Predictors of Short-Term Trauma Laparotomy Outcomes in an Integrated Military–Civilian Health System: A 23-Year Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Population
2.2. Prehospital Trauma System
2.3. The IDF-MC Trauma Registry
2.4. The Israeli National Trauma Registry (INTR)
2.5. Variables
2.6. Statistical Analysis
3. Results
3.1. Patient Demographics and Injury Characteristics
3.2. Prehospital Life-Saving Interventions
3.3. Survival among Laparotomy Casualties
3.4. ED and OR Interventions
3.5. Time Trends in Remote Control Damage Resuscitation (RDCR) Measures among Casualties Undergoing TL
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cothren, C.C.; Moore, E.E.; Hedegaard, H.B.; Meng, K. Epidemiology of urban trauma deaths: A comprehensive reassessment 10 years later. World J. Surg. 2007, 31, 1507–1511. [Google Scholar] [CrossRef]
- Eastridge, B.J.; Mabry, R.L.; Seguin, P.; Cantrell, J.; Tops, T.; Uribe, P.; Mallett, O.; Zubko, T.; Oetjen-Gerdes, L.; Rasmussen, T.E.; et al. Death on the battlefield (2001–2011): Implications for the future of combat casualty care. J. Trauma Acute Care Surg. 2012, 73 (Suppl. S5), S431–S437. [Google Scholar] [CrossRef]
- Committee, A. Advanced Trauma Life Support, Student Course Manual; American College of Surgeons: Chicago, IL, USA, 2012. [Google Scholar]
- Joseph, B.; Azim, A.; Zangbar, B.; Bauman, Z.; O’Keeffe, T.; Ibraheem, K.; Kulvatunyou, N.; Tang, A.; Latifi, R.; Rhee, P. Improving mortality in trauma laparotomy through the evolution of damage control resuscitation: Analysis of 1030 consecutive trauma laparotomies. J. Trauma Acute Care Surg. 2017, 82, 328–333. [Google Scholar] [CrossRef]
- Mehta, A.; Lunardi, N.; Efron, D.T.; Joseph, B.A.; Steven, K.A.; Manukyan, M.; Fakhry, S.M.; Sakran, J.V. Characterizing the underlying diagnoses for exploratory laparotomies to improve risk-adjustment models of postoperative mortality. J. Trauma Acute Care Surg. 2019, 86, 664–669. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Tsur, A.M.; Nadler, R.; Lipsky, A.M.; Levi, D.; Bader, T.; Benov, A.; Glassberg, E.; Chen, J. The Israel Defense Forces Trauma Registry: 22 years of point-of-injury data. J. Trauma Acute Care Surg. 2020, 89 (Suppl. S2), S32–S38. [Google Scholar] [CrossRef]
- Sewalt, C.A.; Venema, E.; Wiegers, E.J.A.; Lecky, F.E.; Schuit, S.C.E.; den Hartog, D.; Steyerberg, E.W.; Lingsma, H.F. Trauma models to identify major trauma and mortality in the prehospital setting. Br. J. Surg. 2020, 107, 373–380. [Google Scholar] [CrossRef]
- Van Ditshuizen, J.C.; Sewalt, C.A.; Palmer, C.S.; Van Lieshout, E.M.M.; Verhofstad, M.H.J.; Den Hartog, D.; Dutch Trauma Registry, S. The definition of major trauma using different revisions of the abbreviated injury scale. Scand. J. Trauma Resusc. Emerg. Med. 2021, 29, 71. [Google Scholar] [CrossRef]
