The Scope and Impact of Viral Infections in Common Variable Immunodeficiency (CVID) and CVID-like Disorders: A Literature Review
Abstract
:1. Introduction
1.1. Common Variable Immunodeficiency
1.2. Pathogenesis of CVID
1.3. Common Infective Manifestations in CVID
1.4. CVID and Viral Immunity
2. Methods
3. Respiratory Viral Infections
4. COVID-19
4.1. Immunological Studies of CVID and COVID-19
4.2. Therapeutic Recommendations for COVID-19 in CVID
5. Mucocutaneous Viral Infections
5.1. Human Papillomavirus
5.2. Herpes Simplex Virus
Treatment of HSV Infection in CVID
5.3. Varicella Zoster Virus
5.4. Molluscum Contagiosum
6. Gastrointestinal Viral Infections
6.1. Norovirus
6.1.1. Norovirus and CVID Enteropathy
6.1.2. Treatment of Chronic Norovirus in CVID
6.2. Cytomegalovirus Colitis
6.3. Herpes Simplex Virus Colitis
7. Hepatic Viral Infections
8. Central Nervous System (CNS) Viral Infections
8.1. Viral Meningoencephalitis
8.2. Other CNS Viral Infections
8.3. Vaccine Derived Poliovirus
9. Ocular Viral Infections
10. Oncoviruses
10.1. Ebstein Barr Virus
10.2. Human Herpesvirus 8 and Granulomatous-Lymphocytic Interstitial Lung Disease
11. Other Viruses
11.1. Human Immunodeficiency Virus (HIV)
11.2. Human Parvovirus B19
12. Conclusions
Funding
Conflicts of Interest
References
- Salzer, U.; Warnatz, K.; Peter, H.H. Common variable immunodeficiency—An update. Arthritis Res. Ther. 2012, 14, 223. [Google Scholar] [CrossRef]
- Yazdani, R.; Habibi, S.; Sharifi, L.; Azizi, G.; Abolhassani, H.; Olbrich, P.; Aghamohammadi, A. Common variable immunodeficiency: Epidemiology, pathogenesis, clinical manifestations, diagnosis, classification, and management. J. Investig. Allergol. Clin. Immunol. 2020, 30, 14–34. [Google Scholar] [CrossRef]
- Fudenberg, H.; Good, R.A.; Goodman, H.C.; Hitzig, W.; Kunkel, H.G.; Roitt, I.M.; Rosen, F.S.; Rowe, D.S.; Seligmann, M.; Soothill, J.R. Primary immunodeficiencies. Report of a World Health Organization Committee. Pediatrics 1971, 47, 927–946. [Google Scholar] [CrossRef]
- Sanford, J.P.; Favour, C.B.; Tribeman, M.S. Absence of serum gamma globulins in an adult. N. Engl. J. Med. 1954, 250, 1027–1029. [Google Scholar] [CrossRef]
- Jeevarathnum, A.C.; Van Niekerk, A.; Kriel, J.; Green, R.J. Common variable immunodeficiency disorders: What generalists should know. Afr. J. Thorac. Crit. Care Med. 2021, 27, 112–116. [Google Scholar] [CrossRef]
- Quinti, I.; Soresina, A.; Spadaro, G.; Martino, S.; Donnanno, S.; Agostini, C.; Claudio, P.; Franco, D.; Pesce, A.M.; Borghese, F.; et al. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J. Clin. Immunol. 2007, 27, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Ameratunga, R.; Brewerton, M.; Slade, C.; Jordan, A.; Gillis, D.; Steele, R.; Koopmans, W.; Woon, S.T. Comparison of diagnostic criteria for Common Variable Immunodeficiency Disorder. Front. Immunol. 2014, 5, 105842. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, F.A.; Barlan, I.; Chapel, H.; Costa-Carvalho, B.T.; Cunningham-Rundles, C.; de la Morena, M.T.; Espinosa-Rosales, F.J.; Hammarström, L.; Nonoyama, S.; Quinti, I.; et al. International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. J. Allergy Clin. Immunol. Pract. 2016, 4, 38–59. [Google Scholar] [CrossRef] [PubMed]
- Chapel, H.; Cunningham-Rundles, C. Update in understanding Common Variable Immunodeficiency Disorders (CVIDs) and the management of patients with these conditions. Br. J. Haematol. 2009, 145, 709. [Google Scholar] [CrossRef]
- Gathmann, B.; Mahlaoui, N.; Gérard, L.; Oksenhendler, E.; Warnatz, K.; Schulze, I.; Kindle, G.; Kuijpers, T.W.; Van Beem, R.T.; Guzman, D.; et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 2014, 134, 116–126.e11. [Google Scholar] [CrossRef]
- Cunningham-Rundles, C.; Bodian, C. Common variable immunodeficiency: Clinical and immunological features of 248 patients. Clin. Immunol. 1999, 92, 34–48. [Google Scholar] [CrossRef]
- Luzi, G.; Businco, L.; Aiuti, F. Primary immunodeficiency syndromes in Italy: A report of the national register in children and adults. J. Clin. Immunol. 1983, 3, 316–320. [Google Scholar] [CrossRef]
- Hammarström, L.; Vorechovsky, I.; Webster, D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin. Exp. Immunol. 2000, 120, 225. [Google Scholar] [CrossRef] [PubMed]
- Vořechovský, I.; Webster, A.D.B.; Plebani, A.; Hammarström, L. Genetic linkage of IgA deficiency to the major histocompatibility complex: Evidence for allele segregation distortion, parent-of-origin penetrance differences, and the role of anti-IgA antibodies in disease predisposition. Am. J. Hum. Genet. 1999, 64, 1096–1109. [Google Scholar] [CrossRef]
- Aggarwal, V.; Banday, A.Z.; Jindal, A.K.; Das, J.; Rawat, A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis. 2020, 7, 26–37. [Google Scholar] [CrossRef]
- van Schouwenburg, P.A.; Davenport, E.E.; Kienzler, A.K.; Marwah, I.; Wright, B.; Lucas, M.; Malinauskas, T.; Martin, H.C.; Lockstone, H.E.; Cazier, J.B.; et al. Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders. Clin. Immunol. 2015, 160, 301–314. [Google Scholar] [CrossRef]
- Bogaert, D.J.A.; Dullaers, M.; Lambrecht, B.N.; Vermaelen, K.Y.; De Baere, E.; Haerynck, F. Genes associated with common variable immunodeficiency: One diagnosis to rule them all? J. Med. Genet. 2016, 53, 575–590. [Google Scholar] [CrossRef]
- de Valles-Ibáñez, G.; Esteve-Solé, A.; Piquer, M.; Azucena González-Navarro, E.; Hernandez-Rodriguez, J.; Laayouni, H.; González-Roca, E.; Plaza-Martin, A.M.; Deyà-Martínez, A.; Martín-Nalda, A.; et al. Evaluating the genetics of common variable immunodeficiency: Monogenetic model and beyond. Front. Immunol. 2018, 9, 636. [Google Scholar] [CrossRef]
- Abolhassani, H.; Hammarström, L.; Cunningham-Rundles, C. Current genetic landscape in common variable immune deficiency. Blood 2020, 135, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Fekrvand, S.; Khanmohammadi, S.; Abolhassani, H.; Yazdani, R. B- and T-Cell Subset Abnormalities in Monogenic Common Variable Immunodeficiency. Front. Immunol. 2022, 13, 912826. [Google Scholar] [CrossRef]
- Singh, A.; Joshi, V.; Jindal, A.K.; Mathew, B.; Rawat, A. An updated review on activated PI3 kinase delta syndrome (APDS). Genes Dis. 2020, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Chapel, H.; Lucas, M.; Lee, M.; Bjorkander, J.; Webster, D.; Grimbacher, B.; Fieschi, C.; Thon, V.; Abedi, M.R.; Hammarstrom, L. Common variable immunodeficiency disorders: Division into distinct clinical phenotypes. Blood 2008, 112, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Resnick, E.S.; Moshier, E.L.; Godbold, J.H.; Cunningham-Rundles, C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood J. Am. Soc. Hematol. 2012, 119, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Tofighi Zavareh, F.; Mirshafiey, A.; Yazdani, R.; Keshtkar, A.A.; Abolhassani, H.; Bagheri, Y.; Rezaei, A.; Delavari, S.; Rezaei, N.; Aghamohammadi, A. Lymphocytes subsets in correlation with clinical profile in CVID patients without monogenic defects. Expert Rev. Clin. Immunol. 2021, 17, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Warnatz, K.; Denz, A.; Dräger, R.; Braun, M.; Groth, C.; Wolff-Vorbeck, G.; Eibel, H.; Schlesier, M.; Peter, H.H. Severe deficiency of switched memory B cells (CD27(+)IgM(−)IgD(−)) in subgroups of patients with common variable immunodeficiency: A new approach to classify a heterogeneous disease. Blood 2002, 99, 1544–1551. [Google Scholar] [CrossRef]
- Wehr, C.; Kivioja, T.; Schmitt, C.; Ferry, B.; Witte, T.; Eren, E.; Vlkova, M.; Hernandez, M.; Detkova, D.; Bos, P.R.; et al. The EUROclass trial: Defining subgroups in common variable immunodeficiency. Blood 2008, 111, 77–85. [Google Scholar] [CrossRef]
- Gomes Ochtrop, M.L.; Goldacker, S.; May, A.M.; Rizzi, M.; Draeger, R.; Hauschke, D.; Stehfest, C.; Warnatz, K.; Goebel, H.; Technau-Ihling, K.; et al. T and B lymphocyte abnormalities in bone marrow biopsies of common variable immunodeficiency. Blood 2011, 118, 309–318. [Google Scholar] [CrossRef]
- Alkhairy, O.K.; Rezaei, N.; Graham, R.R.; Abolhassani, H.; Borte, S.; Hultenby, K.; Wu, C.; Aghamohammadi, A.; Williams, D.A.; Behrens, T.W.; et al. RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. J. Allergy Clin. Immunol. 2015, 135, 1380–1385. [Google Scholar] [CrossRef]
- Mohammadi, J.; Liu, C.; Aghamohammadi, A.; Bergbreiter, A.; Du, L.; Lu, J.; Rezaei, N.; Amirzargar, A.A.; Moin, M.; Salzer, U.; et al. Novel mutations in TACI (TNFRSF13B) causing common variable immunodeficiency. J. Clin. Immunol. 2009, 29, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, R.; Abolhassani, H.; Rezaei, N.; Azizi, G.; Hammarström, L.; Aghamohammadi, A. Evaluation of Known Defective Signaling-Associated Molecules in Patients Who Primarily Diagnosed as Common Variable Immunodeficiency. Int. Rev. Immunol. 2016, 35, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Marron, T.U.; Joyce, E.Y.; Cunningham-Rundles, C. Toll-like receptor function in primary B cell defects. Front. Biosci. Elite Ed. 2012, 4, 1853. [Google Scholar] [CrossRef]
