Long-Term Disability Outcomes in Relapsing–Remitting Multiple Sclerosis Patients: Impact of Clinical and Demographic Factors on Disease Progression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objectives
2.2. General Methodology
2.3. Patient Evaluation
2.4. Statistical Analysis
2.5. Ethics Committee
3. Results
3.1. Demographic and Clinical Characteristics of the Study Population
3.2. Kaplan–Meier Survival Analysis for MEDSS = 3.0 and 6.0
3.2.1. Kaplan–Meier Survival Analysis for MEDSS = 3.0
3.2.2. Kaplan–Meier Survival Analysis for MEDSS = 6.0
3.3. COX Regression Analysis for MEDSS = 3.0 and 6.0
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- GBD 2015 Neurological Disorders Collaborator Group. Global, Regional, and National Burden of Neurological Disorders during 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877–897. [Google Scholar] [CrossRef]
- Balasa, R.; Maier, S.; Barcutean, L.; Stoian, A.; Motataianu, A. The Direct Deleterious Effect of Th17 Cells in the Nervous System Compartment in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: One Possible Link between Neuroinflammation and Neurodegeneration. Rev. Romana Med. Lab. 2020, 28, 9–17. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising Prevalence of Multiple Sclerosis Worldwide: Insights from the Atlas of MS, Third Edition. Mult. Scler. Houndmills Basingstoke Engl. 2020, 26, 1816–1821. [Google Scholar] [CrossRef]
- Cree, B.A.C.; Gourraud, P.; Oksenberg, J.R.; Bevan, C.; Crabtree-Hartman, E.; Gelfand, J.M.; Goodin, D.S.; Graves, J.; Green, A.J.; Mowry, E.; et al. Long-term Evolution of Multiple Sclerosis Disability in the Treatment Era. Ann. Neurol. 2016, 80, 499–510. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C. Defining the Clinical Course of Multiple Sclerosis: Results of an International Survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996, 46, 907–911. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the Clinical Course of Multiple Sclerosis. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Klineova, S.; Lublin, F.D. Clinical Course of Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a028928. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating Neurologic Impairment in Multiple Sclerosis: An Expanded Disability Status Scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.H.; Chard, D.T.; Ciccarelli, O. Clinically Isolated Syndromes. Lancet Neurol. 2012, 11, 157–169. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Tremlett, H.; Zhao, Y.; Devonshire, V. Natural History of Secondary-Progressive Multiple Sclerosis. Mult. Scler. Houndmills Basingstoke Engl. 2008, 14, 314–324. [Google Scholar] [CrossRef]
- Scalfari, A.; Neuhaus, A.; Daumer, M.; Muraro, P.A.; Ebers, G.C. Onset of Secondary Progressive Phase and Long-Term Evolution of Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2014, 85, 67–75. [Google Scholar] [CrossRef]
- Confavreux, C.; Vukusic, S. Age at Disability Milestones in Multiple Sclerosis. Brain J. Neurol. 2006, 129 Pt 3, 595–605. [Google Scholar] [CrossRef]