- Glassberg, E.; Nadler, R.; Gendler, S.; Abramovich, A.; Spinella, P.C.; Gerhardt, R.T.; Holcomb, J.B.; Kreiss, Y. Freeze-dried plasma at the point of injury: From concept to doctrine. Shock 2013, 40, 444–450. [Google Scholar] [CrossRef]
- Chang, R.; Eastridge, B.J.; Holcomb, J.B. Remote Damage Control Resuscitation in Austere Environments. Wilderness Environ. Med. 2017, 28, S124–S134. [Google Scholar] [CrossRef]
- Lammers, D.; Uhlich, R.; Rokayak, O.; Manley, N.; Betzold, R.D.; Hu, P. Comparison of military and civilian surgeon outcomes with emergent trauma laparotomy in a mature military-civilian partnership. Trauma Surg. Acute Care Open 2024, 9, e001332. [Google Scholar] [CrossRef]
- Lee, J.J.; Hall, A.B.; Carr, M.J.; MacDonald, A.G.; Edson, T.D.; Tadlock, M.D. Integrated military and civilian partnerships are necessary for effective trauma-related training and skills sustainment during the inter-war period. J. Trauma Acute Care Surg. 2022, 92, e57–e76. [Google Scholar] [CrossRef]
- Satanovsky, A.; Gilor, Y.; Benov, A.; Chen, J.; Shlaifer, A.; Talmy, T.; Radomislensky, I.; Siman-Tov, M.; Peleg, K.; Weil, Y.A.; et al. Combat Injury Profile in Urban Warfare. Mil. Med. 2022, usac366. [Google Scholar] [CrossRef]
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef]
- Smith, I.M.; Beech, Z.K.; Lundy, J.B.; Bowley, D.M. A prospective observational study of abdominal injury management in contemporary military operations: Damage control laparotomy is associated with high survivability and low rates of fecal diversion. Ann. Surg. 2015, 261, 765–773. [Google Scholar] [CrossRef]
- Simmons, J.W.; White, C.E.; Eastridge, B.J.; Holcomb, J.B.; Perkins, J.G.; Mace, J.E.; Blackbourne, L.H. Impact of improved combat casualty care on combat wounded undergoing exploratory laparotomy and massive transfusion. J. Trauma 2011, 71 (Suppl. S1), S82–S86. [Google Scholar] [CrossRef]
- Muhrbeck, M.; Egelko, A.; Haweizy, R.M.; von Schreeb, J.; Alga, A. Exploratory laparotomy during the battle of Mosul, 2016–2017: Results from a tertiary civilian hospital in Erbil, Iraqi Kurdistan. BMC Emerg. Med. 2023, 23, 113. [Google Scholar] [CrossRef]
- CRASH-2 Trial Collaborators; Shakur, H.; Roberts, I.; Bautista, R.; Caballero, J.; Coats, T.; Dewan, Y.; El-Sayed, H.; Gogichaishvili, T.; Gupta, S.; et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): A randomised, placebo-controlled trial. Lancet 2010, 376, 23–32. [Google Scholar] [CrossRef]
- Tsur, A.M.; Nadler, R.; Benov, A.; Glassberg, E.; Siman-Tov, M.; Radomislensky, I.; Bodas, M.; Peleg, K.; Thompson, P.; Fink, N.; et al. The effects of military-wide introduction of advanced tourniquets in the Israel Defense Forces. Injury 2020, 51, 1210–1215. [Google Scholar] [CrossRef]
