.2 (11.0) | +2.3 (7.7) | 0.152 |
Non-HDL cholesterol (mg/dL) | −49 (40) | −54 (49) | 0.494 |
LDL cholesterol (mg/dL) | −42 (37) | −34 (37) | 0.197 |
Total cholesterol (mg/dL) | −49 (42) | −51 (52) | 0.732 |
Lipoprotein(a) (mg/dL) | −2.0 (14.9) | −2.5 (15.4) | 0.210 |
Estimated Adjusted Difference between Groups * | 95% Confidence Interval | p | |
---|---|---|---|
Biochemical Biomarkers: | |||
Glucose (mg/dL) ** | +4 | −4 to +12 | 0.342 |
Creatinine (mg/dL) ** | +0.02 | −0.08 to +0.12 | 0.694 |
eGFR (mL/min/1.73 m2) | −0.5 | −8.1 to +7.1 | 0.892 |
Glycosylated hemoglobin (%) ** | +0.3 | 0.0 to +0.6 | 0.077 |
Proteins (g/dL) ** | +0.2 | −0.1 to 0.5 | 0.132 |
NT-ProBNP (pg/mL) ** | −2 | −151 to 148 | 0.980 |
HS-CRP (mg/dL) ** | −0.2 | −7.3 to +7.0 | 0.967 |
MM Biomarkers: | |||
Phosphate (mg/dL) | +0.3 | 0.0 to +0.6 | 0.055 |
Calcidiol (ng/dL) | +2.7 | −2.2 to +7.5 | 0.278 |
Parathormone (pg/dL) ** | +3.9 | −4.3 to +12.0 | 0.350 |
FGF-23 (RU/dL) ** | +12.6 | −6.9 to +32.1 | 0.203 |
Klotho (pg/mL) | +124 | +44 to +205 | 0.003 |
Lipid Profile: | |||
Triglycerides (mg/dL) | +21 | −10 to +51 | 0.183 |
HDL cholesterol (mg/dL) | +2 | −2 to +6 | 0.381 |
Non-HDL cholesterol (mg/dL) | +7 | −11 to +25 | 0.435 |
LDL cholesterol (mg/dL) | +20 | +6 to +35 | 0.007 |
Total cholesterol (mg/dL) | +9 | −10 to +27 | 0.359 |
Lipoprotein(a) (mg/dL) ** | −2.0 | −5.2 to +1.2 | 0.216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pello Lázaro, A.M.; Villelabeitia Jaureguizar, K.; Franco Peláez, J.A.; Venegas-Rodriguez, A.; Aceña, Á.; Kallmeyer, A.; Cánovas, E.; González-Casaus, M.L.; Tarín, N.; Cristóbal, C.; et al. Cardiac Rehabilitation Increases Plasma Klotho Levels. J. Clin. Med. 2024, 13, 1664. https://doi.org/10.3390/jcm13061664
Pello Lázaro AM, Villelabeitia Jaureguizar K, Franco Peláez JA, Venegas-Rodriguez A, Aceña Á, Kallmeyer A, Cánovas E, González-Casaus ML, Tarín N, Cristóbal C, et al. Cardiac Rehabilitation Increases Plasma Klotho Levels. Journal of Clinical Medicine. 2024; 13(6):1664. https://doi.org/10.3390/jcm13061664
Chicago/Turabian StylePello Lázaro, Ana María, Koldo Villelabeitia Jaureguizar, Juan Antonio Franco Peláez, Ana Venegas-Rodriguez, Álvaro Aceña, Andrea Kallmeyer, Ester Cánovas, María Luisa González-Casaus, Nieves Tarín, Carmen Cristóbal, and et al. 2024. "Cardiac Rehabilitation Increases Plasma Klotho Levels" Journal of Clinical Medicine 13, no. 6: 1664. https://doi.org/10.3390/jcm13061664
APA StylePello Lázaro, A. M., Villelabeitia Jaureguizar, K., Franco Peláez, J. A., Venegas-Rodriguez, A., Aceña, Á., Kallmeyer, A., Cánovas, E., González-Casaus, M. L., Tarín, N., Cristóbal, C., Gutiérrez-Landaluce, C., Huelmos, A., González-Lorenzo, Ó., Alonso, J., López-Bescós, L., Egido, J., Mahillo-Fernández, I., Lumpuy-Castillo, J., Lorenzo, Ó., & Tuñón, J. (2024). Cardiac Rehabilitation Increases Plasma Klotho Levels. Journal of Clinical Medicine, 13(6), 1664. https://doi.org/10.3390/jcm13061664