Idiopathic Premature Ventricular Contraction Catheter Ablation, Sedentary Population vs. Athlete’s Populations: Outcomes and Resumption of Sports Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- age >18 years,
- >2000/24 h PVCs at 24 h ambulatory ECG monitoring,
- PVC benign morphology (RVOT, LVOT, fascicular origin),
- preserved left ventricular ejection fraction (LVEF).
- previous PVC CA,
- reduced LVEF (less than 50%),
- medical history of ischemic, hypertrophic, and right ventricular arrhythmogenic cardio-myopathy,
- family history of juvenile (<45 years) sudden death or hereditary cardiomyopathies,
- evidence of SHD at echocardiography or CMR,
- evidence of LGE in presumed area of origin of PVCs at CMR.
2.2. Study Protocol (Design and Setting)
2.3. Radiofrequency Catheter Ablation
2.4. Follow-Up
2.5. Study Endpoint
2.6. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Comparison of Athlete and Non-Athlete Groups
3.3. Procedural Data
3.4. Outcomes
3.5. Post-Ablation Sport Activity
4. Discussion
- Patients with a high burden of PVCs who claim to be asymptomatic may have developed compensatory mechanisms to cope with their symptoms. They may have engaged in physical activity below their maximum potential, adapting to their chronic symptoms and thus delivering suboptimal performances.
- The interventional ablative procedure and 24-h post-procedure ECG Holter monitoring, which documented a decrease in PVCs, may have had a placebo effect on patients, leading to their perception of improved symptoms and performance.
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hingorani, P.; Karnad, D.R.; Rohekar, P.; Kerkar, V.; Lokhandwala, Y.Y.; Kothari, S. Arrhythmias seen in baseline 24-hour Holter ECG recordings in healthy normal volunteers during phase 1 clinical trials. J. Clin. Pharmacol. 2016, 56, 885–893. [Google Scholar] [CrossRef]
- Zorzi, A.; Mastella, G.; Cipriani, A.; Berton, G.; Del Monte, A.; Gusella, B.; Nese, A.; Portolan, L.; Sciacca, F.; Tikvina, S.; et al. Burden of ventricular arrhythmias at 12-lead 24-hour ambulatory ECG monitoring in middle-aged endurance athletes versus sedentary controls. Eur. J. Prev. Cardiol. 2018, 25, 2003–2011. [Google Scholar] [CrossRef]
- Graziano, F.; Mastella, G.; Merkely, B.; Vago, H.; Corrado, D.; Zorzi, A. Ventricular arrhythmias recorded on 12-lead ambulatory electrocardiogram monitoring in healthy volunteer athletes and controls: What is common and what is not. Europace 2023, 25, euad255. [Google Scholar] [CrossRef]
- Corrado, D.; Drezner, J.A.; D’Ascenzi, F.; Zorzi, A. How to evaluate premature ventricular beats in the athlete: Critical review and proposal of a diagnostic algorithm. Br. J. Sports Med. 2020, 54, 1142–1148. [Google Scholar] [CrossRef]
- Mont, L.; Pelliccia, A.; Sharma, S.; Biffi, A.; Borjesson, M.; Terradellas, J.B.; Carré, F.; Guasch, E.; Heidbuchel, H.; Gerche, A.L.; et al. Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: Position paper from the EHRA and the EACPR, branches of the ESC. endorsed by APHRS, Hrs, and SOLAECE. Eur. J. Prev. Cardiol. 2017, 24, 41–69. [Google Scholar] [CrossRef] [PubMed]