- Tutuncu, M.; Tang, J.; Zeid, N.A.; Kale, N.; Crusan, D.J.; Atkinson, E.J.; Siva, A.; Pittock, S.J.; Pirko, I.; Keegan, B.M.; et al. Onset of Progressive Phase Is an Age Dependent Clinical Milestone in Multiple Sclerosis. Mult. Scler. Houndmills Basingstoke Engl. 2013, 19, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.; Barcutean, L.; Andone, S.; Manu, D.; Sarmasan, E.; Bajko, Z.; Balasa, R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int. J. Mol. Sci. 2023, 24, 4375. [Google Scholar] [CrossRef] [PubMed]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA 2021, 325, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, E.; Bellinvia, A.; Fonderico, M.; Pastò, L.; Razzolini, L.; Totaro, R.; Spitaleri, D.; Lugaresi, A.; Cocco, E.; Onofrj, M.; et al. Progression Is Independent of Relapse Activity in Early Multiple Sclerosis: A Real-Life Cohort Study. Brain J. Neurol. 2022, 145, 2796–2805. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Confavreux, C.; Vukusic, S.; Adeleine, P. Early Clinical Predictors and Progression of Irreversible Disability in Multiple Sclerosis: An Amnesic Process. Brain J. Neurol. 2003, 126 Pt 4, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Tremlett, H.; Yousefi, M.; Devonshire, V.; Rieckmann, P.; Zhao, Y. Impact of Multiple Sclerosis Relapses on Progression Diminishes with Time. Neurology 2009, 73, 1616–1623. [Google Scholar] [CrossRef]
- Leray, E.; Yaouanq, J.; Le Page, E.; Coustans, M.; Laplaud, D.; Oger, J.; Edan, G. Evidence for a Two-Stage Disability Progression in Multiple Sclerosis. Brain 2010, 133, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, T.; Moccia, M.; Coetzee, T.; Cohen, J.A.; Correale, J.; Graves, J.; Marrie, R.A.; Montalban, X.; Yong, V.W.; Thompson, A.J.; et al. Multiple Sclerosis Progression: Time for a New Mechanism-Driven Framework. Lancet Neurol. 2023, 22, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Magliozzi, R.; Howell, O.W.; Nicholas, R.; Cruciani, C.; Castellaro, M.; Romualdi, C.; Rossi, S.; Pitteri, M.; Benedetti, M.D.; Gajofatto, A.; et al. Inflammatory Intrathecal Profiles and Cortical Damage in Multiple Sclerosis. Ann. Neurol. 2018, 83, 739–755. [Google Scholar] [CrossRef] [PubMed]
- Haider, L.; Zrzavy, T.; Hametner, S.; Höftberger, R.; Bagnato, F.; Grabner, G.; Trattnig, S.; Pfeifenbring, S.; Brück, W.; Lassmann, H. The Topograpy of Demyelination and Neurodegeneration in the Multiple Sclerosis Brain. Brain 2016, 139, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Butzkueven, H.; Wiendl, H.; Spelman, T.; Pellegrini, F.; Chen, Y.; Dong, Q.; Koendgen, H.; Belachew, S.; Trojano, M. Greater Sensitivity to Multiple Sclerosis Disability Worsening and Progression Events Using a Roving versus a Fixed Reference Value in a Prospective Cohort Study. Mult. Scler. Houndmills Basingstoke Engl. 2018, 24, 963–973. [Google Scholar] [CrossRef]