- Malphettes, M.; Gérard, L.; Carmagnat, M.; Mouillot, G.; Vince, N.; Boutboul, D.; Bérezné, A.; Nove-Josserand, R.; Lemoing, V.; Tetu, L.; et al. Late-onset combined immune deficiency: A subset of common variable immunodeficiency with severe T cell defect. Clin. Infect. Dis. 2009, 49, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, A.; Pierdominici, M.; Aiuti, F. T-cell homeostasis: The dark(ened) side of common variable immunodeficiency. Blood 2008, 112, 446. [Google Scholar] [CrossRef] [PubMed]
- Funauchi, M.; Farrant, J.; Moreno, C.; Webster, A.D.B. Defects in antigen-driven lymphocyte responses in common variable immunodeficiency (CVID) are due to a reduction in the number of antigen-specific CD4+ T cells. Clin. Exp. Immunol. 1995, 101, 82–88. [Google Scholar] [CrossRef]
- Bateman, E.A.L.; Ayers, L.; Sadler, R.; Lucas, M.; Roberts, C.; Woods, A.; Packwood, K.; Burden, J.; Harrison, D.; Kaenzig, N.; et al. T cell phenotypes in patients with common variable immunodeficiency disorders: Associations with clinical phenotypes in comparison with other groups with recurrent infections. Clin. Exp. Immunol. 2012, 170, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Scott-Taylor, T.H.; Green, M.R.; Raeiszadeh, M.; Workman, S.; Webster, A.D. Defective maturation of dendritic cells in common variable immunodeficiency. Clin. Exp. Immunol. 2006, 145, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Aspalter, R.M.; Sewell, W.A.C.; Dolman, K.; Farrant, J.; Webster, A.D.B. Deficiency in circulating natural killer (NK) cell subsets in common variable immunodeficiency and X-linked agammaglobulinaemia. Clin. Exp. Immunol. 2000, 121, 506–514. [Google Scholar] [CrossRef]
- Yu, J.E.; Knight, A.K.; Radigan, L.; Marron, T.U.; Zhang, L.; Sanchez-Ramón, S.; Cunningham-Rundles, C. Toll-like receptor 7 and 9 defects in common variable immunodeficiency. J. Allergy Clin. Immunol. 2009, 124, 349–356.e3. [Google Scholar] [CrossRef]
- Azizi, G.; Rezaei, N.; Kiaee, F.; Tavakolinia, N.; Yazdani, R.; Mirshafiey, A.; Aghamohammadi, A. T-Cell Abnormalities in Common Variable Immunodeficiency. J. Investig. Allergol. Clin. Immunol. 2016, 26, 233–243. [Google Scholar] [CrossRef]
- Yazdani, R.; Seify, R.; Ganjalikhani-Hakemi, M.; Abolhassani, H.; Eskandari, N.; Golsaz-Shirazi, F.; Ansaripour, B.; Salehi, E.; Azizi, G.; Rezaei, N.; et al. Comparison of various classifications for patients with common variable immunodeficiency (CVID) using measurement of B-cell subsets. Allergol. Immunopathol. 2017, 45, 183–192. [Google Scholar] [CrossRef]
- Ramirez, N.J.; Posadas-Cantera, S.; Caballero-Oteyza, A.; Camacho-Ordonez, N.; Grimbacher, B. There is no gene for CVID—Novel monogenetic causes for primary antibody deficiency. Curr. Opin. Immunol. 2021, 72, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Asgardoon, M.H.; Azizi, G.; Yazdani, R.; Sohani, M.; Pashangzadeh, S.; Kalantari, A.; Shariat, M.; Shafiei, A.; Salami, F.; Jamee, M.; et al. Monogenic Primary Immunodeficiency Disorder Associated with Common Variable Immunodeficiency and Autoimmunity. Int. Arch. Allergy Immunol. 2020, 181, 706–714. [Google Scholar] [CrossRef]
- Gupta, S.; Demirdag, Y.; Gupta, A.A. Members of the Regulatory Lymphocyte Club in Common Variable Immunodeficiency. Front. Immunol. 2022, 13, 864307. [Google Scholar] [CrossRef] [PubMed]
- Arumugakani, G.; Wood, P.M.D.; Carter, C.R.D. Frequency of Treg Cells Is Reduced in CVID Patients with Autoimmunity and Splenomegaly and Is Associated with Expanded CD21lo B Lymphocytes. J. Clin. Immunol. 2010, 30, 292–300. [Google Scholar] [CrossRef]
- Ho, H.; Cunningham-Rundles, C. Seeking Relevant Biomarkers in Common Variable Immunodeficiency. Front. Immunol. 2022, 13, 857050. [Google Scholar] [CrossRef]
- Kačar, M.; Markelj, G.; Avčin, T. Autoimmune and autoinflammatory manifestations in inborn errors of immunity. Curr. Opin. Allergy Clin. Immunol. 2022, 22, 343–351. [Google Scholar] [CrossRef]
- Yakaboski, E.; Fuleihan, R.L.; Sullivan, K.E.; Cunningham-Rundles, C.; Feuille, E. Lymphoproliferative Disease in CVID: A Report of Types and Frequencies from a US Patient Registry. J. Clin. Immunol. 2020, 40, 524–530. [Google Scholar] [CrossRef]
- Guevara-Hoyer, K.; Fuentes-Antrás, J.; de la Fuente-Muñoz, E.; Fernández-Arquero, M.; Solano, F.; Pérez-Segura, P.; Neves, E.; Ocaña, A.; Pérez de Diego, R.; Sánchez-Ramón, S. Genomic crossroads between non-Hodgkin’s lymphoma and common variable immunodeficiency. Front. Immunol. 2022, 13, 937872. [Google Scholar] [CrossRef]
- Oksenhendler, E.; Gérard, L.; Fieschi, C.; Malphettes, M.; Mouillot, G.; Jaussaud, R.; Viallard, J.F.; Gardembas, M.; Galicier, L.; Schleinitz, N.; et al. Infections in 252 patients with common variable immunodeficiency. Clin. Infect. Dis. 2008, 46, 1547–1554. [Google Scholar] [CrossRef]
- Park, J.; Munagala, I.; Xu, H.; Blankenship, D.; Maffucci, P.; Chaussabel, D.; Banchereau, J.; Pascual, V.; Cunningham-Rundles, C. Interferon Signature in the Blood in Inflammatory Common Variable Immune Deficiency. PLoS ONE 2013, 8, 74893. [Google Scholar] [CrossRef]
- Herbert, J.A.; Panagiotou, S. Immune Response to Viruses. Encycl. Infect. Immun. 2022, 1, 429–444. [Google Scholar] [CrossRef]
- Pai, S.-Y.; Logan, B.R.; Griffith, L.M.; Buckley, R.H.; Parrott, R.E.; Dvorak, C.C.; Kapoor, N.; Hanson, I.C.; Filipovich, A.H.; Jyonouchi, S.; et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N. Engl. J. Med. 2014, 371, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, C.C.; Haddad, E.; Heimall, J.; Dunn, E.; Buckley, R.H.; Kohn, D.B.; Cowan, M.J.; Pai, S.Y.; Griffith, L.M.; Cuvelier, G.D.E.; et al. The diagnosis of severe combined immunodeficiency (SCID): The Primary Immune Deficiency Treatment Consortium (PIDTC) 2022 Definitions. J. Allergy Clin. Immunol. 2023, 151, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Posavad, C.M.; Koelle, D.M.; Shaughnessy, M.F.; Corey, L. Severe genital herpes infections in HIV-infected individuals with impaired herpes simplex virus-specific CD8+ cytotoxic T lymphocyte responses. Proc. Natl. Acad. Sci. USA 1997, 94, 10289–10294. [Google Scholar] [CrossRef]
- Demirdag, Y.Y.; Gupta, S. Update on Infections in Primary Antibody Deficiencies. Front. Immunol. 2021, 12, 634181. [Google Scholar] [CrossRef]
- Eskandarian, Z.; Fliegauf, M.; Bulashevska, A.; Proietti, M.; Hague, R.; Smulski, C.R.; Schubert, D.; Warnatz, K.; Grimbacher, B. Assessing the functional relevance of variants in the Ikaros family zinc finger protein 1 (IKZF1) in a cohort of patients with primary immunodeficiency. Front. Immunol. 2019, 10, 568. [Google Scholar] [CrossRef]
- Boutboul, D.; Kuehn, H.S.; Van De Wyngaert, Z.; Niemela, J.E.; Callebaut, I.; Stoddard, J.; Lenoir, C.; Barlogis, V.; Farnarier, C.; Vely, F.; et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J. Clin. Investig. 2018, 128, 3071–3087. [Google Scholar] [CrossRef]
- Wang, H.Y.; Ma, C.A.; Zhao, Y.; Fan, X.; Zhou, Q.; Edmonds, P.; Uzel, G.; Oliveira, J.B.; Orange, J.; Jain, A. Antibody deficiency associated with an inherited autosomal dominant mutation in TWEAK. Proc. Natl. Acad. Sci. USA 2013, 110, 5127–5132. [Google Scholar] [CrossRef]
- Zhang, L.; Radigan, L.; Salzer, U.; Behrens, T.W.; Grimbacher, B.; Diaz, G.; Bussel, J.; Cunningham-Rundles, C. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: Clinical and immunologic outcomes in heterozygotes. J. Allergy Clin. Immunol. 2007, 120, 1178. [Google Scholar] [CrossRef]
- Klemann, C.; Camacho-Ordonez, N.; Yang, L.; Eskandarian, Z.; Rojas-Restrepo, J.L.; Frede, N.; Bulashevska, A.; Heeg, M.; Al-Ddafari, M.S.; Premm, J.; et al. Clinical and Immunological Phenotype of Patients with Primary Immunodeficiency due to Damaging Mutations in NFKB2. Front. Immunol. 2019, 10, 297. [Google Scholar] [CrossRef]
- Boyce, J.A.; Finkelman, F.; Shearer, W.T.; Vercelli, D.; Rezaei, N.; Hedayat, M.; Aghamohammadi, A.; Nichols, K.E. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J. Allergy Clin. Immunol. 2011, 127, 1329–1341.e2. [Google Scholar] [CrossRef]
- Ruffner, M.A.; Sullivan, K.E.; Henrickson, S.E. Recurrent and sustained viral infections in primary immunodeficiencies. Front. Immunol. 2017, 8, 665. [Google Scholar] [CrossRef]
- Friedmann, D.; Goldacker, S.; Peter, H.H.; Warnatz, K. Preserved Cellular Immunity Upon Influenza Vaccination in Most Patients with Common Variable Immunodeficiency. J. Allergy Clin. Immunol. Pract. 2020, 8, 2332–2340.e5. [Google Scholar] [CrossRef]