- Zeppenfeld, K.; Tfelt-Hansen, J.; De Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; De Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef] [PubMed]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2018, 138, e272–e391. [Google Scholar] [CrossRef]
- Moon, J.C.C.; Fisher, N.G.; McKenna, W.J.; Pennell, D.J. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart 2004, 90, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Dello Russo, A.; Compagnucci, P.; Casella, M.; Gasperetti, A.; Riva, S.; Dessanai, M.A.; Pizzamiglio, F.; Catto, V.; Guerra, F.; Stronati, G.; et al. Ventricular arrhythmias in athletes: Role of a comprehensive diagnostic workup. Heart Rhythm. 2022, 19, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, A.; D’Ascenzi, F.; Andreini, D.; Castelletti, S.; Casella, M.; Cavarretta, E.; Cipriani, A.; Compagnucci, P.; Delise, P.; Russo, A.D.; et al. Interpretation and management of premature ventricular beats in athletes: An expert opinion document of the Italian Society of Sports Cardiology (SICSPORT). Int. J. Cardiol. 2023, 391, 131220. [Google Scholar] [CrossRef] [PubMed]
- Dello Russo, A.; Compagnucci, P.; Zorzi, A.; Cavarretta, E.; Castelletti, S.; Contursi, M.; D’Aleo, A.; D’Ascenzi, F.; Mos, L.; Palmieri, V.; et al. Electroanatomic mapping in athletes: Why and when. An expert opinion paper from the Italian Society of Sports Cardiology. Int. J. Cardiol. 2023, 383, 166–174. [Google Scholar] [CrossRef] [PubMed]
- John, R.M.; Stevenson, W.G. Outflow tract premature ventricular contractions and ventricular tachycardia: The typical and the challenging. Card. Electrophysiol. Clin. 2016, 8, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Delise, P.; Sitta, N.; Lanari, E.; Berton, G.; Centa, M.; Allocca, G.; Cati, A.; Biffi, A. Long-term effect of continuing sports activity in competitive athletes with frequent ventricular premature complexes and apparently normal heart. Am. J. Cardiol. 2013, 112, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Steriotis, A.K.; Nava, A.; Rigato, I.; Mazzotti, E.; Daliento, L.; Thiene, G.; Basso, C.; Corrado, D.; Bauce, B. Noninvasive cardiac screening in young athletes with ventricular arrhythmias. Am. J. Cardiol. 2013, 111, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Nucifora, G.; Muser, D.; Masci, P.G.; Barison, A.; Rebellato, L.; Piccoli, G.; Daleffe, E.; Toniolo, M.; Zanuttini, D.; Facchin, D.; et al. Prevalence and prognostic value of concealed structural abnormalities in patients with apparently idiopathic ventricular arrhythmias of left versus right ventricular origin: A magnetic resonance imaging study. Circ. Arrhythm. Electrophysiol. 2014, 7, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Verdile, L.; Maron, B.J.; Pelliccia, A.; Spataro, A.; Santini, M.; Biffi, A. Clinical significance of exercise-induced ventricular tachyarrhythmias in trained athletes without cardiovascular abnormalities. Heart Rhythm. 