- Cree, B.A.C.; Hollenbach, J.A.; Bove, R.; Kirkish, G.; Sacco, S.; Caverzasi, E.; Bischof, A.; Gundel, T.; Zhu, A.H.; Papinutto, N.; et al. Silent Progression in Disease Activity–Free Relapsing Multiple Sclerosis. Ann. Neurol. 2019, 85, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, S.A.; McDonnell, G.V. Benign Multiple Sclerosis? Clinical Course, Long Term Follow up, and Assessment of Prognostic Factors. J. Neurol. Neurosurg. Psychiatry 1999, 67, 148–152. [Google Scholar] [CrossRef]
- Boiko, A.; Vorobeychik, G.; Paty, D.; Devonshire, V.; Sadovnick, D.; the UBC MS Clinic Neurologists*. Early Onset Multiple Sclerosis. Neurology 2002, 59, 1006–1010. [Google Scholar] [CrossRef]
- Ramsaransing, G.S.M.; De Keyser, J. Benign Course in Multiple Sclerosis: A Review. Acta Neurol. Scand. 2006, 113, 359–369. [Google Scholar] [CrossRef]
- Pinto, M.F.; Oliveira, H.; Batista, S.; Cruz, L.; Pinto, M.; Correia, I.; Martins, P.; Teixeira, C. Prediction of Disease Progression and Outcomes in Multiple Sclerosis with Machine Learning. Sci. Rep. 2020, 10, 21038. [Google Scholar] [CrossRef] [PubMed]
- Bermel, R.A.; Rudick, R.A. Interferon-β Treatment for Multiple Sclerosis. Neurotherapeutics 2007, 4, 633–646. [Google Scholar] [CrossRef]
- Confavreux, C.; O’Connor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Olsson, T.P.; Wolinsky, J.S.; Bagulho, T.; Delhay, J.-L.; Dukovic, D.; et al. Oral Teriflunomide for Patients with Relapsing Multiple Sclerosis (TOWER): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Neurol. 2014, 13, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Tselis, A.; Khan, O.; Lisak, R.P. Glatiramer Acetate in the Treatment of Multiple Sclerosis. Neuropsychiatr. Dis. Treat. 2007, 3, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Gold, R.; Giovannoni, G.; Phillips, J.T.; Fox, R.J.; Zhang, A.; Meltzer, L.; Kurukulasuriya, N.C. Efficacy and Safety of Delayed-Release Dimethyl Fumarate in Patients Newly Diagnosed with Relapsing-Remitting Multiple Sclerosis (RRMS). Mult. Scler. Houndmills Basingstoke Engl. 2015, 21, 57–66. [Google Scholar] [CrossRef]
- Lefort, M.; Vukusic, S.; Casey, R.; Edan, G.; Leray, E.; Cotton, F.; De Sèze, J.; Douek, P.; Guillemin, F.; Laplaud, D.; et al. Disability Progression in Multiple Sclerosis Patients Using Early First-line Treatments. Eur. J. Neurol. 2022, 29, 2761–2771. [Google Scholar] [CrossRef]
- Beiki, O.; Frumento, P.; Bottai, M.; Manouchehrinia, A.; Hillert, J. Changes in the Risk of Reaching Multiple Sclerosis Disability Milestones In Recent Decades. JAMA Neurol. 2019, 76, 665–671. [Google Scholar] [CrossRef]
- Kantor, D.; Mehta, R.; Pelletier, C.; Tian, M.; Noxon, V.; Johnson, B.H.; Bonafede, M. Treatment Patterns and Relapses Among Newly Treated Multiple Sclerosis Patients from a Retrospective Claims Analysis. Clin. Ther. 2020, 42, 2136–2147.e3. [Google Scholar] [CrossRef]
- Daruwalla, C.; Shaygannejad, V.; Ozakbas, S.; Havrdova, E.K.; Horakova, D.; Alroughani, R.; Boz, C.; Patti, F.; Onofrj, M.; Lugaresi, A.; et al. Early Non-Disabling Relapses Are Important Predictors of Disability Accumulation in People with Relapsing-Remitting Multiple Sclerosis. Mult. Scler. Houndmills Basingstoke Engl. 2023, 29, 875–883. [Google Scholar] [CrossRef]