- Haveman, L.M.; Scherrenburg, J.; Maarschalk-Ellerbroek, L.J.; Hoek, P.D.; Schuurman, R.; De Jager, W.; Ellerbroek, P.M.; Prakken, B.J.; Van Baarle, D.; Van Montfrans, J.M. T-cell response to viral antigens in adults and children with common variable immunodeficiency and specific antibody deficiency. Clin. Exp. Immunol. 2010, 161, 108–117. [Google Scholar] [CrossRef]
- Van Assen, S.; de Haan, A.; Holvast, A.; Horst, G.; Gorter, L.; Westra, J.; Kallenberg, C.G.M.; Telgt, D.S.C.; Palache, A.M.; Giezeman, K.M.; et al. Cell-mediated immune responses to inactivated trivalent influenza-vaccination are decreased in patients with common variable immunodeficiency. Clin. Immunol. 2011, 141, 161–168. [Google Scholar] [CrossRef]
- Kainulainen, L.; Nikoskelainen, J.; Vuorinen, T.; Tevola, K.; Liippo, K.; Ruuskanen, O. Viruses and Bacteria in Bronchial Samples from Patients with Primary Hypogammaglobulinemia. Am. J. Respir. Crit. Care Med. 2012, 159, 1199–1204. [Google Scholar] [CrossRef]
- Kainulainen, L.; Vuorinen, T.; Rantakokko-Jalava, K.; Österback, R.; Ruuskanen, O. Recurrent and persistent respiratory tract viral infections in patients with primary hypogammaglobulinemia. J. Allergy Clin. Immunol. 2010, 126, 120. [Google Scholar] [CrossRef] [PubMed]
- Kralickova, P.; Mala, E.; Vokurkova, D.; Krcmova, I.; Pliskova, L.; Stepanova, V.; Bartos, V.; Koblizek, V.; Tacheci, I.; Bures, J.; et al. Cytomegalovirus Disease in Patients with Common Variable Immunodeficiency: Three Case Reports. Int. Arch. Allergy Immunol. 2014, 163, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Al-Herz, W.; Essa, S. Spectrum of viral infections among primary immunodeficient children: Report from a national registry. Front. Immunol. 2019, 10, 1231. [Google Scholar] [CrossRef] [PubMed]
- Lougaris, V.; Tabellini, G.; Vitali, M.; Baronio, M.; Patrizi, O.; Tampella, G.; Biasini, A.; Moratto, D.; Parolini, S.; Plebani, A. Defective natural killer-cell cytotoxic activity in NFKB2-mutated CVID-like disease. J. Allergy Clin. Immunol. 2015, 135, 1641–1643.e3. [Google Scholar] [CrossRef] [PubMed]
- Tuijnenburg, P.; Lango Allen, H.; Burns, S.O.; Greene, D.; Jansen, M.H.; Staples, E.; Stephens, J.; Carss, K.J.; Biasci, D.; Baxendale, H.; et al. Loss-of-function nuclear factor κB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J. Allergy Clin. Immunol. 2018, 142, 1285–1296. [Google Scholar] [CrossRef]
- Jacob, S.P.; Feusier, J.E.; Chen, K. NFKB2 Defects. In Rare Diseases of the Immune System; Springer: Cham, Switzerland, 2019; pp. 153–165. [Google Scholar] [CrossRef]
- Ramakrishnan, K.A.; Rae, W.; Barcenas-Morales, G.; Gao, Y.; Pengelly, R.J.; Patel, S.V.; Kumararatne, D.S.; Ennis, S.; Döffinger, R.; Faust, S.N.; et al. Anticytokine autoantibodies in a patient with a heterozygous NFKB2 mutation. J. Allergy Clin. Immunol. 2018, 141, 1479–1482.e6. [Google Scholar] [CrossRef]
- van Wilder, P.; Odnoletkova, I.; Mouline, M.; de Vries, E. Immunoglobulin Replacement Therapy is critical and cost-effective in increasing life expectancy and quality of life in patients suffering from Common Variable Immunodeficiency Disorders (CVID): A health-economic assessment. PLoS ONE 2021, 16, e0247941. [Google Scholar] [CrossRef]
- Katragkou, A.; Roilides, E.; Walsh, T.J. Role of Immunoglobulin Therapy to Prevent and Treat Infections. In Management of Infections in the Immunocompromised Host; Springer: Cham, Switzerland, 2018; p. 339. [Google Scholar] [CrossRef]
- Hemming, V.G.; Prince, G.A.; Groothuis, J.R.; Siber, G.R. Hyperimmune globulins in prevention and treatment of respiratory syncytial virus infections. Clin. Microbiol. Rev. 1995, 8, 22. [Google Scholar] [CrossRef]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 2 September 2023).
- Machhi, J.; Herskovitz, J.; Senan, A.M.; Dutta, D.; Nath, B.; Oleynikov, M.D.; Blomberg, W.R.; Meigs, D.D.; Hasan, M.; Patel, M.; et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. 2020, 15, 359. [Google Scholar] [CrossRef]
- Coronavirus (COVID-19) Latest Insights; Office for National Statistics: London, UK, 2023.
- Shields, A.M.; Anantharachagan, A.; Arumugakani, G.; Baker, K.; Bahal, S.; Baxendale, H.; Bermingham, W.; Bhole, M.; Boules, E.; Bright, P.; et al. Outcomes following SARS-CoV-2 infection in patients with primary and secondary immunodeficiency in the United Kingdom. Clin. Exp. Immunol. 2022, 209, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.M.; Burns, S.O.; Savic, S.; Richter, A.G.; Anantharachagan, A.; Arumugakani, G.; Baker, K.; Bahal, S.; Bermingham, W.; Bhole, M.; et al. COVID-19 in patients with primary and secondary immunodeficiency: The United Kingdom experience. J. Allergy Clin. Immunol. 2021, 147, 870–875.e1. [Google Scholar] [CrossRef] [PubMed]
- Goudouris, E.S.; Pinto-Mariz, F.; Mendonça, L.O.; Aranda, C.S.; Guimarães, R.R.; Kokron, C.; Barros, M.T.; Anísio, F.; Alonso, M.L.O.; Marcelino, F.; et al. Outcome of SARS-CoV-2 Infection in 121 Patients with Inborn Errors of Immunity: A Cross-Sectional Study. J. Clin. Immunol. 2021, 41, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, M.; Ribeiro Dos Santos, G.; Wang, L.; Cummings, D.A.T.; Azman, A.S.; Paireau, J.; Fontanet, A.; Cauchemez, S.; Salje, H. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 2021, 590, 140–145. [Google Scholar] [CrossRef]
- Team, F. Variation in the COVID-19 infection–fatality ratio by age, time, and geography during the pre-vaccine era: A systematic analysis. Lancet 2022, 399, 1469–1488. [Google Scholar] [CrossRef]
- Drzymalla, E.; Green, R.F.; Knuth, M.; Khoury, M.J.; Dotson, W.D.; Gundlapalli, A. COVID-19-related health outcomes in people with primary immunodeficiency: A systematic review. Clin. Immunol. 2022, 243, 109097. [Google Scholar] [CrossRef]
- Weifenbach, N.; Jung, A.; Lötters, S. COVID-19 infection in CVID patients: What we know so far. Immun. Inflamm. Dis. 2021, 9, 632–634. [Google Scholar] [CrossRef]
- Shields, A.M.; Tadros, S.; Al-Hakim, A.; Nell, J.M.; Lin, M.M.N.; Chan, M.; Goddard, S.; Dempster, J.; Dziadzio, M.; Patel, S.Y.; et al. Impact of vaccination on hospitalization and mortality from COVID-19 in patients with primary and secondary immunodeficiency: The United Kingdom experience. Front. Immunol. 2022, 13, 984376. [Google Scholar] [CrossRef]
- Bermingham, C.; Nafilyan, V.; Andrews, N.; Gethings, O. Estimating the effectiveness of COVID-19 vaccination against COVID-19 hospitalisation and death: A cohort study based on the 2021 Census, England. medRxiv 2023. [Google Scholar] [CrossRef]
- Shields, A.M.; Faustini, S.E.; Hill, H.J.; Al-Taei, S.; Tanner, C.; Ashford, F.; Workman, S.; Moreira, F.; Verma, N.; Wagg, H.; et al. Increased Seroprevalence and Improved Antibody Responses Following Third Primary SARS-CoV-2 Immunisation: An Update From the COV-AD Study. Front. Immunol. 2022, 13, 912571. [Google Scholar] [CrossRef]
- Gupta, S.; Agrawal, S.; Sandoval, A.; Su, H.; Tran, M.; Demirdag, Y. SARS-CoV-2-Specific and Functional Cytotoxic CD8 Cells in Primary Antibody Deficiency: Natural Infection and Response to Vaccine. J. Clin. Immunol. 2022, 42, 914–922. [Google Scholar] [CrossRef]
- Løken, R.Ø.; Fevang, B. Cellular immunity in COVID-19 and other infections in Common variable immunodeficiency. Front. Immunol. 2023, 14, 1124279. [Google Scholar] [CrossRef] [PubMed]
- Abraham, R.S.; Marshall, J.M.; Kuehn, H.S.; Rueda, C.M.; Gibbs, A.; Guider, W.; Stewart, C.; Rosenzweig, S.D.; Wang, H.; Jean, S.; et al. Severe SARS-CoV-2 disease in the context of a NF-κB2 loss-of-function pathogenic variant. J. Allergy Clin. Immunol. 2021, 147, 532. [Google Scholar] [CrossRef] [PubMed]
- Barrios, Y.; Franco, A.; Alava-Cruz, C.; Cuesta-Martin, R.; Camara, C.; Matheu, V. Easy approach to detect cell immunity to COVID vaccines in common variable immunodeficiency patients. Allergol. Immunopathol. 2022, 50, 101–105. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Xiao, J.; Hooper, A.T.; Hamilton, J.D.; Musser, B.J.; et al. REGEN-COV Antibody Combination and Outcomes in Outpatients with COVID-19. N. Engl. J. Med. 2021, 385, e81. [Google Scholar] [CrossRef]
- Siemieniuk, R.A.C.; Bartoszko, J.J.; Zeraatkar, D.; Kum, E.; Qasim, A.; Díaz Martinez, J.P.; Izcovich, A.; Rochwerg, B.; Lamontagne, F.; Han, M.A.; et al. Drug treatments for covid-19: Living systematic review and network meta-analysis [fifth version]. BMJ 2020, 370, m2980. [Google Scholar] [CrossRef]
- Pitre, T.; Van Alstine, R.; Chick, G.; Leung, G.; Mikhail, D.; Cusano, E.; Khalid, F.; Zeraatkar, D. Antiviral drug treatment for nonsevere COVID-19: A systematic review and network meta-analysis. Can. Med Assoc. J. 2022, 194, E969–E980. [Google Scholar] [CrossRef]
- COVID-19 Treatment Guidelines Panel Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; National Institutes of Health: Bethesda, MD, USA, 2023.