2015, 12, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Gomez, S.E.; Hwang, C.E.; Kim, D.S.; Froelicher, V.F.; Wheeler, M.T.; Perez, M.V. Premature ventricular contractions (PVCs) in young athletes. Prog. Cardiovasc. Dis. 2022, 74, 80–88. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease: The Task Force on sports cardiology and exercise in patients with cardiovascular disease of the European Society of Cardiology (ESC). Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Latchamsetty, R.; Yokokawa, M.; Morady, F.; Kim, H.M.; Mathew, S.; Tilz, R.; Kuck, K.H.; Nagashima, K.; Tedrow, U.; Stevenson, W.G.; et al. Multicenter outcomes for catheter ablation of idiopathic premature ventricular complexes. JACC Clin. Electrophysiol. 2015, 1, 116–123. [Google Scholar] [CrossRef]
- Ling, Z.; Liu, Z.; Su, L.; Zipunnikov, V.; Wu, J.; Du, H.; Woo, K.; Chen, S.; Zhong, B.; Lan, X.; et al. Radiofrequency ablation versus antiarrhythmic medication for treatment of ventricular premature beats from the right ventricular outflow tract: Prospective randomized study. Circ. Arrhythm. Electrophysiol. 2014, 7, 237–243. [Google Scholar] [CrossRef]
- Casella, M.; Gasperetti, A.; Gianni, C.; Zucchelli, G.; Notarstefano, P.; Al-Ahmad, A.; Burkhardt, J.D.; Soldati, E.; Della Rocca, D.; Catto, V.; et al. Ablation Index as a predictor of long-term efficacy in premature ventricular complex ablation: A regional target value analysis. Heart Rhythm. 2019, 16, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Compagnucci, P.; Valeri, Y.; Conti, S.; Volpato, G.; Cipolletta, L.; Parisi, Q.; D’Angelo, L.; Campanelli, F.; Carboni, L.; Sgarito, G.; et al. Technological advances in ventricular tachycardia catheter ablation: The relentless quest for novel solutions to old problems. J. Interv. Card. Electrophysiol. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Korshunov, V.; Penela, D.; Linhart, M.; Acosta, J.; Martinez, M.; Soto-Iglesias, D.; Fernández-Armenta, J.; Vassanelli, F.; Cabrera, M.; Borràs, R.; et al. Prediction of premature ventricular complex origin in left vs. right ventricular outflow tract: A novel anatomical imaging approach. Ep Eur. 2019, 21, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.D.; Kumar, S.; Parameswaran, R.; Wong, G.; Voskoboinik, A.; Sugumar, H.; Watts, T.; Sparks, P.B.; Morton, J.B.; McLellan, A.; et al. Differentiating Right- and Left-Sided Outflow Tract Ventricular Arrhythmias: Classical ECG Signatures and Prediction Algorithms. Circ. Arrhythm. Electrophysiol. 2019, 12, e007392. [Google Scholar] [CrossRef] [PubMed]
- Muser, D.; Tritto, M.; Mariani, M.V.; Di Monaco, A.; Compagnucci, P.; Accogli, M.; De Ponti, R.; Guarracini, F. Diagnosis and Treatment of Idiopathic Premature Ventricular Contractions: A Stepwise Approach Based on the Site of Origin. Diagnostics 2021, 11, 1840. [Google Scholar] [CrossRef]
- Ouyang, E.; Fotuhi, P.; Ho, S.Y.; Hebe, J.; Volkmer, M.; Goya, M.; Burns, M.; Antz, M.; Ernst, S.; Cappato, R.; et al. Repetitive monomorphic ventricular tachycardia originating from the aortic sinus cusp: Electrocardiographic characterization for guiding catheter ablation. J. Am. Coll. Cardiol. 2002, 39, 500–508. [Google Scholar] [CrossRef]