- Maier, S.; Motataianu, A.; Barcutean, L.; Balint, A.; Hutanu, A.; Bajko, Z.; Stoian, A.; Romaniuc, A.; Andone, S.; Balasa, R. Interferon-β 1a, an immunomodulator in relapsing remitting multiple sclerosis patients. The effect on pro-inflammatory cytokines. Farmacia 2020, 68, 65–75. [Google Scholar] [CrossRef]
- Sippel, A.; Riemann-Lorenz, K.; Scheiderbauer, J.; Kleiter, I.; Morrison, R.; Kofahl, C.; Heesen, C. Patients Experiences with Multiple Sclerosis Disease-Modifying Therapies in Daily Life—A Qualitative Interview Study. BMC Health Serv. Res. 2021, 21, 1141. [Google Scholar] [CrossRef]
- Dumitrescu, L.; Constantinescu, C.S.; Tanasescu, R. Recent Developments in Interferon-Based Therapies for Multiple Sclerosis. Expert Opin. Biol. Ther. 2018, 18, 665–680. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chan, K.-H. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024, 16, 120. [Google Scholar] [CrossRef]
- Landete, L.; Pérez-Miralles, F.; García, S.; Belenguer, A.; Gascón, F.; Domínguez, J.A.; Carcelén-Gadea, M.; Quintanilla-Bordás, C.; Navarro, L.; Gabaldón, L.; et al. Treatment of Multiple Sclerosis with Teriflunomide. Multicenter Study of Real Clinical Practice in the Valencian Community-Spain. Front. Neurol. 2021, 12, 727586. [Google Scholar] [CrossRef]
- Kasindi, A.; Fuchs, D.-T.; Koronyo, Y.; Rentsendorj, A.; Black, K.L.; Koronyo-Hamaoui, M. Glatiramer Acetate Immunomodulation: Evidence of Neuroprotection and Cognitive Preservation. Cells 2022, 11, 1578. [Google Scholar] [CrossRef]
- Barrie, W.; Yang, Y.; Irving-Pease, E.K.; Attfield, K.E.; Scorrano, G.; Jensen, L.T.; Armen, A.P.; Dimopoulos, E.A.; Stern, A.; Refoyo-Martinez, A.; et al. Elevated Genetic Risk for Multiple Sclerosis Emerged in Steppe Pastoralist Populations. Nature 2024, 625, 321–328. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated with Multiple Sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Hedström, A.K.; Olsson, T.; Kockum, I.; Hillert, J.; Alfredsson, L. Low Sun Exposure Increases Multiple Sclerosis Risk Both Directly and Indirectly. J. Neurol. 2020, 267, 1045–1052. [Google Scholar] [CrossRef]
- Manouchehrinia, A.; Huang, J.; Hillert, J.; Alfredsson, L.; Olsson, T.; Kockum, I.; Constantinescu, C.S. Smoking Attributable Risk in Multiple Sclerosis. Front. Immunol. 2022, 13, 840158. [Google Scholar] [CrossRef] [PubMed]
- Romero-Pinel, L.; Bau, L.; Matas, E.; León, I.; Muñoz-Vendrell, A.; Arroyo, P.; Masuet-Aumatell, C.; Martínez-Yélamos, A.; Martínez-Yélamos, S. The Age at Onset of Relapsing-Remitting Multiple Sclerosis Has Increased over the Last Five Decades. Mult. Scler. Relat. Disord. 2022, 68, 104103. [Google Scholar] [CrossRef] [PubMed]
- Ajdacic-Gross, V.; Steinemann, N.; Horváth, G.; Rodgers, S.; Kaufmann, M.; Xu, Y.; Kamm, C.P.; Kesselring, J.; Manjaly, Z.-M.; Zecca, C.; et al. Onset Symptom Clusters in Multiple Sclerosis: Characteristics, Comorbidities, and Risk Factors. Front. Neurol. 2021, 12, 693440. [Google Scholar] [CrossRef] [PubMed]
- Gustavsen, S.; Olsson, A.; Søndergaard, H.B.; Andresen, S.R.; Sørensen, P.S.; Sellebjerg, F.; Oturai, A. The Association of Selected Multiple Sclerosis Symptoms with Disability and Quality of Life: A Large Danish Self-Report Survey. BMC Neurol. 2021, 21, 317. [Google Scholar] [CrossRef]