- Ponsford, M.J.; Price, C.; Farewell, D.; Greene, G.; Moore, C.; Perry, M.; Price, N.; Cottrell, S.; Steven, R.; El-Shanawany, T.; et al. Increased Respiratory Viral Detection and Symptom Burden Among Patients with Primary Antibody Deficiency: Results from the BIPAD Study. J. Allergy Clin. Immunol. Pract. 2021, 9, 735–744.e6. [Google Scholar] [CrossRef]
- Upasani, V.; Townsend, K.; Wu, M.Y.; Carr, E.J.; Hobbs, A.; Dowgier, G.; Ragno, M.; Herman, L.S.; Sharma, S.; Shah, D.; et al. Commercial Immunoglobulin Products Contain Neutralizing Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Clin. Infect. Dis. 2023, 77, 950–960. [Google Scholar] [CrossRef]
- Hirsiger, J.R.; Weigang, S.; Walz, A.C.; Fuchs, J.; Daly, M.L.; Eggimann, S.; Hausmann, O.; Schwemmle, M.; Kochs, G.; Panning, M.; et al. Passive immunization against COVID-19 by anti-SARS-CoV-2 spike IgG in commercially available immunoglobulin preparations in severe antibody deficiency. J. Allergy Clin. Immunol. Pract. 2022, 10, 2452. [Google Scholar] [CrossRef] [PubMed]
- Cousins, K.; Sano, K.; Lam, B.; Röltgen, K.; Bhavsar, D.; Singh, G.; McRae, O.; Jeong, S.; Aboelregal, N.; en Ho, H.; et al. Detection of SARS-CoV-2 Antibodies in Immunoglobulin Products. J. Allergy Clin. Immunol. Pract. 2023, 11, 2534–2541.e2. [Google Scholar] [CrossRef] [PubMed]
- Lemus, H.N.; Alkayyali, M.; Kim, E.; Cunnigham-Rundles, C.; Pyburn, D.; Abrams, R. Acute Cerebellitis and Myeloradiculitis Associated with SARS-CoV-2 Infection in Common Variable Immunodeficiency—A Case Report. Neurohospitalist 2022, 12, 361–365. [Google Scholar] [CrossRef]
- Kombe Kombe, A.J.; Li, B.; Zahid, A.; Mengist, H.M.; Bounda, G.A.; Zhou, Y.; Jin, T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front. Public Health 2021, 8, 552028. [Google Scholar] [CrossRef]
- Leiding, J.W.; Holland, S.M. Warts and all: Human papillomavirus in primary immunodeficiencies. J. Allergy Clin. Immunol. 2012, 130, 1030–1048. [Google Scholar] [CrossRef] [PubMed]
- Uluhan, A.; Sager, D.; Jasin, H.E. Juvenile rheumatoid arthritis and common variable hypogammaglobulinemia. J. Rheumatol. 1998, 25, 1205–1210. [Google Scholar]
- Lin, J.H.; Wang, K.Y.; Kraft, S.; Roberts, R.L. Resolution of warts in association with subcutaneous immunoglobulin in immune deficiency. Pediatr. Dermatol. 2009, 26, 155–158. [Google Scholar] [CrossRef]
- REID, T.M.S.; FRASER, N.G.; KERNOHAN, I.R. Generalized warts and immune deficiency. Br. J. Dermatol. 1976, 95, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.J.; Ray, D.; Mo, R.-R.; Yung, R.L.; Richardson, B.C. TRAIL (Apo2 ligand) and TWEAK (Apo3 ligand) mediate CD4+ T cell killing of antigen-presenting macrophages. J. Immunol. 2000, 164, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
- Petitbarat, M.; Rahmati, M.; Sérazin, V.; Dubanchet, S.; Morvan, C.; Wainer, R.; de Mazancourt, P.; Chaouat, G.; Foidart, J.M.; Munaut, C.; et al. TWEAK appears as a modulator of endometrial IL-18 related cytotoxic activity of uterine natural killers. PLoS ONE 2011, 6, e14497. [Google Scholar] [CrossRef]
- Zhu, S.; Viejo-Borbolla, A. Pathogenesis and virulence of herpes simplex virus. Virulence 2021, 12, 2670. [Google Scholar] [CrossRef]
- James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.E.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020, 98, 315. [Google Scholar] [CrossRef]
- Poole, C.L.; James, S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018, 40, 1282. [Google Scholar] [CrossRef] [PubMed]
- Jeffery-Smith, A.; Riddell, A. Herpesviruses. Medicine 2021, 49, 780–784. [Google Scholar] [CrossRef]
- Whitley, R.J.; Roizman, B. Herpes simplex virus infections. Lancet 2001, 357, 1513–1518. [Google Scholar] [CrossRef]
- Jouanguy, E.; Béziat, V.; Mogensen, T.H.; Casanova, J.L.; Tangye, S.G.; Zhang, S.Y. Human inborn errors of immunity to herpes viruses. Curr. Opin. Immunol. 2020, 62, 106. [Google Scholar] [CrossRef] [PubMed]
- Blanco, H.; Cázares, J.C.; Webber, J.; Godwin, A.; Simpson, J. Eczema herpeticum in a patient with severe combined immunodeficiency. Br. J. Dermatol. 2021, 185, 151. [Google Scholar] [CrossRef]
- Straus, S.E.; Seidlin, M.; Takiff, H.; Jacobs, D.; Bowen, D.; Smith, H.A. Oral acyclovir to suppress recurring herpes simplex virus infections in immunodeficient patients. Ann. Intern. Med. 1984, 100, 522–524. [Google Scholar] [CrossRef]
- Villa, A.; Treister, N.S. Intraoral herpes simplex virus infection in a patient with common variable immunodeficiency. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, e277–e279. [Google Scholar] [CrossRef]
- Parsons, K.; Cipriano, S.D.; Rosen, L.B.; Browne, S.K.; Walter, J.E.; Stone, B.L.; Keeshin, S.; Chen, K. Severe Facial Herpes Vegetans and Viremia in NFKB2-Deficient Common Variable Immunodeficiency. Front. Pediatr. 2019, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Coonrod, E.M.; Kumánovics, A.; Franks, Z.F.; Durtschi, J.D.; Margraf, R.L.; Wu, W.; Heikal, N.M.; Augustine, N.H.; Ridge, P.G.; et al. Germline Mutations in NFKB2 Implicate the Noncanonical NF-κB Pathway in the Pathogenesis of Common Variable Immunodeficiency. Am. J. Hum. Genet. 2013, 93, 812. [Google Scholar] [CrossRef]
- Liu, Y.; Hanson, S.; Gurugama, P.; Jones, A.; Clark, B.; Ibrahim, M.A.A. Novel NFKB2 mutation in early-onset CVID. J. Clin. Immunol. 2014, 34, 686–690. [Google Scholar] [CrossRef]
- Brue, T.; Quentien, M.H.; Khetchoumian, K.; Bensa, M.; Capo-Chichi, J.M.; Delemer, B.; Balsalobre, A.; Nassif, C.; Papadimitriou, D.T.; Pagnier, A.; et al. Mutations in NFKB2 and potential genetic heterogeneity in patients with DAVID syndrome, having variable endocrine and immune deficiencies. BMC Med. Genet. 2014, 15, 139. [Google Scholar] [CrossRef]
- Johnston, C. Diagnosis and Management of Genital Herpes: Key Questions and Review of the Evidence for the 2021 Centers for Disease Control and Prevention Sexually Transmitted Infections Treatment Guidelines. Clin. Infect. Dis. 2022, 74, S134–S143. [Google Scholar] [CrossRef]
- Sadowski, L.A.; Upadhyay, R.; Greeley, Z.W.; Margulies, B.J. Current Drugs to Treat Infections with Herpes Simplex Viruses-1 and -2. Viruses 2021, 13, 1228. [Google Scholar] [CrossRef]
- Piret, J.; Boivin, G. Resistance of Herpes Simplex Viruses to Nucleoside Analogues: Mechanisms, Prevalence, and Management. Antimicrob. Agents Chemother. 2011, 55, 459–472. [Google Scholar] [CrossRef]
- Field, A.K.; Biron, K.K. “The end of innocence” revisited: Resistance of herpesviruses to antiviral drugs. Clin. Microbiol. Rev. 1994, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Edlefsen, P.T.; Birkmann, A.; Huang, M.L.; Magaret, C.A.; Kee, J.J.; DIem, K.; Goldner, T.; Timmler, B.; Stoelben, S.; Ruebsamen-Schaeff, H.; et al. No Evidence of Pritelivir Resistance Among Herpes Simplex Virus Type 2 Isolates after 4 Weeks of Daily Therapy. J. Infect. Dis. 2016, 214, 258. [Google Scholar] [CrossRef] [PubMed]
- Shoji, N.; Tanese, K.; Sasaki, A.; Horiuchi, T.; Utsuno, Y.; Fukuda, K.; Hoshino, Y.; Noda, S.; Minami, H.; Asakura, W. Pharmaceuticals and Medical Device Agency approval summary: Amenamevir for the treatment of herpes zoster. J. Dermatol. 2020, 47, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, D.; Bernardi, C.; Maulini, M.; Giannotti, F.; Mamez, A.-C.; Masouridi-Levrat, S.; Chalandon, Y.; Neofytos, D. Salvage Treatment of Refractory HSV Oral Lesions with Pritelivir in Allogeneic Hematopoietic Cell Transplant Recipients. Antimicrob. Agents Chemother. 2023, 67, e0173222. [Google Scholar] [CrossRef] [PubMed]
- Cannon, L.; Tholouli, E.; Ward, C.; Farooq, H.; Kingston, M. Use of pritelivir in refractory aciclovir-resistant herpes simplex virus type 2. Int. J. STD AIDS 2021, 32, 978–980. [Google Scholar] [CrossRef] [PubMed]
- Serris, A.; Pouvaret, A.; Loiseau, C.; Abid, H.; Burrel, S.; Fourgeaud, J.; Rouzaud, C.; Lanternier, F.; Boutolleau, D.; Frange, P. Pritelivir for recurrent aciclovir-resistant herpes simplex virus 2 infections in immunocompromised patients. J. Antimicrob. Chemother. 2022, 77, 2303–2305. [Google Scholar] [CrossRef] [PubMed]