- Benov, A.; Elon, G.; Baruch, E.N.; Avi, S.; Gilad, T.; Moran, L.; Itay, Z.; Ram, S.; Tarif, B.; David, D.; et al. Augmentation of point of injury care: Reducing battlefield mortality—The IDF experience. Injury 2016, 47, 993–1000. [Google Scholar] [CrossRef]
- Howard, J.T.; Kotwal, R.S.; Stern, C.A.; Janak, J.C.; Mazuchowski, E.L.; Butler, F.K.; Stockinger, Z.T.; Holcomb, B.R.; Bono, R.C.; Smith, D.J. Use of Combat Casualty Care Data to Assess the US Military Trauma System during the Afghanistan and Iraq Conflicts, 2001–2017. JAMA Surg. 2019, 154, 600–608. [Google Scholar] [CrossRef]
- Miller, R.T.; Nazir, N.; McDonald, T.; Cannon, C.M. The modified rapid emergency medicine score: A novel trauma triage tool to predict in-hospital mortality. Injury 2017, 48, 1870–1877. [Google Scholar] [CrossRef]
- Al Jalbout, N.; Balhara, K.S.; Hamade, B.; Hsieh, Y.H.; Kelen, G.D.; Bayram, J.D. Shock index as a predictor of hospital admission and inpatient mortality in a US national database of emergency departments. Emerg. Med. J. EMJ 2019, 36, 293–297. [Google Scholar] [CrossRef]
- Cobas, M.A.; De la Pena, M.A.; Manning, R.; Candiotti, K.; Varon, A.J. Prehospital intubations and mortality: A level 1 trauma center perspective. Anesth. Analg. 2009, 109, 489–493. [Google Scholar] [CrossRef]
- Tsur, A.M.; Nadler, R.; Tsur, N.; Sorkin, A.; Bader, T.; Benov, A.; Glassberg, E.; Chen, J. Prehospital definitive airway is not associated with improved survival in trauma patients. J. Trauma Acute Care Surg. 2020, 89, S237–S241. [Google Scholar] [CrossRef]
- Wang, H.E.; Brown, S.P.; MacDonald, R.D.; Dowling, S.K.; Lin, S.; Davis, D.; Schreiber, M.A.; Powell, J.; van Heest, R.; Daya, M. Association of out-of-hospital advanced airway management with outcomes after traumatic brain injury and hemorrhagic shock in the ROC hypertonic saline trial. Emerg. Med. J. EMJ 2014, 31, 186–191. [Google Scholar] [CrossRef]
- Chou, D.; Harada, M.Y.; Barmparas, G.; Ko, A.; Ley, E.J.; Margulies, D.R.; Alban, R.F. Field intubation in civilian patients with hemorrhagic shock is associated with higher mortality. J. Trauma Acute Care Surg. 2016, 80, 278–282. [Google Scholar] [CrossRef]
- Hudson, A.J.; Strandenes, G.; Bjerkvig, C.K.; Svanevik, M.; Glassberg, E. Airway and ventilation management strategies for hemorrhagic shock. To tube, or not to tube, that is the question! J. Trauma Acute Care Surg. 2018, 84 (Suppl. S6), S77–S82. [Google Scholar] [CrossRef]
- Klein, M.K.; Tsihlis, N.D.; Pritts, T.A.; Kibbe, M.R. Emerging Therapies for Prehospital Control of Hemorrhage. J. Surg. Res. 2020, 248, 182–190. [Google Scholar] [CrossRef]
- van Oostendorp, S.E.; Tan, E.C.; Geeraedts, L.M., Jr. Prehospital control of life-threatening truncal and junctional haemorrhage is the ultimate challenge in optimizing trauma care; a review of treatment options and their applicability in the civilian trauma setting. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 110. [Google Scholar] [CrossRef]