- Bărcuţean, L.I.; Romaniuc, A.; Maier, S.; Bajko, Z.; Moţăţăianu, A.; Adina, H.; Simu, I.; Andone, S.; Bălaşa, R. Clinical and Serological Biomarkers of Treatment’s Response in Multiple Sclerosis Patients Treated Continuously with Interferonβ-1b for More than a Decade. CNS Neurol. Disord. Drug Targets 2018, 17, 780–792. [Google Scholar] [CrossRef] [PubMed]
- Balasa, R.; Maier, S.; Voidazan, S.; Hutanu, A.; Bajko, Z.; Motataianu, A.; Tilea, B.; Tiu, C. Assessment of Interleukin-17A, Interleukin-10 and Transforming Growth Factor-Beta1 Serum Titers in Relapsing Remitting Multiple Sclerosis Patients Treated with Avonex, Possible Biomarkers for Treatment Response. CNS Neurol. Disord. Drug Targets 2017, 16, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.F.; Desai, T.; Hackett, C.; Gettings, E.J.; Hentosz, T.; Elmalik, W.; Schramke, C.J. Outcomes in a Modern Cohort of Treated Patients with Multiple Sclerosis from Diagnosis Up to 15 Years. Int. J. MS Care 2020, 22, 110–114. [Google Scholar] [CrossRef]
- Harari, G.; Gurevich, M.; Dolev, M.; Falb, R.Z.; Achiron, A. Faster Progression to Multiple Sclerosis Disability Is Linked to Neuronal Pathways Associated with Neurodegeneration: An Ethnicity Study. PLoS ONE 2023, 18, e0280515. [Google Scholar] [CrossRef]
- Weinshenker, B.G. Natural History of Multiple Sclerosis. Ann. Neurol. 1994, 36 (Suppl. S1), S6–S11. [Google Scholar] [CrossRef]
- Weinshenker, B.G.; Bass, B.; Rice, G.P.; Noseworthy, J.; Carriere, W.; Baskerville, J.; Ebers, G.C. The Natural History of Multiple Sclerosis: A Geographically Based Study. 2. Predictive Value of the Early Clinical Course. Brain J. Neurol. 1989, 112 Pt 6, 1419–1428. [Google Scholar] [CrossRef]
- Çinar, B.P.; Özakbaş, S. Prediction of Conversion from Clinically Isolated Syndrome to Multiple Sclerosis According to Baseline Characteristics: A Prospective Study. Arch. Neuropsychiatry 2018, 55, 15–21. [Google Scholar] [CrossRef]
- Coles, A.J.; Cox, A.; Le Page, E.; Jones, J.; Trip, S.A.; Deans, J.; Seaman, S.; Miller, D.H.; Hale, G.; Waldmann, H.; et al. The Window of Therapeutic Opportunity in Multiple Sclerosis: Evidence from Monoclonal Antibody Therapy. J. Neurol. 2006, 253, 98–108. [Google Scholar] [CrossRef]
- Ebers, G.C. Natural History of Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2001, 71 (Suppl. 2), ii16–ii19. [Google Scholar] [CrossRef]
- Tremlett, H.; Zhao, Y.; Rieckmann, P.; Hutchinson, M. New Perspectives in the Natural History of Multiple Sclerosis. Neurology 2010, 74, 2004–2015. [Google Scholar] [CrossRef] [PubMed]
- Thakolwiboon, S.; Mills, E.A.; Yang, J.; Doty, J.; Belkin, M.I.; Cho, T.; Schultz, C.; Mao-Draayer, Y. Immunosenescence and Multiple Sclerosis: Inflammaging for Prognosis and Therapeutic Consideration. Front. Aging 2023, 4, 1234572. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, A.; Young, A.L.; Wijeratne, P.A.; Prados, F.; Arnold, D.L.; Narayanan, S.; Guttmann, C.R.G.; Barkhof, F.; Alexander, D.C.; Thompson, A.J.; et al. Identifying Multiple Sclerosis Subtypes Using Unsupervised Machine Learning and MRI Data. Nat. Commun. 2021, 12, 2078. [Google Scholar] [CrossRef] [PubMed]