- Wald, A.; Timmler, B.; Magaret, A.; Warren, T.; Tyring, S.; Johnston, C.; Fife, K.; Selke, S.; Huang, M.L.; Stobernack, H.P.; et al. Effect of Pritelivir Compared with Valacyclovir on Genital HSV-2 Shedding in Patients with Frequent Recurrences: A Randomized Clinical Trial. JAMA 2016, 316, 2495–2503. [Google Scholar] [CrossRef]
- Kwiatkowski, V.; Thanaputkaiporn, N.; Poowuttikul, P. NFKB2 Mutation in 2 Siblings with DAVID Syndrome and CVID with Variable Presentations. J. Allergy Clin. Immunol. 2022, 149, AB27. [Google Scholar] [CrossRef]
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Diez-Domingo, J.; Hwang, S.-J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barberà, J.; et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 2015, 372, 2087–2096. [Google Scholar] [CrossRef]
- Meza-Romero, R.; Navarrete-Dechent, C.; Downey, C. Molluscum contagiosum: An update and review of new perspectives in etiology, diagnosis, and treatment. Clin. Cosmet. Investig. Dermatol. 2019, 12, 373–381. [Google Scholar] [CrossRef]
- Chen, X.; Anstey, A.V.; Bugert, J.J. Molluscum contagiosum virus infection. Lancet Infect. Dis. 2013, 13, 877–888. [Google Scholar] [CrossRef]
- Pikkarainen, S.; Martelius, T.; Ristimäki, A.; Siitonen, S.; Seppänen, M.R.J.; Färkkilä, M. A High Prevalence of Gastrointestinal Manifestations in Common Variable Immunodeficiency. Am. J. Gastroenterol. 2019, 114, 648. [Google Scholar] [CrossRef]
- Woodward, J.; Gkrania-Klotsas, E.; Kumararatne, D. Chronic norovirus infection and common variable immunodeficiency. Clin. Exp. Immunol. 2017, 188, 363. [Google Scholar] [CrossRef]
- Netzler, N.E.; Enosi Tuipulotu, D.; White, P.A. Norovirus antivirals: Where are we now? Med. Res. Rev. 2019, 39, 860–886. [Google Scholar] [CrossRef]
- Phillips, G.; Tam, C.C.; Rodrigues, L.C.; Lopman, B. Prevalence and characteristics of asymptomatic norovirus infection in the community in England. Epidemiol. Infect. 2010, 138, 1454–1458. [Google Scholar] [CrossRef]
- Costantini, V.P.; Cooper, E.M.; Hardaker, H.L.; Lee, L.E.; Bierhoff, M.; Biggs, C.; Cieslak, P.R.; Hall, A.J.; Vinjé, J. Epidemiologic, Virologic, and Host Genetic Factors of Norovirus Outbreaks in Long-term Care Facilities. Clin. Infect. Dis. 2016, 62, 1. [Google Scholar] [CrossRef]
- Atmar, R.L.; Opekun, A.R.; Gilger, M.A.; Estes, M.K.; Crawford, S.E.; Neill, F.H.; Graham, D.Y. Norwalk Virus Shedding after Experimental Human Infection. Emerg. Infect. Dis. 2008, 14, 1553. [Google Scholar] [CrossRef]
- Johnson, P.C.; Mathewson, J.J.; DuPont, H.L.; Greenberg, H.B. Multiple-challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J. Infect. Dis. 1990, 161, 18–21. [Google Scholar] [CrossRef]
- Simmons, K.; Gambhir, M.; Leon, J.; Lopman, B. Duration of Immunity to Norovirus Gastroenteritis. Emerg. Infect. Dis. 2013, 19, 1260. [Google Scholar] [CrossRef] [PubMed]
- Atmar, R.L.; Cramer, J.P.; Baehner, F.; Han, C.; Borkowski, A.; Mendelman, P.M. An Exploratory Study of the Salivary Immunoglobulin A Responses to 1 Dose of a Norovirus Virus-Like Particle Candidate Vaccine in Healthy Adults. J. Infect. Dis. 2019, 219, 410. [Google Scholar] [CrossRef]
- Saito, M.; Goel-Apaza, S.; Espetia, S.; Velasquez, D.; Cabrera, L.; Loli, S.; Crabtree, J.E.; Black, R.E.; Kosek, M.; Checkley, W.; et al. Multiple Norovirus Infections in a Birth Cohort in a Peruvian Periurban Community. Clin. Infect. Dis. An Off. Publ. Infect. Dis. Soc. Am. 2014, 58, 483. [Google Scholar] [CrossRef]
- Reeck, A.; Kavanagh, O.; Estes, M.K.; Opekun, A.R.; Gilger, M.A.; Graham, D.Y.; Atmar, R.L. Serologic Correlate of Protection against Norovirus-Induced Gastroenteritis. J. Infect. Dis. 2010, 202, 1212. [Google Scholar] [CrossRef]
- Debbink, K.; Lindesmith, L.C.; Donaldson, E.F.; Costantini, V.; Beltramello, M.; Corti, D.; Swanstrom, J.; Lanzavecchia, A.; Vinjé, J.; Baric, R.S. Emergence of New Pandemic GII.4 Sydney Norovirus Strain Correlates with Escape from Herd Immunity. J. Infect. Dis. 2013, 208, 1877. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.F.; Reims, H.M.; Frydenlund, D.; Holm, K.; Paulsen, V.; Michelsen, A.E.; Jørgensen, K.K.; Osnes, L.T.; Bratlie, J.; Eide, T.J.; et al. A Cross-Sectional Study of the Prevalence of Gastrointestinal Symptoms and Pathology in Patients with Common Variable Immunodeficiency. Am. J. Gastroenterol. 2016, 111, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Malamut, G.; Verkarre, V.; Suarez, F.; Viallard, J.F.; Lascaux, A.S.; Cosnes, J.; Bouhnik, Y.; Lambotte, O.; Béchade, D.; Ziol, M.; et al. The enteropathy associated with common variable immunodeficiency: The delineated frontiers with celiac disease. Am. J. Gastroenterol. 2010, 105, 2262–2275. [Google Scholar] [CrossRef] [PubMed]
- Maarschalk-Ellerbroek, L.J.; Oldenburg, B.; Mombers, I.M.H.; Hoepelman, A.I.M.; Brosens, L.A.A.; Offerhaus, G.J.A.; Ellerbroek, P.M. Outcome of screening endoscopy in common variable immunodeficiency disorder and X-linked agammaglobulinemia. Endoscopy 2013, 45, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Woodward, J.M.; Gkrania-Klotsas, E.; Cordero-Ng, A.Y.K.; Aravinthan, A.; Bandoh, B.N.; Liu, H.; Davies, S.; Zhang, H.; Stevenson, P.; Curran, M.D.; et al. The role of chronic norovirus infection in the enteropathy associated with common variable immunodeficiency. Am. J. Gastroenterol. 2015, 110, 320–327. [Google Scholar] [CrossRef]
- Andersen, I.M.; Jørgensen, S.F. Gut inflammation in CVID: Causes and consequences. Expert Rev. Clin. Immunol. 2022, 18, 31–45. [Google Scholar] [CrossRef]
- Van De Ven, A.A.J.M.; Douma, J.W.; Rademaker, C.; Van Loon, A.M.; Wensing, A.M.J.; Boelens, J.J.; Sanders, E.A.M.; Van Montfrans, J.M. Pleconaril-resistant chronic parechovirus-associated enteropathy in agammaglobulinaemia. Antivir. Ther. 2011, 16, 611–614. [Google Scholar] [CrossRef]
- Strohmeier, V.; Andrieux, G.; Unger, S.; Pascual-Reguant, A.; Klocperk, A.; Seidl, M.; Marques, O.C.; Eckert, M.; Gräwe, K.; Shabani, M.; et al. Interferon-Driven Immune Dysregulation in Common Variable Immunodeficiency–Associated Villous Atrophy and Norovirus Infection. J. Clin. Immunol. 2023, 43, 371. [Google Scholar] [CrossRef]
- Rolfes, M.C.; Sriaroon, P.; Dávila Saldaña, B.J.; Dvorak, C.C.; Chapdelaine, H.; Ferdman, R.M.; Chen, K.; Jolles, S.; Patel, N.C.; Kim, Y.J.; et al. Chronic norovirus infection in primary immune deficiency disorders: An international case series. Diagn. Microbiol. Infect. Dis. 2019, 93, 69–73. [Google Scholar] [CrossRef]
- Brown, L.-A.K.; Ruis, C.; Clark, I.M.; Roy, S.; Brown, J.R.; Albuquerque, A.S.; Patel, S.Y.; Miller, J.; Yousuf, M.; Dervisevic, S.; et al. A comprehensive characterization of chronic norovirus infection in immunodeficient hosts. J. Allergy Clin. Immunol. 2019, 144, 1450–1453. [Google Scholar] [CrossRef]
- González-Morcillo, G.; Calderón-Hernanz, B.; Serrano-López de las Hazas, J.; de Hita-Santabaya, A.I.; Riera-Oliver, J. Ribavirin-resistant chronic norovirus infection-associated enteropathy in common variable immunodeficiency. Case report and review of the literature. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101956. [Google Scholar] [CrossRef]
- Wu, S.; Orange, J.S.; Chiou, E.H.; Nicholas, S.K.; Seeborg, F.; Gwalani, L.A.; Kearney, D.; Rider, N.L.; Rasalingam, S.; Hanson, I.C. Use of enteral immunoglobulin in NEMO syndrome for eradication of persistent symptomatic norovirus enteritis. J. Allergy Clin. Immunol. Pract. 2016, 4, 539–541.e1. [Google Scholar] [CrossRef]
- Gairard-Dory, A.-C.; Dégot, T.; Hirschi, S.; Schuller, A.; Leclercq, A.; Renaud-Picard, B.; Gourieux, B.; Kessler, R. Clinical Usefulness of Oral Immunoglobulins in Lung Transplant Recipients with Norovirus Gastroenteritis: A Case Series. Transplant. Proc. 2014, 46, 3603–3605. [Google Scholar] [CrossRef]
- Christensen, A.C.W.; Drabe, C.H.; Loft, A.; Lebech, A.M.; Katzenstein, T.L. Unsuccessful treatment of chronic norovirus infection with enteral immunoglobulin in patients with common variable immunodeficiency, case report. IDCases 2023, 32, e01737. [Google Scholar] [CrossRef]
