An Evaluation of Plasma TNF, VEGF-A, and IL-6 Determination as a Risk Marker of Atherosclerotic Vascular Damage in Early-Onset CAD Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistical Yearbook of the Republic of Poland 2018; Statistics Poland: Warsaw, Poland, 2018.
- Aggarwal, A.; Srivastava, S.; Velmurugan, M. Newer perspectives of coronary artery disease in young. World J. Cardiol. 2016, 8, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Mourouzis, K.; Oikonomou, E.; Siasos, G.; Tsalamadris, S.; Vogiatzi, G.; Antonopoulos, A.; Fountoulakis, P.; Goliopoulou, P.; Papaioannou, S.; Tousoulis, D. Pro-inflammatory Cytokines in Acute Coronary Syndromes. Curr. Pharm. 2020, 26, 4624–4647. [Google Scholar] [CrossRef] [PubMed]
- Wallach, D. The cybernetics of TNF: Old views and newer ones. Semin. Cell Dev. Biol. 2016, 50, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, T.; Mitoma, H.; Harashima, S.-I.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-alpha: Structure, function and interaction with anti-TNF agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Akash, M.S.H.; Rehman, K.; Liaqat, A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J. Cell Biochem. 2018, 119, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Popko, K.; Gorska, E.; Stelmaszczyk-Emmel, A.; Plywaczewski, R.; Stoklosa, A.; Gorecka, D.; Pyrzak, B.; Demkow, U. Proinflammatory cytokines IL-6 and TNF-α and the development of inflammation in obese subjects. Eur. J. Med. Res. 2010, 15 (Suppl. 2), 120–122. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.B.; Siegart, N.M.; De Leon, J. Interleukin-6 in atherosclerosis: Atherogenic or atheroprotective? Clin. Lipidol. 2017, 12, 14–23. [Google Scholar] [CrossRef]
- Bacchiega, B.C.; Bacchiega, A.B.; Usnayo, M.J.; Bedirian, R.; Singh, G.; da Rocha, G.; Pinheiro, C. Interleukin 6 inhibition and coronary artery disease in a high-risk population: A prospective community-based clinical study. J. Am. Heart Assoc. 2017, 6, e005038. [Google Scholar] [CrossRef]
- Schaper, F.; Rose-John, S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015, 26, 475–487. [Google Scholar] [CrossRef]
- Yudkin, J.S.; Kumari, M.; Humphries, S.E.; Mohamed-Ali, V. Inflammation, obesity, stress and coronary heart disease: Is interleukin-6 the link? Atherosclerosis 2000, 148, 209–214. [Google Scholar] [CrossRef]
- Su, D.; Li, Z.; Li, X.; Chen, Y.; Zhang, Y.; Ding, D.; Deng, X.; Xia, M.; Qiu, J.; Ling, W. Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease. Mediat. Inflamm. 2013, 2013, 726178. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Valdes-Marquez, E.; Hill, M.; Gordon, J.; Farrall, M.; Hamsten, A.; Watkins, H.; Hopewell, J.C. Plasma cytokines and risk of coronary heart disease in the PROCARDIS study. Open Heart 2018, 5, e000807. [Google Scholar] [CrossRef] [PubMed]
- Koczy-Baron, E.; Kasperska-Zając, A. Rola naczyniowo-śródbłonkowego czynnika wzrostu w procesach zapalnych. Postep. Hig. Med. Dosw. 2014, 68, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Navarro, C.; Hueso, L.; Díaz, A.; Marcos-Garcés, V.; Bonanad, C.; Ruiz-Sauri, A.; Vila, J.M.; Sanz, M.J.; Chorro, F.J.; Piqueras, L.; et al. Role of antiangiogenic VEGF-A165b in angiogenesis and systolic function after reperfused myocardial infarction. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Gerber, H.P.; le Couter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Erżen, B.; Šilar, M.; Šabovič, M. Stable phase post-Mi patients have elevated VEGF levels correlated with inflammation markers, but not with atherosclerotic burden. BMC Cardiovasc. Disord. 2014, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Drzewiecka-Gerber, A.; Rybicka-Musialik, A.; Myszor, J.; Ziaja, D.; Trusz-Gluza, M. Impact of atherosclerotic changes of carotid vessels on long-term outcome in relatively young patients with acute coronary syndrome. Kardiol. Pol. 2012, 70, 343–349. [Google Scholar]