- Young, A.L.; Marinescu, R.V.; Oxtoby, N.P.; Bocchetta, M.; Yong, K.; Firth, N.C.; Cash, D.M.; Thomas, D.L.; Dick, K.M.; Cardoso, J.; et al. Uncovering the Heterogeneity and Temporal Complexity of Neurodegenerative Diseases with Subtype and Stage Inference. Nat. Commun. 2018, 9, 4273. [Google Scholar] [CrossRef]
- Ziemssen, T.; Bhan, V.; Chataway, J.; Chitnis, T.; Campbell Cree, B.A.; Havrdova, E.K.; Kappos, L.; Labauge, P.; Miller, A.; Nakahara, J.; et al. Secondary Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflammat. 2022, 10, e200064. [Google Scholar] [CrossRef]
Variable | All PwMS (n = 523) | Female (n = 356) | Male (n = 167) | Urban (n = 359) | Rural (n = 164) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median (IQR) | 95% CI | Median (IQR) | 95% CI | Median (IQR) | 95% CI | p # | Median (IQR) | 95% CI | Median (IQR) | 95% CI | p # | |
Age at study inclusion (years) | 46 (37–54) | [44.95; 46.88] | 47 (39–55) | [45.59; 47.87] | 44 (35–52) | [42.39; 45.97] | 0.01 * | 47 (39–54) | [45.49; 47.74] | 45 (34.75–54.25) | [42.38; 46.23] | 0.05 |
Age at MS onset (years) | 31 (25–39) | [31.27; 32.87] | 31 (25–40) | [31.60; 33.52] | 29 (24.5–36) | [22.59; 32.48] | 0.03 * | 31 (25–39) | [31; 32.94] | 31 (25–39.5) | [30.85; 33.74] | 0.67 |
Age treatment start (years) | 35 (28–43) | [35.18; 36.84] | 36 (29–43) | [35.54; 37.52] | 33 (27–42) | [33.37; 36.44] | 0.03 * | 35 (29–43) | [35.10; 37.10] | 35 (27–43) | [34.31; 37.34] | 0.89 |
Disease duration (years) | 13 (7–19) | [13.09; 14.59] | 13.5 (7–20) | [13.27; 15.06] | 11 (6–19) | [11.77; 14.52] | 0.12 | 14 (7–20) | [13.73; 15.55] | 11 (5–17.25) | [10.80; 13.39] | <0.001 * |
Treatment duration (years) | 9 (4–16) | [9.34; 10.46] | 10 (4–16) | [9.52; 10.87] | 8 (4–15.5) | [8.29; 10.27] | 0.14 | 10 (4–17) | [9.82; 11.21] | 8 (4–13.25) | [7.66; 9.46] | 0.003 * |
ARR_0 | 0.08 (0.03–0.22) | [0.18; 0.24] | 0.08 (0.31–0.21) | [0.16; 0.23] | 0.08 (0.03–0.23) | [0.17; 0.29] | 0.65 | 0.07 (0.03–0.22) | [0.17; 0.26] | 0.09 (0.03–0.20) | [0.15; 0.23] | 0.30 |
ARR_1 | 0.07 (0–0.25) | [0.15; 0.20] | 0.08 (0–0.22) | [0.13; 0.21] | 0.06 (0–0.31) | [0.14; 0.22] | 0.42 | 0.08 (0–0.25) | [0.15; 0.22] | 0.05 (0–0.25) | [0.12; 0.19] | 0.38 |
ARR_T | 0.28 (0.16–0.50) | [0.36; 0.42] | 0.26 (0.15–0.5) | [0.33; 0.40] | 0.33 (0.16–0.5) | [0.31; 0.49] | 0.06 | 0.26 (0.15–0.50) | [0.34; 0.41] | 0.33 (0.17–0.56) | [0.36; 0.48] | 0.08 |
EDSS_0 | 2 (1–3) | [2.14; 2.39] | 2 (1–3.12) | [2,15; 2.46] | 2 (1–3) | [1.95; 2.39] | 0.32 | 2 (1.5–3.0) | [2.08; 2.38] | 2 (1–3.5) | [2.11; 2.57] | 0.42 |
EDSS_1 | 3 (1.5–4.5) | [2.99; 3.34] | 2.75 (1.5–4.5) | [2.96; 3.39] | 3 (1–4.75) | [2.84; 3.45] | 0.86 | 2.5 (1.5–4.5) | [2.91; 3.34] | 3.0 (1.5–4.5) | [2.94; 3.55] | 0.41 |
Variable | RRMS (n = 436) | SPMS (n = 87) | p * | ||
---|---|---|---|---|---|
Environment (Urban:Rural) | 293:143 | 66:21 | 0.07 | ||