- Van Kampen, J.J.A.; Dalm, V.A.S.H.; Fraaij, P.L.A.; Oude Munnink, B.B.; Schapendonk, C.M.E.; Izquierdo-Lara, R.W.; Villabruna, N.; Ettayebi, K.; Estes, M.K.; Koopmans, M.P.G.; et al. Clinical and In Vitro Evidence Favoring Immunoglobulin Treatment of a Chronic Norovirus Infection in a Patient with Common Variable Immunodeficiency. J. Infect. Dis. 2022, 226, 1781–1789. [Google Scholar] [CrossRef]
- Siddiq, D.M.; Koo, H.L.; Adachi, J.A.; Viola, G.M. Norovirus Gastroenteritis Successfully Treated with Nitazoxanide. J. Infect. 2011, 63, 394. [Google Scholar] [CrossRef]
- Kempf, B.; Edgar, J.D.; Caughey, C.M.; Devlin, L.A. Nitazoxanide Is an Ineffective Treatment of Chronic Norovirus in Patients with X-Linked Agammaglobulinemia and May Yield False-Negative Polymerase Chain Reaction Findings in Stool Specimens. J. Infect. Dis. 2017, 215, 486–487. [Google Scholar] [CrossRef]
- Ruis, C.; Brown, L.-A.K.; Roy, S.; Atkinson, C.; Williams, R.; Burns, S.O.; Yara-Romero, E.; Jacobs, M.; Goldstein, R.; Breuer, J.; et al. Mutagenesis in Norovirus in Response to Favipiravir Treatment. N. Engl. J. Med. 2018, 379, 2173–2176. [Google Scholar] [CrossRef]
- Park, S.C.; Jeen, Y.M.; Jeen, Y.T. Approach to cytomegalovirus infections in patients with ulcerative colitis. Korean J. Intern. Med. 2017, 32, 383. [Google Scholar] [CrossRef]
- Kathi, P.; Tama, M.; Reddy, V.; Kundumadam, S.; Al-Subee, O.; Ehrinpreis, M.N. Acute Gastrointestinal Bleeding Due to Cytomegalovirus Colitis in a Patient with Common Variable Immunodeficiency. ACG Case Rep. J. 2018, 5, e40. [Google Scholar] [CrossRef]
- Ünal, B.; Başsorgun, C.I.; Çil Gönülcü, S.; Uçar, A.; Çelik, F.; Elpek, G.Ö. Cytomegalovirus Colitis with Common Variable Immunodeficiency and Crohn’s Disease. Case Rep. Med. 2015, 2015, 348204. [Google Scholar] [CrossRef]
- Toh, D.E.; Chen, C.N.; Chan, T.S.; Lien, G.S.; Suk, F.M. Endoscopic and Clinical Features of Cytomegalovirus Colitis in Critically Ill Patients: A Retrospective Review. J. Exp. Clin. Med. 2014, 6, 209–212. [Google Scholar] [CrossRef]
- Khan, T.V.; Toms, C. Cytomegalovirus Colitis and Subsequent New Diagnosis of Inflammatory Bowel Disease in an Immunocompetent Host: A Case Study and Literature Review. Am. J. Case Rep. 2016, 17, 538. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, J.D.; Jones, A.; Enders, F.T.; Killian, J.M.; Loftus, E.V.; Smyrk, T.C.; Bruining, D.H. A model for identifying cytomegalovirus in patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2015, 13, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Khalili, A. Efficacy of Ganciclovir on CMV Retinitis Complication of Common Variable Immunodeficiency. Immunol. Genet. J. 2018, 1, 103–107. [Google Scholar] [CrossRef]
- Schunter, M.O.; Walles, T.; Fritz, P.; Meyding-Lamadé, U.; Thon, K.P.; Fellermann, K.; Stange, E.F.; Lamadé, W. Herpes simplex virus colitis complicating ulcerative colitis: A case report and brief review on superinfections. J. Crohn’s Colitis 2007, 1, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Cathomas, M.; Rosenberg, R.; Burri, E.; Javier-Gonzalez, M.; Weber, A.; Sinnreich, M.F.; Cathomas, G.; Galli, R. Herpes simplex virus colitis mimicking acute severe ulcerative colitis: A case report and review of the literature. J. Surg. Case Rep. 2023, 2023, rjad225. [Google Scholar] [CrossRef]
- Dray, X.; Treton, X.; Mazeron, M.C.; Lavergne-Slove, A.; Joly, F.; Mimram, D.; Attar, A.; Tobelem, G.; Bouhnik, Y. Herpes simplex virus type 1 colitis in a patient with common variable immunodeficiency syndrome. Eur. J. Gastroenterol. Hepatol. 2006, 18, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, A.; Crescenzi, L.; Varricchi, G.; Marone, G.; Spadaro, G. Heterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders. Front. Immunol. 2020, 11, 506367. [Google Scholar] [CrossRef] [PubMed]
- Morozov, V.A.; Lagaye, S. Hepatitis C virus: Morphogenesis, infection and therapy. World J. Hepatol. 2018, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Yuen, M.F.; Chen, D.S.; Dusheiko, G.M.; Janssen, H.L.A.; Lau, D.T.Y.; Locarnini, S.A.; Peters, M.G.; Lai, C.L. Hepatitis B virus infection. Nat. Rev. Dis. Prim. 2018, 4, 18036. [Google Scholar] [CrossRef] [PubMed]
- Mohd Hanafiah, K.; Groeger, J.; Flaxman, A.D.; Wiersma, S.T. Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to HCV seroprevalence. Hepatology 2013, 57, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Outbreak of hepatitis C associated with intravenous immunoglobulin administration—United States, October 1993–June 1994. MMWR. Morb. Mortal. Wkly. Rep. 1994, 43, 505–509. [Google Scholar]
- Björkander, J.; Cunningham-Rundles, C.; Lundin, P.; Olsson, R.; Söderström, R.; Hanson, L.Å. Intravenous immunoglobulin prophylaxis causing liver damage in 16 of 77 patients with hypogammaglobulinemia or IgG subclass deficiency. Am. J. Med. 1988, 84, 107–111. [Google Scholar] [CrossRef]
- Bjoro, K.; Froland, S.S.; Yun, Z.; Samdal, H.H.; Haaland, T. Hepatitis C Infection in Patients with Primary Hypogammaglobulinemia after Treatment with Contaminated Immune Globulin. N. Engl. J. Med. 1994, 331, 1607–1611. [Google Scholar] [CrossRef]
- Healey, C.J.; Sabharwal, N.K.; Daub, J.; Davidson, F.; Yap, P.L.; Fleming, K.A.; Chapman, R.W.G.; Simmonds, P.; Chapel, H. Outbreak of acute hepatitis C following the use of anti-hepatitis C virus—Screened intravenous immunoglobulin therapy. Gastroenterology 1996, 110, 1120–1126. [Google Scholar] [CrossRef]
- Razvi, S.; Schneider, L.; Jonas, M.M.; Cunningham-Rundles, C. Outcome of Intravenous Immunoglobulin-Transmitted Hepatitis C Virus Infection in Primary Immunodeficiency. Clin. Immunol. 2001, 101, 284–288. [Google Scholar] [CrossRef]
- Quinti, I.; Pierdominicia, M.; Marzialia, M.; Giovannettia, A.; Donnannoa, S.; Chapelb, H.; Bjorkanderc, J.; Aiutia, F. European surveillance of immunoglobulin safety—Results of initial survey of 1243 patients with primary immunodeficiencies in 16 countries. Clin. Immunol. 2002, 104, 231–236. [Google Scholar] [CrossRef]
- Quinti, I.; Pandolfi, F.; Paganelli, R.; EL Salman, D.; Giovannetti, A.; Rosso, R.; Oliva, A.; Rainaldi, L.; Aiuti, F. HCV infection in patients with primary defects of immunoglobulin production. Clin. Exp. Immunol. 1995, 102, 11–16. [Google Scholar] [CrossRef]
- Robertson, N.; Engelhardt, K.R.; Morgan, N.V.; Barge, D.; Cant, A.J.; Hughes, S.M.; Abinun, M.; Xu, Y.; Koref, M.S.; Arkwright, P.D.; et al. AstuteClinician Report: A Novel 10 bp Frameshift Deletion in Exon 2 ofICOSCauses a Combined Immunodeficiency Associated with an Enteritis and Hepatitis. J. Clin. Immunol. 2015, 35, 598. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, S.B. Viral Meningitis and Encephalitis. In Office Practice of Neurology; Churchill Livingstone: London, UK, 2003; p. 466. [Google Scholar] [CrossRef]
- Lau, Y.L.; Levinsky, R.J.; Morgan, G.; Strobel, S. Dual meningoencephalitis with echovirus type 11 and adenovirus in combined (common variable) immunodeficiency. Pediatr. Infect. Dis. J. 1988, 7, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Halliday, E.; Winkelstein, J.; Webster, A.D.B. Enteroviral infections in primary immunodeficiency (PID): A survey of morbidity and mortality. J. Infect. 2003, 46, 1–8. [Google Scholar] [CrossRef]
- Jindal, A.K.; Chaudhary, H.; Tyagi, R.; Rawat, A.; Suri, D.; Patra, P.K.; Arora, K.; Chawla, S.; Vyas, S.; Arora, M.; et al. Meningoencephalitis in primary antibody deficiency: Our experience from northwest India. J. Neuroimmunol. 2022, 371, 577952. [Google Scholar] [CrossRef]
- Slade, C.A.; McLean, C.; Scerri, T.; Giang, T.B.; Megaloudis, S.; Strathmore, A.; Tempany, J.C.; Nicholls, K.; D’Arcy, C.; Bahlo, M.; et al. Fatal Enteroviral Encephalitis in a Patient with Common Variable Immunodeficiency Harbouring a Novel Mutation in NFKB2. J. Clin. Immunol. 2019, 39, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Radanović, I.; Rkman, D.; Zekan, P.; Kutleša, M.; Baršić, B. Chronic meningoencephalitis caused by Echo virus 6 in a patient with common variable immunodeficiency: Successful treatment with pleconaril. Wien. Klin. Wochenschr. 2018, 130, 70–72. [Google Scholar] [CrossRef]