- Koulouri, A.; Darioli, R.; Qanadli, S.D.; Katz, E.; Eeckhout, E.; Mazzolai, L.; Depairon, M. The atherosclerosis burden score. Vasa 2021, 50, 280–285. [Google Scholar] [CrossRef]
- Kłosiewicz-Wasek, B.; Ceremuzyński, L.; Poloński, L.; Lukaszewicz, R.; Wasilewski, J. Association between carotid artery atherosclerosis and coronary artery disease in young females. Reference to sex hormone profile. Kardiol. Pol. 2008, 66, 127–134. [Google Scholar]
- Ahn, S.; Jo, E.A.; Min, S.K.; Min, S.; Ha, J.; Park, K.W.; Min, K.B. Predictive Value of Abnormal and Borderline Ankle-Brachial Index for Coronary Re-Intervention and Mortality in Patients with Coronary Artery Disease: An Observational Cohort Study. Vasc. Spec. Int. 2020, 36, 89–95. [Google Scholar] [CrossRef]
- Minami, H.R.; Itoga, N.K.; George, E.L.; Garcia-Toca, M. Cost-effectiveness analysis of ankle-brachial index screening in patients with coronary artery disease to optimize medical management. J. Vasc. Surg. 2021, 74, 2030–2039.e2. [Google Scholar] [CrossRef] [PubMed]
- Białecka, M.; Dziedziejko, V.; Safranow, K.; Krzystolik, A.; Marcinowska, Z.; Chlubek, D.; Rać, M.E. Could TNF be a metabolic syndrome and left ventricular hypertrophy marker in patients with early onset coronary artery disease? Diagnostics 2024, 14, 449. [Google Scholar] [CrossRef] [PubMed]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez, R.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, A.; Rubba, P.; Gentile, M.; Mallardo, V.; Calcaterra, I.; Bresciani, A.; Covetti, G.; Cuomo, G.; Merone, P.; Di Lorenzo, A.; et al. Carotid Atherosclerosis, Ultrasound and Lipoproteins. Biomedicines 2021, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Lisowska, A.; Knapp, M.; Bolińska, S.; Lisowski, P.; Krajewska, A.; Sobkowicz, B.; Musiał, W.J. The importance of intima-media thickness (IMT) measurements in monitoring of atherosclerosis progress after myocardial infarction. Adv. Med. Sci. 2012, 57, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Berkovitch, A.; Iakobishvili, Z.; Fuchs, S.; Atar, S.; Braver, O.; Eisen, A.; Glikson, M.; Beigel, R.; Matetzky, S. Peripheral artery disease, abnormal ankle-brachial index, and prognosis in patients with acute coronary syndrome. Front. Cardiovasc. Med. 2022, 9, 902615. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sun, H.; Nie, F.; Hu, X. Prognostic Value of Abnormal Ankle-Brachial Index in Patients With Coronary Artery Disease: A Meta-Analysis. Angiology 2020, 71, 491–497. [Google Scholar] [CrossRef]
- Hashizume, N.; Miura, T.; Miyashita, Y.; Motoki, H.; Ebisawa, S.; Izawa, A. Prognostic value of ankle-brachial index in patients undergoing percutaneous coronary intervention: In- hospital and 1-year outcomes from the SHINANO Registry. Angiology 2017, 68, 884–892. [Google Scholar] [CrossRef]