GENERAL POPULATION (N = 79) | NON-ATHLETES (N = 37) | ATHLETES (N = 42) | p VALUE | |
---|---|---|---|---|
AGE (YEARS)—MEAN (SD) | 46 (14.5) | 53.2 (11.2) | 39 (12.8) | p < 0.0001 |
MALE SEX—N (%) | 51 (65) | 24 (64) | 27 (64) | p = 0.9 |
LVEF %—MEDIAN [IQR] | 56.5 (53—61) | 56 (50–60.5) | 55 (54–60) | p = 0.37 |
TAPSE (MM)—MEAN (SD) | 24.3 (3.1) | 24.2 (2.5) | 24.8 (3.6) | p = 0.27 |
RDV1 (MM)—MEAN (SD) | 36.2 (4.8) | 36 (5.3) | 36.7 (4.4) | p = 0.2 |
ILVEDV (ML/M2)—MEAN (SD) | 63.3 (13.8) | 63.5 (15.3) | 63.2 (11. 5) | p = 0.46 |
HYPERTENSION—N (%) | 12 (15) | 8 (21) | 4 (9) | p = 0.23 |
DYSLIPIDEMIA—N (%) | 18 (23) | 14 (37) | 4 (9) | p = 0.006 |
DIABETES MELLITUS—N (%) | 2 (3) | 2 (5) | 0 (0) | p = 0.9 |
EGFR < 45 ML/MIN/M2—N (%) | 1 (1) | 1 (2) | 0 (0) | p = 0.9 |
PRE-ABLATION AAD THERAPY—N (%) | 42 (53) | 28 (76) | 14 (33) | p < 0.001 |
-BETA-BLOCKER—N (%) | 31 (39) | 23 (62) | 8 (19) | p < 0.001 |
-FLECAINIDE—N (%) | 12 (15) | 7 (19) | 5 (12) | p = 0.58 |
-AMIODARONE—N (%) | 6 (7) | 5 (13) | 1 (2) | p = 0.15 |
N° WORKOUTS PER WEEK—MEDIAN [IQR] | 3 (2.75–4) | |||
WORKOUTS HOURS PER WEEK—MEDIAN [IQR] | 6 (4.75–9) | |||
SYMPTOMS DURING ACTIVITY—N (%) | 14 (33) |
LEISURE-TIME (N = 23) | COMPETITIVE (N = 19) | p VALUE | |
---|---|---|---|
AGE (YEARS)—MEAN (SD) | 44 (12.5) | 32.9 (12.9) | p = 0.004 |
MALE SEX—N (%) | 13 (57%) | 14 (74%) | p = 0.4 |
LVEF %—MEAN (SD) | 56.7 (6.5) | 56.6 (5) | p = 0.46 |
TAPSE (MM)—MEAN (SD) | 25.2 (4.2) | 24.2 (2.7) | p = 0.19 |
RDV1 (MM)—MEAN (SD) | 36.4 (5) | 37.1 (3.3) | p = 0.5 |
ILVEDV (ML/M2)—MEAN (SD) | 61.9 (12.8) | 64.8 (9.3) | p = 0.21 |
HYPERTENSION—N (%) | 3 (13) | 1 (5) | p = 0.74 |
DYSLIPIDEMIA—N (%) | 2 (9) | 2 (11) | p = 0.74 |
DIABETES MELLITUS—N (%) | 0 | 0 | |
EGFR < 45 ML/MIN/M2—N (%) | 0 | 0 | |
PRE-ABLATION AAD THERAPY– N (%) -BETA-BLOCKER—N (%) -FLECAINIDE—N (%) -AMIODARONE—N (%) | 7 (30) 4 (17) 2 (9) 1 (4) | 7 (36) 4 (21) 3 (16) 0 | p = 0.66 p = 0.92 p = 0.81 p = 0.9 |
N° WORKOUTS PER WEEK—MEDIAN [IQR] | 3 (2–3) | 4 (3–5) | p = 0.003 |
WORKOUTS HOURS PER WEEK—MEDIAN [IQR] | 5 (3–6) | 9 (7–12) | p< 0.001 |
SYMPTOMS DURING ACTIVITY—N (%) | 9 (39) | 5 (26) | p = 0.58 |
DECREASE OR INTERRUPTION OF PHYSICAL ACTIVITY—N (%) | 18 (80%) | 16 (85%) | p = 0.92 |
NON-ATHLETES (N = 37) | ATHLETES (N = 42) | p VALUE | LEISURE-TIME (N = 23) | COMPETITIVE (N = 19) | p VALUE | |
---|---|---|---|---|---|---|
ACTIVATION MAP—N (%) | 37 (100) | 42 (100) | p ns | 23 (100) | 19 (100) | p ns |
PATTERN MATCHING—N (%) | 34 (91) | 38 (90) | p = 0.82 | 20 (86) | 18 (94) | p = 0.74 |
PASO VALUE—MEDIAN [IQR] | 97 (97–98) | 97 (95–98) | p = 0.23 | 97 (95–97) | 97 (96–98) | p = 0.65 |
MAXIMUM SIGNAL ADVANCE (MSEC)—MEDIAN [IQR] | 30 (29–35) | 30 (28–38) | p = 0.85 | 30 (29–37) | 30 (28–38) | p = 0.88 |
STIMULATION PROTOCOL—N (%) | 4 (10) | 3 (7) | p = 0.67 | 1 (5) | 2 (10) | p = 0.86 |