- Rotbart, H.A.; Webster, A.D. Treatment of potentially life-threatening enterovirus infections with pleconaril. Clin. Infect. Dis. 2001, 32, 228–235. [Google Scholar] [CrossRef]
- Wildenbeest, J.G.; Van Den Broek, P.J.; Benschop, K.S.M.; Koen, G.; Wierenga, P.C.; Vossen, A.C.T.M.; Kuijpers, T.W.; Wolthers, K.C. Pleconaril revisited: Clinical course of chronic enteroviral meningoencephalitis after treatment correlates with in vitro susceptibility. Antivir. Ther. 2012, 17, 459–466. [Google Scholar] [CrossRef]
- Abzug, M.J.; Michaels, M.G.; Wald, E.; Jacobs, R.F.; Romero, J.R.; Sánchez, P.J.; Wilson, G.; Krogstad, P.; Storch, G.A.; Lawrence, R.; et al. A Randomized, Double-Blind, Placebo-Controlled Trial of Pleconaril for the Treatment of Neonates with Enterovirus Sepsis. J. Pediatr. Infect. Dis. Soc. 2016, 5, 53–62. [Google Scholar] [CrossRef]
- Bakri, F.G.; Bahou, Y.G.; Al-Sammarrai, F.A.; Hadidy, A.; Gharaibeh, A.; Zaid, G.K.; Mahafzah, A.; Samara, O.A.; Ababneh, N.A.; Zak, I. Fatal encephalitis due to BK virus in a patient with common variable immunodeficiency: A case report. J. Clin. Virol. 2013, 57, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.T.U.; Green, A.; Wilson, M.R.; DeRisi, J.L.; Gundling, K. Neurologic Complications of Common Variable Immunodeficiency. J. Clin. Immunol. 2016, 36, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Alonto, A.M.; Aronoff, D.M.; Malani, P.N. West Nile virus meningitis in patient with common variable immunodeficiency. Emerg. Infect. Dis. 2003, 9, 1353–1354. [Google Scholar] [CrossRef] [PubMed]
- Hermaszewski, R.A.; Webster, A.D.B. Primary hypogammaglobulinaemia: A survey of clinical manifestations and complications. QJM An Int. J. Med. 1993, 86, 31–42. [Google Scholar] [CrossRef]
- Borish, L.; Ayars, A.G.; Kirkpatrick, C.H. Common variable immunodeficiency presenting as herpes simplex virus encephalitis. J. Allergy Clin. Immunol. 2011, 127, 541–543. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Jha, S. Herpes simplex encephalitis in a patient having common variable immuno-deficiency. Ann. Trop. Med. Public Health 2010, 3, 30. [Google Scholar]
- Steiner, I.; Budka, H.; Chaudhuri, A.; Koskiniemi, M.; Sainio, K.; Salonen, O.; Kennedy, P.G.E. Viral meningoencephalitis: A review of diagnostic methods and guidelines for management. Eur. J. Neurol. 2010, 17, 999-e57. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, C.A.; Dunn, G.; Wood, P.; Kumararatne, D.S.; Wood, D. Chronic infection with vaccine-derived neurovirulent poliovirus in common variable immunodeficiency and implications for world health. J. Allergy Clin. Immunol. 2001, 107, S304–S305. [Google Scholar]
- Bitnun, A.; Shannon, P.; Durward, A.; Rota, P.A.; Bellini, W.J.; Graham, C.; Wang, E.; Ford-Jones, E.L.; Cox, P.; Becker, L.; et al. Measles inclusion-body encephalitis caused by the vaccine strain of measles virus. Clin. Infect. Dis. 1999, 29, 855–861. [Google Scholar] [CrossRef]
- Mehndiratta, M.M.; Mehndiratta, P.; Pande, R. Poliomyelitis: Historical Facts, Epidemiology, and Current Challenges in Eradication. Neurohospitalist 2014, 4, 223. [Google Scholar] [CrossRef]
- Kew, O.; Pallansch, M. Breaking the Last Chains of Poliovirus Transmission: Progress and Challenges in Global Polio Eradication. Annu. Rev. Virol. 2018, 5, 427–451. [Google Scholar] [CrossRef]
- Shaghaghi, M.; Soleyman-jahi, S.; Abolhassani, H.; Yazdani, R.; Azizi, G.; Rezaei, N.; Barbouche, M.R.; McKinlay, M.A.; Aghamohammadi, A. New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine 2018, 36, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Martín, J. Vaccine-derived poliovirus from long term excretors and the end game of polio eradication. Biologicals 2006, 34, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Gomber, S.; Arora, V.; Dewan, P. Vaccine associated paralytic poliomyelitis unmasking common variable immunodeficiency. Indian Pediatr. 2017, 54, 241–242. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ivanova, O.; Driss, N.; Tiongco-Recto, M.; Da Silva, R.; Shahmahmoodi, S.; Sazzad, H.M.S.; Mach, O.; Kahn, A.L.; Sutter, R.W. Poliovirus excretion among persons with primary immune deficiency disorders: Summary of a seven-country study series. J. Infect. Dis. 2014, 210 (Suppl. S1), S368–S372. [Google Scholar] [CrossRef]
- Inactivated Polio Vaccine Now Introduced Worldwide. Available online: https://www.gavi.org/news/media-room/inactivated-polio-vaccine-now-introduced-worldwide (accessed on 18 August 2023).
- Pham, M.N.; Fuleihan, R.L.; Sullivan, K.E.; Cunningham-Rundles, C. Ocular Manifestations in Primary Immunodeficiency Disorders: A Report From the United States Immunodeficiency Network (USIDNET) Registry. J. Allergy Clin. Immunol. Pract. 2022, 10, 1788–1796. [Google Scholar] [CrossRef]
- Aghamohammadi, A.; Abolhassani, H.; Hirbod-Mobarakeh, A.; Ghassemi, F.; Shahinpour, S.; Behniafard, N.; Naghibzadeh, G.; Imanzadeh, A.; Rezaei, N. The uncommon combination of common variable immunodeficiency, macrophage activation syndrome, and cytomegalovirus retinitis. Viral Immunol. 2012, 25, 161–165. [Google Scholar] [CrossRef]
- Béziat, V.; Jouanguy, E. Human inborn errors of immunity to oncogenic viruses. Curr. Opin. Immunol. 2021, 72, 277–285. [Google Scholar] [CrossRef]
- Rezk, S.A.; Zhao, X.; Weiss, L.M. Epstein-Barr virus (EBV)–associated lymphoid proliferations, a 2018 update. Hum. Pathol. 2018, 79, 18–41. [Google Scholar] [CrossRef]
- Boztug, H.; Hirschmugl, T.; Holter, W.; Lakatos, K.; Kager, L.; Trapin, D.; Pickl, W.; Förster-Waldl, E.; Boztug, K. NF-κB1 Haploinsufficiency Causing Immunodeficiency and EBV-Driven Lymphoproliferation. J. Clin. Immunol. 2016, 36, 533–540. [Google Scholar] [CrossRef]
- Park, J.H.; Levinson, A.I. Granulomatous-lymphocytic interstitial lung disease (GLILD) in common variable immunodeficiency (CVID). Clin. Immunol. 2010, 134, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Hengge, U.R.; Ruzicka, T.; Tyring, S.K.; Stuschke, M.; Roggendorf, M.; Schwartz, R.A.; Seeber, S. Update on Kaposi’s sarcoma and other HHV8 associated diseases. Part 2: Pathogenesis, Castleman’s disease, and pleural effusion lymphoma. Lancet Infect. Dis. 2002, 2, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.R.; Verma, N.; Lowe, D.; Baxendale, H.E.; Jolles, S.; Kelleher, P.; Longhurst, H.J.; Patel, S.Y.; Renzoni, E.A.; Sander, C.R.; et al. British Lung Foundation/United Kingdom Primary Immunodeficiency Network Consensus Statement on the Definition, Diagnosis, and Management of Granulomatous-Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency Disorders. J. Allergy Clin. Immunol. Pract. 2017, 5, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Routes, J.M. Granulomatous disease in common variable immunodeficiency. Curr. Allergy Asthma Rep. 2005, 5, 370–375. [Google Scholar] [CrossRef]
- Cinetto, F.; Scarpa, R.; Carrabba, M.; Firinu, D.; Lougaris, V.; Buso, H.; Garzi, G.; Gianese, S.; Soccodato, V.; Punziano, A.; et al. Granulomatous Lymphocytic Interstitial Lung Disease (GLILD) in Common Variable Immunodeficiency (CVID): A Multicenter Retrospective Study of Patients From Italian PID Referral Centers. Front. Immunol. 2021, 12, 627423. [Google Scholar] [CrossRef]
- Wheat, W.H.; Cool, C.D.; Morimoto, Y.; Rai, P.R.; Kirkpatrick, C.H.; Lindenbaum, B.A.; Bates, C.A.; Ellison, M.C.; Serls, A.E.; Brown, K.K.; et al. Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J. Exp. Med. 2005, 202, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Marshall, S.E.; Bunce, M.; Welsh, K.I. Variation in immunoregulatory genes determines the clinical phenotype of common variable immunodeficiency. Genes Immun. 1999, 1, 137–148. [Google Scholar] [CrossRef]
- Ensoli, B.; Stürzl, M.; Monini, P. Cytokine-mediated growth promotion of Kaposi’s sarcoma and primary effusion lymphoma. Semin. Cancer Biol. 2000, 10, 367–381. [Google Scholar] [CrossRef]
- German Advisory Committee Blood (Arbeitskreis Blut); Subgroup ‘Assessment of Pathogens Transmissible by Blood’. Human Immunodeficiency Virus (HIV). Transfus. Med. Hemotherapy 2016, 43, 203. [Google Scholar] [CrossRef]