- Weatherley, B.D.; Nelson, J.J.; Heiss, G.; Chambless, L.E.; Sharrett, A.R.; Nieto, F.J.; Folsom, A.R.; Rosamond, W.D. The association of the ankle-brachial index with incident coronary heart disease: The Atherosclerosis Risk In Communities (ARIC) study, 1987–2001. BMC Cardiovasc. Disord. 2007, 7, 3. [Google Scholar] [CrossRef]
- Alexopoulos, N.; Raggi, P. Calcification in atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 681–688. [Google Scholar] [CrossRef]
- Bäck, M.; Yurdagul, A., Jr.; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019, 16, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, L.; Zhan, Y.; Zhang, Z.; Chen, D.; Xiang, Y.; Xie, C. The expression of SAH, IL-1β, Hcy, TNF-α and BDNF in coronary heart disease and its relationship with the severity of coronary stenosis. BMC Cardiovasc. Disord. 2022, 22, 101. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Chen, Z.; Zhang, J.; Pan, J.; Jin, X.; Yang, M.; Huang, L. The value of serum YKL-40 and TNF-α in the diagnosis of acute ST-segment elevation myocardial infarction. Cardiol. Res. Pract. 2022, 4905954. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, M.; Krejca, M.; Stepinski, P.; Rozalski, M.; Golanski, J. Platelet reactivity expressed as a novel platelet reactivity score is associated with higher inflammatory state after coronary artery bypass grafting. Arch. Med. Sci. 2023, 19, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Abbasifard, M.; Kandelouei, T.; Aslani, S.; Razi, B.; Imani, D.; Fasihi, M.; Cicero, F.G.; Sahebkar, A. Effect of statins on the plasma/serum levels of inflammatory markers in patients with cardiovascular disease, a systematic review and meta-analysis of randomized clinical trials. Inflammopharmacology 2022, 30, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.; Simpson, P.; Estis, J.; Torres, V.; Wub, A.H. Reference range and short- and long-term biological variation of interleukin (IL)-6, IL-17A and tissue necrosis factor-alpha using high sensitivity assays. Cytokine 2013, 64, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Hennø, L.T.; Storjord, E.; Christiansen, D.; Bergseth, G.; Ludviksen, J.K.; Fure, H.; Barene, S.; Nielsen, E.W.; Mollnes, T.E.; Brekke, O.L. Effect of the anticoagulant, storage time and temperature of blood samples on the concentrations of 27 multiplex assayed cytokines—Consequences for defining reference values in healthy humans. Cytokine 2017, 97, 86–95. [Google Scholar] [CrossRef]
- Wainstein, M.V.; Mossmann, M.; Araujo, G.N.; Gonçalves, S.C.; Gravina, G.L.; Sangalli, M.; Veadrigo, F.; Matte, R.; Reich, R.; Costa, F.G.; et al. Elevated serum interleukin-6 is predictive of coronary artery disease in intermediate risk overweight patients referred for coronary angiography. Diabetol. Metab. Syndr. 2017, 9, 67. [Google Scholar] [CrossRef]
- Dulak, J.; Loboda, A.; Jazwa, A.; Zagorska, A.; Dörler, J.H. Atorvastatin affects several angiogenic mediators in human endothelial cells. Endothelium 2005, 12, 233–241. [Google Scholar] [CrossRef]
- Alber, H.F.; Dulak, J.; Frick, M.; Dichtl, W.; Schwarzacher, S.P.; Pachinger, O. Atorvastatin decreases vascular endothelial growth factor in patients with coronary artery disease. J. Am. Coll. Cardiol. 2002, 39, 1951–1955. [Google Scholar] [CrossRef]