Characteristic | ISS 1–14 (N = 56) | ISS ≥ 16 (N = 161) | p-Value |
---|---|---|---|
Male sex, n (%) | 52 (92.9%) | 147 (91.3%) | 0.717 |
Age, Median (IQR) | 20 (19, 22) | 20 (19, 25) | 0.132 |
Patient population | 0.303 | ||
Military | 43 (76.8%) | 112 (69.6%) | |
Civilian | 13 (23.2%) | 49 (30.4%) | |
Injury type | 0.006 | ||
Penetrating | 40 (71.4%) | 81 (50.3%) | |
Non-penetrating | 16 (28.6%) | 80 (49.7%) | |
Severely injured region (AIS ≥ 3) * | |||
Head | 0 | 34 (21.1%) | <0.001 |
Face | 0 | 2 (1.2%) | 0.4 |
Neck | 0 | 3 (1.9%) | 0.3 |
Thorax | 5 (8.9%) | 92 (57.1%) | <0.001 |
Abdomen | 25 (44.6%) | 137 (85.1%) | <0.001 |
Spine | 1 (1.8%) | 13 (8.1%) | 0.09 |
Upper extremities | 1 (1.8%) | 18 (11.2%) | 0.032 |
Lower extremities | 4 (7.1%) | 50 (31.1%) | <0.001 |
ED Vital Signs | |||
Max HR, BPM—Median (IQR) | 90 (75, 102) | 107 (88, 124) | <0.001 |
Min SBP, mmHg—Median (IQR) | 130 (117, 145) | 118 (92, 137) | 0.003 |
Glasgow coma score | |||
3–8 | 1 (1.8%) | 54 (35.3%) | <0.001 |
9–14 | 1 (1.8%) | 12 (7.8%) | |
15 | 53 (96.4%) | 87 (56.9%) | |
Injury severity score | |||
1–8 | 20 (35.7%) | - | |
9–14 | 36 (64.3%) | - | |
16–24 | - | 54 (33.5%) | |
≥25 | - | 107 (66.5%) | |
Arrived at ED with ETI | 1 (1.8%) | 37 (23%) | <0.001 |
Median hospitalization days (IQR) | 6 (5, 11) | 16 (6, 31) | <0.001 |
Intensive care unit admission | 10 (17.9%) | 126 (78.3%) | <0.001 |
Death | 0 | 33 (20.5%) | <0.001 |
Characteristic | Survived after Laparotomy | Laparotomy Followed by In-Hospital Death | p-Value |
---|---|---|---|
(N = 184) | (N = 33) | ||
Sex, Male, n (%) | 170 (92.4%) | 29 (87.9%) | 0.489 |
Age, Median (IQR) | 20 (19, 24.25) | 20 (20, 23) | 0.72 |
Patient population | 0.404 | ||
Military | 129 (70.1%) | 26 (77.1%) | |
Civilian | 55 (29.9%) | 7 (22.9%) | |
Injury mechanism, Penetrating, n (%) | 100 (54.3%) | 21 (63.6%) | 0.348 |
Prehospital LSI | |||
FDP | 15 (8.2%) | 4 (12.1%) | 0.501 |
TXA | 19 (10.3%) | 7 (21.2%) | 0.085 |
Needle thoracostomy | 9 (4.9%) | 4 (12.1%) | 0.133 |
Chest drain | 9 (4.9%) | 2 (6.1%) | 0.676 |
Tourniquet | 8 (4.3%) | 2 (6.1%) | 0.651 |
Severely injured region (AIS ≥ 3) | |||
Head | 24 (13.0%) | 10 (30.3%) | 0.019 |
Face | 1 (0.5%) | 1 (3.0%) | 0.282 |
Neck | 3 (1.6%) | 0 (0%) | 1 |
Thorax | 78 (42.4%) | 19 (57.6%) | 0.129 |
Abdomen | 135 (73.4%) | 27 (81.8%) | 0.388 |
Spine | 12 (6.5%) | 2 (6.1%) | 1 |
Upper Extremities | 15 (8.2%) | 4 (12.1%) | 0.501 |
Lower Extremities | 43 (23.4%) | 11 (33.3%) | 0.274 |
ED Vital Signs | |||
Max HR, BPM, Median (IQR) | 100 (84, 119) | 110 (56, 130) | 0.994 |
Min SBP, mmHg, Median (IQR) | 127 (106.5, 140) | 65 (56, 102.25) | <0.001 |
Glasgow coma score | <0.001 | ||
3–8 | 28 (15.6%) | 27 (93.1%) | |
9–14 | 12 (6.7%) | 1 (3.4%) | |
15 | 139 (77.7%) | 1 (3.4%) | |
ISS | <0.001 | ||
1–8 | 20 (10.9%) | 0 (0%) | |