- Padeh, Y.C.; Shliozberg, J. Lack of seroconversion in a patient with CVID infected with HIV. J. Allergy Clin. Immunol. 2005, 115, S160. [Google Scholar] [CrossRef]
- Morell, A.; Barandun, S.; Locher, G. HTLV-III seroconversion in a homosexual patient with common variable immunodeficiency. N. Engl. J. Med. 1986, 315, 456–457. [Google Scholar] [PubMed]
- Jolles, S.; Tyrer, M.; Johnson, M.; Webster, D. Long term recovery of IgG and IgM production during HIV infection in a patient with common variable immunodeficiency (CVID). J. Clin. Pathol. 2001, 54, 713–715. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.D.B.; Levert, A.; Spickett, G.; Beattie, R.; North, M.; Thorpe, R. Recovery of antibody production after HIV infection in “common” variable hypogammaglobulinaemia. Clin. Exp. Immunol. 1989, 77, 309. [Google Scholar] [PubMed]
- Wright, J.J.; Birx, D.L.; Wagner, D.K.; Waldmann, T.A.; Blaese, R.M.; Fleisher, T.A. Normalization of antibody responsiveness in a patient with common variable hypogammaglobulinemia and HIV infection. N. Engl. J. Med. 1987, 317, 1516–1520. [Google Scholar] [CrossRef]
- Webster, A.D.B.; Malkovsky, M.; Patterson, S.; North, M.; Dalgleish, A.G.; Beattie, R.; Asherson, G.L.; Weiss, R.A. Isolation of retroviruses from two patients with “common variable” hypogammaglobulinaemia. Lancet 1986, 327, 581–583. [Google Scholar] [CrossRef]
- Heegaard, E.D.; Brown, K.E. Human parvovirus B19. Clin. Microbiol. Rev. 2002, 15, 485–505. [Google Scholar] [CrossRef]
- Zanelli, M.; Ruggeri, L.; Sanguedolce, F.; Zizzo, M.; Martino, G.; Genua, A.; Ascani, S. Parvovirus B19 Infection in a Patient with Common Variable Immunodeficiency. Mediterr. J. Hematol. Infect. Dis. 2021, 13, e2021026. [Google Scholar] [CrossRef]
- Chuhjo, T.; Nakao, S.; Matsuda, T. Successful Treatment of Persistent Erythroid Aplasia Caused by Parvovirus B19 Infection in a Patient with Common Variable Immunodeficiency with Low-Dose Immunoglobulin. Am. J. Hematol. 1999, 60, 222–224. [Google Scholar] [CrossRef]
- Ruiz Gutiérrez, L.; Albarrán, F.; Moruno, H.; Cuende, E. Parvovirus B19 chronic monoarthritis in a patient with common variable immunodeficiency. Reumatol. Clínica 2015, 11, 58–59. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.T.M.; Schmidt, K.M.; Cost, K.M.; Marshall, G.S. Common variable immunodeficiency presenting with persistent parvovirus B19 infection. Pediatrics 2012, 130, e1711–e1715. [Google Scholar] [CrossRef] [PubMed]
- von Delft, A.; Hall, M.D.; Kwong, A.D.; Purcell, L.A.; Saikatendu, K.S.; Schmitz, U.; Tallarico, J.A.; Lee, A.A. Accelerating antiviral drug discovery: Lessons from COVID-19. Nat. Rev. Drug Discov. 2023, 22, 585–603. [Google Scholar] [CrossRef]
- Cheng, M.M.; Reyes, C.; Satram, S.; Birch, H.; Gibbons, D.C.; Drysdale, M.; Bell, C.F.; Suyundikov, A.; Ding, X.; Maher, M.C.; et al. Real-World Effectiveness of Sotrovimab for the Early Treatment of COVID-19 During SARS-CoV-2 Delta and Omicron Waves in the USA. Infect. Dis. Ther. 2023, 12, 607–621. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Pantaleo, G.; Correia, B.; Fenwick, C.; Joo, V.S.; Perez, L. Antibodies to combat viral infections: Development strategies and progress. Nat. Rev. Drug Discov. 2022, 21, 676–696. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Thrasher, A.J.; Cavazza, A. Gene Editing for the Treatment of Primary Immunodeficiency Diseases. Hum. Gene Ther. 2021, 32, 43. [Google Scholar] [CrossRef] [PubMed]
At least one of the following: ∙ Increased susceptibility to infection ∙ Autoimmune manifestations ∙ Granulomatous disease ∙ Unexplained polyclonal lymphoproliferation ∙ Affected family member with antibody deficiency |
AND marked decrease of IgG and marked decrease of IgA with or without low IgM levels (measured at least twice; <2 SD of the normal levels for their age); |
AND at least one of the following: ∙ Poor antibody response to vaccines (and/or absent isohemagglutinins); i.e., absence of protective levels despite vaccination where defined ∙ Low switched memory B cells (<70% of age-related normal value) |
AND Secondary causes of hypogammaglobulinaemia have been excluded. |
AND Diagnosis is established after the fourth year of life (symptoms may be present before) |
AND No evidence of profound T-cell deficiency, defined as two out of the following (y = year of life): ∙ CD4 numbers/microliter: 2–6 y < 300, 6–12 y < 250, >12 y < 200 ∙ % Naïve CD4: 2–6 y < 25%, 6–16 y < 20%, >16 y < 10% ∙ T-cell proliferation absent |
Organ System | Viral Infections Reported | Unique Infective Features | Recommended/Reported Treatments | Reported Monogenic CVID Cases |
---|---|---|---|---|
Respiratory | SARS-CoV-2 (COVID-19) | Paxlovid® (irmatrelvir/ritonavir)/remdesivir/molnupiravir Prophylaxis: IgRT & vaccination | NFKB2 LOF [93] | |
Rhinovirus (most common) [67] | Recurrent and persistent infection Often asymptomatic | Nil | ||
RSV | Severe bronchiolitis in infants | IKZF1 [57] | ||
Adenovirus | Pneumonia in infant | Cidofivir | ||
CMV | Pneumonitis | Ganciclovir | NFKB2 LOF [69] | |
RSV, picornavirus, parainfluenza 1 & 2, influenza, coronavirus, metapneumovirus, enterovirus | Nil | |||
Mucocutaneous | HPV | Severe warts | IgRT | NFKB2 LOF [69] TNFSF12 (TWEAK) LOF [58] |
HSV | Chronic intraoral ulcer | Aciclovir/Famciclovir/Valaciclovir Foscarnet Pritelivir/Amenamevir | ||
Recurrent HSV | IKZF1 [56] | |||
Herpes Vegetans | NFKB2 LOF [120] | |||
VZV | Recurrent/severe shingles Severe chickenpox Haemorrhagic vesicles | Aciclovir Prophylaxis: Consider inactivated vaccine (Shingrix®) | NFKB2 LOF [60] NFKB2/AIRE [134] | |
MCV | Severe molluscum contagiosum | Cidofivir (if severe) [137] | NFKB2 LOF [60] | |
Gastrointestinal | Norovirus | Chronic infection CVID Enteropathy | Ribavirin Oral immunglobulin Nitazoxanide Favipiravir | |
CMV | Bloody diarrhoea Weight loss | Ganciclovir Valganciclovir Foscarnet anti-CMV Ig (Cytogam®) | ||
HSV | Acute severe UC | Aciclovir Valaciclovir | ||
HHV-6 | Severe enteritis Mild chronic hepatitis | Aciclovir Ganciclovir Foscarnet | ICOS LOF [188] | |
Hepatic | ||||
HBV | Nucleos(t)ide analogues (NUCs) [179] Interferon therapy [179] | |||
HCV | Direct-acting antiviral drugs (DAA’s) [178] Pegylated interferon alfa and ribavirin (PR) [178] | |||
Central Nervous System | Vaccine-derived polioviruse | Vaccine-associated paralytic poliomyelitis (VAPP) | Nil | |
Coxsackie A16 | Chronic lymphocytic mengingoencepahilitis | Nil | NFKB2 LOF [193] | |
SARS-CoV-2 | Acute cerebellitis and myeloradiculitis | Convalescent plasma, steroids and IVIg | ||
CMV | Meningoencephalitis | Ganciclovir +/− Foscarnet | ||
HSV | Aciclovir | |||
VZV | ||||
JC virus | NFKB1 LOF [71] | |||
Echovirus | Intraventricular immunoglobulin Pleconaril | |||
BK virus, mumps, West Nile virus, adenovirus. | Nil | |||
Ocular Viruses | CMV | Retinitis Retinal detachment | Ganciclovir | |
Oncoviruses | EBV | Lymphoproliferation | Nil | NFKB1 LOF [218] |
HHV-8 | Associated with GLILD | Nil | ||
Other | HIV | Normalisation of Ig levels | HAART | |
Parvovirus (HPV-B19) | Reticulocytopenic anaemia Chronic monoarthritis | IgRT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hakim, A.; Kacar, M.; Savic, S. The Scope and Impact of Viral Infections in Common Variable Immunodeficiency (CVID) and CVID-like Disorders: A Literature Review. J. Clin. Med. 2024, 13, 1717. https://doi.org/10.3390/jcm13061717
Al-Hakim A, Kacar M, Savic S. The Scope and Impact of Viral Infections in Common Variable Immunodeficiency (CVID) and CVID-like Disorders: A Literature Review. Journal of Clinical Medicine. 2024; 13(6):1717. https://doi.org/10.3390/jcm13061717
Chicago/Turabian StyleAl-Hakim, Adam, Mark Kacar, and Sinisa Savic. 2024. "The Scope and Impact of Viral Infections in Common Variable Immunodeficiency (CVID) and CVID-like Disorders: A Literature Review" Journal of Clinical Medicine 13, no. 6: 1717. https://doi.org/10.3390/jcm13061717
APA StyleAl-Hakim, A., Kacar, M., & Savic, S. (2024). The Scope and Impact of Viral Infections in Common Variable Immunodeficiency (CVID) and CVID-like Disorders: A Literature Review. Journal of Clinical Medicine, 13(6), 1717. https://doi.org/10.3390/jcm13061717