- Barale, C.; Frascaroli, C.; Senkeev, R.; Cavalot, F.; Russo, I. Simvastatin effects on inflammation and platelet activation markers in hypercholesterolemia. BioMed Res. Int. 2018, 2018, 6508709. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.E.; Hasseldam, H.; Rasmussen, R.S.; Vindegaard, N.; McWilliam, O.; Iversen, H.K. Statin treatment before stroke reduces pro-inflammatory cytokine levels after stroke. Neurol. Res. 2019, 41, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Kut, C.; Mac Gabhann, F.; Popel, A.S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br. J. Cancer 2007, 97, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Kotschy, M.; Witkiewicz, W.; Grendziak, R.; Dubis, J.; Zapotoczny, N.; Kotschy, D. Selected clotting factors in blood of patients with abdominal aortic aneurysms. Kardiol. Pol. 2012, 70, 574–579. [Google Scholar] [PubMed]
- Fei, Y.; Hou, J.; Xuan, W.; Zhang, C.; Meng, X. The relationship of plasma mir-503 and coronary collateral circulation in patients with coronary artery disease. Life Sci. 2018, 207, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Danzig, V.; Míková, B.; Kuchynka, P.; Benáková, H.; Zima, T.; Kittnar, O. Levels of circulating biomarkers at rest and after exercise in coronary artery disease patients. Physiol. Res. 2010, 59, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Elkind, M.S.; Cheng, J.; Boden-Albala, B.; Rundek, T.; Thomas, J.; Chen, H.; Rabbani, R.E.; Sacco, L.R. Tumor necrosis factor receptor levels are associated with carotid atherosclerosis. Stroke 2002, 33, 31–38. [Google Scholar] [CrossRef]
- Cortez-Cooper, M.; Meaders, E.; Stallings, J.; Haddow, S.; Kraj, B.; Sloan, G.; McCully, K.K.; Cannon, J.G. Soluble TNF and IL-6 receptors: Indicators of vascular health in women without cardiovascular disease. Vasc. Med. 2013, 18, 282–289. [Google Scholar] [CrossRef]
- Andersson, J.; Sundström, J.; Kurland, L.; Gustavsson, T.; Hulthe, J.; Elmgren, A.; Zilmer, K.; Zilmer, M.; Lind, L. The carotid artery plaque size and echogenicity are related to different cardiovascular risk factors in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Lipids 2009, 44, 397–403. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, M.; Hou, H.; Li, Q. Efficacy of simvastatin on carotid atherosclerotic plaque and its effects on serum inflammatory factors and cardiocerebrovascular events in elderly patients. Exp. Ther. Med. 2021, 22, 819. [Google Scholar] [CrossRef]
- Cunnington, M.S.; Mayosi, B.M.; Hall, D.H.; Avery, P.J.; Farrall, M.; Vickers, M.A.; Watkins, H.; Keavney, B. Novel genetic variants linked to coronary artery disease by genome-wide association are not associated with carotid artery intima-media thickness or intermediate risk phenotypes. Atherosclerosis 2009, 203, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Larsson, P.T.; Hallerstam, S.; Rosfors, S.; Wallén, N.H. Circulating markers of inflammation are related to carotid artery atherosclerosis. Int. Angiol. 2005, 24, 43–51. [Google Scholar] [PubMed]
- Puz, P.; Lasek-Bal, A. Repeated measurements of serum concentrations of TNF-alpha, interleukin-6 and interleukin-10 in the evaluation of internal carotid artery stenosis progression. Atherosclerosis 2017, 263, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, S.; Sakaguchi, M.; Miwa, K.; Furukado, S.; Yamagami, H.; Yagita, Y.; Mochizuki, H.; Kitagawa, K. Association of interleukin-6 with the progression of carotid atherosclerosis: A 9-year follow-up study. Stroke 2014, 45, 2924–2929. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Q.; Li, J.; Chen, J.Y.; Zhou, Y.L.; Cai, A.P.; Huang, C.; Feng, Y.Q. The Association of Circulating MiR-29b and Interleukin-6 with Subclinical Atherosclerosis. Cell Physiol. Biochem. 