Gender (F:M) | 297:139 | 59:28 | 0.52 | ||
Median (IQR) | 95% CI | Median (IQR) | 95% CI | p # | |
Age at study inclusion (years) | 44.50 (35.75–52) | [43.13; 45.17] | 54 (48.50–62) | [52.90; 56.61] | <0.001 * |
Age at MS onset (years) | 30 (24–39) | [30.64; 32.37] | 33 (28–40) | [32.87; 36.97] | 0.001 * |
Age treatment start (years) | 34 (27–42) | [34.12; 35.89] | 40 (33–48.5) | [39.03; 43.07] | <0.001 * |
Disease duration (years) | 12 (6–18) | [11.88; 13.41] | 19 (14–24) | [17.92; 21.76] | <0.001 * |
Onset to treatment (years) | 1.5 (1–5) | [3.04; 3.97] | 4 (1–8) | [4.58; 7.67] | <0.001 * |
Onset to diagnosis (years) | 1 (0–3) | [2.14; 2.99] | 1 (0–5) | [2.65; 5.21] | 0.03 * |
Treatment duration (years) | 8 (4–15) | [8.55; 9.74] | 15 (8–19) | [12.43; 14.99] | <0.001 * |
ARR_0 | 0.09 (0.03–0.25) | [0.18; 0.25] | 0.04 (0.02–0.14) | [0.10; 0.25] | <0.001 * |
ARR_1 | 0.04 (0–0.23) | [0.13; 0.18] | 0.17 (0.08–0.30) | [0.18; 0.31] | <0.001 * |
ARR_T | 0.3 (0.04–0.30) | [0.37; 0.43] | 0.23 (0.04–0.23) | [0.26; 0.38] | 0.06 |
EDSS_0 | 1.5 (1–2.65) | [1.82; 2.05] | 4 (3–5) | [ 3.60; 4.24] | <0.001 * |
EDSS_1 | 2 (1–3.5) | [2.41; 2.72] | 6 (6–6.5) | [6.00; 6.37] | <0.001 * |
Supratentorial (n = 142) | Spinal (n = 139) | Infratentorial (n = 109) | Optic (n = 88) | Mixt (n = 45) | p ¥ | adjustedp | |
---|---|---|---|---|---|---|---|
ARR_0 | 0.06 (0.03–0.2) | 0.1 (0.04–0.25) | 0.10 (0.03–0.28) | 0.05 (0.02–0.16) | 0.07 (0.28–0.15) | 0.01 * | >0.05 |
ARR_1 | 0.06 (0–0.24) | 0.25 (0–0.25) | 0.06 (0–0.25) | 0.09 (0–0.25) | 0 (0–0.33) | 0.94 | |
ARR_T | 0.26 (0.16–0.5) | 0.34 (0.18–0.56) | 0.26 (0.13–0.5) | 0.22 (0.14–0.45) | 0.30 (0.25–0.50) | 0.04 * | >0.05 |
EDSS_0 | 1.5 (1.0–3) | 2.5 (1–3.5) | 2 (1–3) | 1.5 (1–2.5) | 3 (1.5–3.5) | <0.001 * | <0.05 |
EDSS_1 | 2 (1–4) | 3.5 (2–6) | 2.5 (1.5–4.0) | 2.0 (1.37–3.5) | 3.5 (2.5–5) | 0.002 * | <0.05 |
MEDSS = 3.0 | Median Survival Time (Years), 95% CI | pLog-Rank | |
---|---|---|---|
Patient lot | 14 [11.34; 16.66] | ||
Gender | Female | 15 [10.85; 19.15] | 0.39 |
Male | 14 [10.23; 17.76] | ||
Environment | Urban | 16 [12.42; 19.57] | 0.015 * |
Rural | 11 [7.73; 14.26] | ||
Onset topography | Supratentorial | 19 [13.72; 24.27] | <0.001 * |
Optic | 20 [17.08; 23.17] | ||
Spinal | 9 [1.13; 6.78] | ||
Infratentorial | 18 [12.86; 23.13] | ||
Mixt | 9 [7.95; 17.85] |
MEDSS = 6.0 | Median Survival Time (Years), 95% CI | Mean Survival Time (Years), 95% CI | pLog-Rank | |
---|---|---|---|---|
Patient lot | 35 [30.11; 39.88] | |||
Gender | Female | 35 [29.20; 40.78] | 0.59 | |
Male | - | 27.30 [24.6; 29.94] | ||
Environment | Urban | - | 27.66 [27.03; 30.83] | 0.41 |
Rural | 35 [21.34; 48.65] | |||
Onset topography | Supratentorial | 37 [26.1; 47.9] | 0.20 * | |
Optic | - | 25.82 [23.18; 28.46] | ||
Spinal | 23 [14.95; 31.04] | |||
Infratentorial | 35 [26.41; 33.17] | |||
Mixt | - | 23.56 [20.25; 26.83] |
MEDSS = 6.0 | Median Survival Time (Years), 95% CI | Mean Survival Time (Years), 95% CI | pLog-Rank |
---|---|---|---|
<3 years | 9 [6.93; 11.06] | <0.001 * | |
3 – <6 years | 16 [12.27; 19.72] | ||