9–14 | 36 (19.6%) | 0 (0%) | |
16–24 | 48 (26.1%) | 6 (18.2%) | |
≥25 | 80 (43.5%) | 27 (81.8%) | |
Arrived at ED with ETI | 20 (10.9%) | 18 (54.5%) | <0.001 |
24 h mortality | - | 25 (75.8%) | |
Mortality > 24 h | - | 8 (24.2%) |
Variable | Unadjusted | Adjusted * | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
ISS ≥ 25 | 2.98 | 1.22–8.44 | 0.025 | - | - | - |
Penetrating injury | 1.98 | 0.91–4.48 | 0.089 | 1.58 | 0.65–3.88 | 0.3 |
Operation | ||||||
Bowel-related | 0.43 | 0.19–0.94 | 0.03 | 0.42 | 0.18–0.93 | 0.042 |
Splenectomy | 0.30 | 0.07–0.92 | 0.06 | 0.3 | 0.06–0.91 | 0.054 |
Hemorrhage control | 4.25 | 1.85–9.81 | <0.001 | - | - | - |
Thoracotomy | 14.05 | 5.52–38.32 | <0.001 | 14.4 | 5.51–38.3 | <0.001 |
Neurosurgery | 2.68 | 0.76–8.67 | 0.10 | 2.58 | 0.66–9 | 0.156 |
GCS 3–8 | 48.50 | 13.40–312.80 | <0.001 | 47.26 | 12.3–319 | <0.001 |
Prehospital treatments | ||||||
Freeze-dried plasma | 1.47 | 0.39–4.65 | 0.53 | 1.65 | 0.4–5.78 | 0.45 |
Tranexamic acid | 2.60 | 0.89–7.14 | 0.06 | 2.94 | 0.89–9.3 | 0.068 |
ETI attempt | 4.20 | 1.60–10.94 | 0.003 | 4.25 | 1.51–12 | 0.006 |
Arrived at ED with ETI | 6.88 | 3–16.26 | <0.001 | 6.18 | 2.52–15.7 | <0.001 |
In-hospital treatments | ||||||
Blood product in ED | 4.61 | 1.79–12.38 | 0.002 | 2.07 | 0.83–5.21 | 0.115 |
ETI in ED | 1.52 | 0.66–3.38 | 0.311 | 4.16 | 1.56–11.4 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gendler, S.; Gelikas, S.; Talmy, T.; Nadler, R.; Tsur, A.M.; Radomislensky, I.; Bodas, M.; Glassberg, E.; Almog, O.; Benov, A.; et al. Predictors of Short-Term Trauma Laparotomy Outcomes in an Integrated Military–Civilian Health System: A 23-Year Retrospective Cohort Study. J. Clin. Med. 2024, 13, 1830. https://doi.org/10.3390/jcm13071830
Gendler S, Gelikas S, Talmy T, Nadler R, Tsur AM, Radomislensky I, Bodas M, Glassberg E, Almog O, Benov A, et al. Predictors of Short-Term Trauma Laparotomy Outcomes in an Integrated Military–Civilian Health System: A 23-Year Retrospective Cohort Study. Journal of Clinical Medicine. 2024; 13(7):1830. https://doi.org/10.3390/jcm13071830
Chicago/Turabian StyleGendler, Sami, Shaul Gelikas, Tomer Talmy, Roy Nadler, Avishai M. Tsur, Irina Radomislensky, Moran Bodas, Elon Glassberg, Ofer Almog, Avi Benov, and et al. 2024. "Predictors of Short-Term Trauma Laparotomy Outcomes in an Integrated Military–Civilian Health System: A 23-Year Retrospective Cohort Study" Journal of Clinical Medicine 13, no. 7: 1830. https://doi.org/10.3390/jcm13071830
APA StyleGendler, S., Gelikas, S., Talmy, T., Nadler, R., Tsur, A. M., Radomislensky, I., Bodas, M., Glassberg, E., Almog, O., Benov, A., & Chen, J. (2024). Predictors of Short-Term Trauma Laparotomy Outcomes in an Integrated Military–Civilian Health System: A 23-Year Retrospective Cohort Study. Journal of Clinical Medicine, 13(7), 1830. https://doi.org/10.3390/jcm13071830