2017, 44, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Tamariz, L.; Hare, J.M. Inflammatory cytokines in heart failure: Roles in aetiology and utility as biomarkers. Eur. Heart J. 2010, 31, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, M.; Ünverdi, S.; Oktar, S.; Bukan, N.; Gülbahar, O.; Ureten, K.; Göker, B.; Haznedaroglu, S.; Sungur, G.; Ciftçi, T.U.; et al. Vascular endothelial growth factor and carotid intima-media thickness in patients with Behçet’s disease. Clin. Rheumatol. 2008, 27, 961–966. [Google Scholar] [CrossRef]
- Jaumdally, R.; Varma, C.; Blann, A.; MacFadyen, R.J.; Gregory, Y.H. Systemic and intracardiac vascular endothelial growth factor and angiopoietin-1 and -2 levels in coronary artery disease: Effects of angioplasty. Lip Ann. Med. 2007, 39, 298–305. [Google Scholar] [CrossRef]
- Yueniwati, Y.; Darmiastini, N.; Arisetijono, E. Thicker carotid intima-media thickness, and increased plasma VEGF levels suffered by post-acute thrombotic stroke patients. Int. J. Gen. Med. 2016, 9, 447–452. [Google Scholar] [CrossRef]
- Sirico, G.; Spadera, L.; De Laurentis, M.; Brevetti, G. Carotid artery disease and stroke in patients with peripheral arterial disease. The role of inflammation. Monaldi Arch. Chest Dis. 2009, 72, 10–17. [Google Scholar] [CrossRef]
- Hashimoto, H.; Kitagawa, K.; Kuwabara, K.; Hougaku, H.; Ohtsuki, T.; Matsumoto, M.; Hori, M. Circulating adhesion molecules are correlated with ultrasonic assessment of carotid plaques. Clin. Sci. 2003, 104, 521–527. [Google Scholar] [CrossRef]
- Yi, H.; Li, L.; Wang, Y.; Tao, H.; Yu, X.; Yu, B.; Gao, X.; Lin, P. The Potential Mediating Effects of Inflammation on the Association Between Type D Personality and Coronary Plaque Vulnerability in Patients With Coronary Artery Disease: An Optical Coherence Tomography Study. Psychosom. Med. 2022, 84, 468–477. [Google Scholar] [CrossRef]
- Kabłak-Ziembicka, A.; Przewłocki, T.; Stępień, E.; Pieniążek, P.; Rzeźnik, D.; Sliwiak, D.; Komar, M.; Tracz, W.; Podolec, P. Relationship between carotid intima-media thickness, cytokines, atherosclerosis extent and a two-year cardiovascular risk in patients with arteriosclerosis. Kardiol. Pol. 2011, 69, 1024–1031. [Google Scholar]
- Mizia-Stec, K.; Gasior, Z.; Zahorska-Markiewicz, B.; Janowska, J.; Szulc, A.; Jastrzebska-Maj, E.; Kobielusz-Gembala, I. Serum tumour necrosis factor-alpha, interleukin-2 and interleukin-10 activation in stable angina and acute coronary syndromes. Comp. Study Coron. Artery Dis. 2003, 14, 431–438. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Gender (number of males) | 52 |
Patients age (years) | 49.9 ± 5.91 |
BMI (kg/m2) | 28.4 ± 4.2 |
Past MI (number of cases) | 49 |
Age of the first MI (years) | 44.0 ± 5.6 |
Time since diagnosis of MI to joining the program (years) | 3.20 ± 0.74 |
History of hypertension (number of cases) | 46 |
Age at diagnosis of hypertension (years) | 42.6 ± 8.6 |
Systolic BP (mmHg) | 128 ± 15.0 |
Diastolic BP (mmHg) | 77.6 ± 8.6 |
Past PTCA (number of cases) | 50 |
Past CABG (number of cases) | 26 |
Past smoking (number of cases) | 62 |
Years smoking | 18.9 ± 9.8 |
Current smoking | 8 |
Diabetes type 2 (number of cases) | 9 |
Statins (number of cases) | 70 |
Anti-platelet drugs (Aspirin, number of cases) | 63 |
ACEI (number of cases) | 56 |
Beta-blockers (number of cases) | 62 |
Diuretics (number of cases) | 22 |
ARB (number of cases) | 12 |