6 – <10 years | - | 21.64 [19.19; 24.09] | |
10 – <15 years | 28 [17.45; 38.54] | ||
≥15 years | - | 36.39 [34.48; 38.39] |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR. (95% CI) | p | HR. (95% CI) | p | |
Gender (M vs. F) | 1.16 [0.86; 1.44] | 0.40 | - | - |
Environment (Rural vs. Urban) | 1.37 [1.05; 1.75] | 0.018 * | 1.30 [1.00; 1.68] | 0.04 * |
Age at onset (years) | 1.05 [1.03; 1.06] | <0.001 * | 1.04 [1.02; 1.05] | <0.001 * |
Onset Topography | <0.001 * | |||
Infratentorial vs. Supratentorial | 1.00 [0.69; 1.45] | 0.98 | 0.86 [0.36; 2.01] | 0.73 |
Mixt vs. Supratentorial | 1.82 [1.17; 2.82] | 0.007 * | 1.23 [0.77; 1.94] | 0.37 |
Optic vs. Supratentorial | 0.76 [0.50; 1.61] | 0.20 | − | − |
Spinal vs. Supratentorial | 1.65 [1.19; 2.29] | 0.003 * | 1.12 [0.87; 1.71] | 0.24 |
EDSS_0 | 1.73 [1.61; 1.85] | <0.001 * | 1.71 [1.58; 1.84] | <0.001 * |
R_0 | 1.06 [0.99; 1.36] | 0.09 | − | − |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR. (95% IC) | p | HR. (95% IC) | p | |
Gender (M vs. F) | 0.98 [0.64; 1.50] | 0.96 | - | - |
Environment (Rural vs. Urban) | 1.18 [0.78; 1.80] | 0.42 | - | - |
Age at onset (years) | 1.04 [1.02; 1.06] | <0.001 * | 1.04 [1.02; 1.06] | <0.001 |
Onset Topography | 0.03 * | |||
Infratentorial vs. Supratentorial | 1.42 [0.78; 2.59] | 0.24 | 1.24 [0.67; 2.27] | 0.48 |
Mixt vs. Supratentorial | 1.47 [0.64; 3.34] | 0.35 | 0.93 [0.49; 2.15] | 0.87 |
Optic vs. Supratentorial | 1.33 [0.69; 2.56] | 0.39 | 1.35 [0.69; 2.65] | 0.37 |
Spinal vs. Supratentorial | 2.38 [1.38; 4.10] | 0.002 | 1.67 [0.95; 2.93] | 0.73 |
EDSS_0 | 1.94 [1.73; 2.17] | <0.001 * | 1.94 [1.72; 2.19] | <0.001 |
R_0 | 1.01 [0.91; 1.13] | 0.75 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barcutean, L.; Maier, S.; Bajko, Z.; Stoian, A.; Mosora, O.; Sarmasan, E.; Manescu, I.-B.; Balasa, R. Long-Term Disability Outcomes in Relapsing–Remitting Multiple Sclerosis Patients: Impact of Clinical and Demographic Factors on Disease Progression. J. Clin. Med. 2024, 13, 1813. https://doi.org/10.3390/jcm13061813
Barcutean L, Maier S, Bajko Z, Stoian A, Mosora O, Sarmasan E, Manescu I-B, Balasa R. Long-Term Disability Outcomes in Relapsing–Remitting Multiple Sclerosis Patients: Impact of Clinical and Demographic Factors on Disease Progression. Journal of Clinical Medicine. 2024; 13(6):1813. https://doi.org/10.3390/jcm13061813
Chicago/Turabian StyleBarcutean, Laura, Smaranda Maier, Zoltan Bajko, Adina Stoian, Oana Mosora, Emanuela Sarmasan, Ion-Bogdan Manescu, and Rodica Balasa. 2024. "Long-Term Disability Outcomes in Relapsing–Remitting Multiple Sclerosis Patients: Impact of Clinical and Demographic Factors on Disease Progression" Journal of Clinical Medicine 13, no. 6: 1813. https://doi.org/10.3390/jcm13061813
APA StyleBarcutean, L., Maier, S., Bajko, Z., Stoian, A., Mosora, O., Sarmasan, E., Manescu, I. -B., & Balasa, R. (2024). Long-Term Disability Outcomes in Relapsing–Remitting Multiple Sclerosis Patients: Impact of Clinical and Demographic Factors on Disease Progression. Journal of Clinical Medicine, 13(6), 1813. https://doi.org/10.3390/jcm13061813