Calcium channel blockers (number of cases) | 13 |
Parameter | Study Group | F 1 | M 2 | p-Value |
---|---|---|---|---|
TNF (pg/mL) | 1.33 ± 0.36 | 1.69 ± 1.21 | 1.37 ± 0.37 | 0.15 |
IL-6 (pg/mL) | 1.68 ± 2.74 | 1.69 ± 1.21 | 1.73 ± 3.18 | 0.10 |
VEGF (pg/mL) | 236 ± 17.2 | 236 ± 22.3 | 213 ± 26.2 | 0.12 |
Parameter | p-Value |
---|---|
ABI right | 0.01 |
ABI left | 0.04 |
ABI mean | 0.004 |
IMC cca right | 0.18 |
IMC cca left | 0.07 |
IMC cca mean | 0.04 |
IMC ba right | 0.08 |
IMC ba left | 0.0021 |
IMC ba mean | 0.020 |
PLA thickness left | 0.24 |
PLA length left | 0.30 |
PLA density left | 0.58 |
PLA thickness right | 0.63 |
PLA length right | 0.85 |
PLA density right | 0.37 |
PLA thickness mean | 0.04 |
PLA length mean | 0.97 |
PLA density mean | 0.88 |
Cytokines | Rs | p-Value |
---|---|---|
IL-6 & VEGF | 0.20 | 0.05 |
IL-6 & TNF | 0.17 | 0.10 |
TNF& VEGF | 0.10 | 0.35 |
Parameter | Correlations with TNF | Correlations with IL-6 | Correlations with VEGF | |||
---|---|---|---|---|---|---|
Rs | p-Value | Rs | p-Value | Rs | p-Value | |
ABI right | −0.08 | 0.51 | −0.12 | 0.32 | −0.12 | 0.35 |
ABI left | −0.08 | 0.52 | −0.10 | 0.40 | −0.16 | 0.19 |
ABI mean | −0.07 | 0.56 | −0.12 | 0.32 | −0.15 | 0.23 |
IMC cca right | 0.01 | 0.91 | −0.04 | 0.73 | −0.04 | 0.74 |
IMC cca left | 0.06 | 0.65 | 0.02 | 0.86 | 0.01 | 0.91 |
IMC cca mean | 0.07 | 0.56 | −0.03 | 0.80 | −0.04 | 0.74 |
IMC ba right | −0.12 | 0.32 | −0.12 | 0.32 | −0.16 | 0.19 |
IMC ba left | −0.001 | 1.00 | −0.30 | 0.02 | −0.16 | 0.19 |
IMC ba mean | −0.12 | 0.33 | −0.22 | 0.07 | −0.10 | 0.41 |
PLA thickness left | 0.06 | 0.76 | −0.17 | 0.42 | −0.19 | 0.35 |
PLA length left | −0.07 | 0.73 | 0.22 | 0.28 | −0.03 | 0.88 |
PLA density left | −0.31 | 0.12 | 0.01 | 0.97 | −0.15 | 0.46 |
PLA thickness right | 0.08 | 0.66 | −0.12 | 0.52 | 0.27 | 0.12 |
PLA length right | −0.16 | 0.38 | 0.01 | 0.96 | 0.10 | 0.58 |
PLA density right | 0.30 | 0.083 | −0.02 | 0.92 | −0.01 | 0.94 |
PLA thickness mean | −0.12 | 0.50 | −0.10 | 0.59 | 0.24 | 0.17 |
PLA length mean | −0.02 | 0.89 | 0.04 | 0.79 | 0.09 | 0.57 |
PLA density mean | 0.08 | 0.63 | 0.03 | 0.86 | −0.03 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bialecka, M.; Rac, M.; Dziedziejko, V.; Safranow, K.; Chlubek, D.; Rać, M.E. An Evaluation of Plasma TNF, VEGF-A, and IL-6 Determination as a Risk Marker of Atherosclerotic Vascular Damage in Early-Onset CAD Patients. J. Clin. Med. 2024, 13, 1742. https://doi.org/10.3390/jcm13061742
Bialecka M, Rac M, Dziedziejko V, Safranow K, Chlubek D, Rać ME. An Evaluation of Plasma TNF, VEGF-A, and IL-6 Determination as a Risk Marker of Atherosclerotic Vascular Damage in Early-Onset CAD Patients. Journal of Clinical Medicine. 2024; 13(6):1742. https://doi.org/10.3390/jcm13061742
Chicago/Turabian StyleBialecka, Marta, Michał Rac, Violetta Dziedziejko, Krzysztof Safranow, Dariusz Chlubek, and Monika Ewa Rać. 2024. "An Evaluation of Plasma TNF, VEGF-A, and IL-6 Determination as a Risk Marker of Atherosclerotic Vascular Damage in Early-Onset CAD Patients" Journal of Clinical Medicine 13, no. 6: 1742. https://doi.org/10.3390/jcm13061742
APA StyleBialecka, M., Rac, M., Dziedziejko, V., Safranow, K., Chlubek, D., & Rać, M. E. (2024). An Evaluation of Plasma TNF, VEGF-A, and IL-6 Determination as a Risk Marker of Atherosclerotic Vascular Damage in Early-Onset CAD Patients. Journal of Clinical Medicine, 13(6), 1742. https://doi.org/10.3390/jcm13061742