CAFFEINE/ISOPROTENEROL—N (%) | 8 (21) | 11 (26) | p = 0.83 | 4 (17) | 7 (36) | p = 0.28 |
MULTIPOLAR CATHETER—N (%) ABLATOR CATHETER—N (%) | 4 (10) 37 (100) | 3 (7) 42 (100) | p = 0.67 p ns | 1 (5) 23 (100) | 2 (10) 19 (100) | p = 0.86 p ns |
RF TIME (SEC)—MEDIAN [IQR] | 175 (143–240) | 173 (146–246) | p = 0.59 | 195 (155–310) | 167 (145–230) | p = 0.25 |
VISITAG—N (%) | 6 (5.5–7.5) | 6 (5–9) | p = 0.48 | 6 (5–9) | 5 (5–6) | p = 0.09 |
MAX AI—MEAN (SD) MEAN AI—MEAN (SD) | 621 (21) 534 (57) | 610 (24) 546 (41) | p = 0.16 p = 0.23 | 610 (18) 560 (32) | 605 (30) 535 (42) | p = 0.25 p = 0.02 |
ABLATION AREA (CM2)—MEDIAN [IQR] | 2.15 (1.6–3) | 2.2 (1.8–2.8) | p =0.77 | 2.1 (1.8–2.8) | 2.25 (1.7–2.8) | p = 0.7 |
PROCEDURE DURATION (MIN)—MEDIAN [IQR] | 85 (75–135) | 85 (75–140) | p = 0.66 | 90 (76–125) | 75 (67–147) | p = 0.24 |
FLUOROSCOPY TIME (MIN)—MEDIAN [IQR] | 12.5 (8–22) | 8.2 (5–10.5) | p = 0.02 | 8.5 (6–14) | 6 (4–8) | p = 0.02 |
SVP—N (%) | 25 (67) | 29 (69) | p = 0.9 | 14 (60) | 15 (79) | p = 0.35 |
NON-ATHLETES (N = 37) | ATHLETES (N = 42) | p VALUE | |
---|---|---|---|
SITE OF ORIGIN | |||
- RVOT– N (%) | 23 (62) | 34 (80) | p = 0.10 |
_SEPTAL RVOT—N (%) | 14 (60) | 23 (67) | p = 0.8 |
_FREE WALL RVOT—N (%) | 9 (40) | 11 (32) | p = 0.8 |
- LVOT– N (%) | 12 (32) | 7 (17) | p = 0.16 |
- FASCICULAR—N (%) | 2 (5) | 1 (3) | p = 0.91 |
PRE-PROCEDURE N° PVC—MEDIAN [IQR] | 17,000 | 18,750 | p = 0.12 |
(10,000–30,000) | (10,000–30,700) | ||
ACUTE EFFECTIVENESS—N (%) | 32 (86) | 38 (90) | p = 0.83 |
MAJOR COMPLICATIONS—N (%) | 0 (0) | 0 (0) | |
MINOR COMPLICATIONS—N (%) | 2 (5) | 2 (4) | p = 0.7 |
POST-PROCEDURE N° PVC—MEDIAN [IQR] | 1000 | 300 | p = 0.09 |
(341-4916) | (167–851) |
LEISURE-TIME (N = 23) | COMPETITIVE (N = 19) | p VALUE | |
---|---|---|---|
SITE OF ORIGIN - RVOT– N (%) _SEPTAL RVOT—N (%) _FREE WALL RVOT—N (%) - LVOT– N (%) - FASCICULAR– N (%) | 18 (78) 12 (67) 6 (33) 4 (17) 1 (4) | 16 (84) 11 (68) 5 (32) 3 (16) 0 | p = 0.92 p = 0.81 p = 0.81 p = 0.78 p = 0.9 |
N° PRE-PROCEDURE PVC—MEDIAN [IQR] | 26,500 (11,000–26,700) | 12,000 (10,000–27,000) | p = 0.06 |
ACUTE EFFECTIVNESS—N (%) | 20 (87) | 18 (95) | p = 0.74 |
MINOR COMPLICATIONS—N (%) | 1 (4) | 1 (5) | p = 0.55 |
N° POST-PROCEDURE PVC—MEDIAN [IQR] | 300 (230–800) | 260 (160–1000) | p = 0.29 |
NON-ATHLETES (N = 32) | ATHLETES (N = 38) | P VALUE | LEISURE-TIME (N = 20) | COMPETITIVE (N = 18) | p VALUE | |
---|---|---|---|---|---|---|
ON SITE FOLLOW-UP—N (%) | 24 (75) | 30 (79) | p = 0.88 | 14 (70) | 16 (89) | p = 0.30 |
CONTACT BY PHONE—N (%) | 8 (25) | 8 (21) | p = 0.91 | 6 (30) | 2 (11) | p = 0.30 |
NO SYMPTOMS—N (%) | 32 (100) | 31 (100) | p ns | 20 (100) | 18 (100) | p ns |
PRESENCE OF PVCS ON FOLLOW-UP ECG—N (%) | 2 (6) | 2 (5) | p = 0.73 | 1 (5) | 1 (5) | p = 0.51 |
24-H-HOLTER ECG—N (%) | 15 (46) | 24 (63) | p = 0.26 | 11 (55) | 13 (72) | p = 0.44 |
PVC NUMBER ON HOLTER—MEDIAN [IQR] | 600 (300–600) | 475 (230–500) | p = 0.29 | 500 (230–500) | 450 (275–450) | p = 0.81 |
NON-ATHLETES (N = 32) | ATHLETES (N = 38) | LEISURE-TIME (N = 20) | COMPETITIVE (N = 18) | |
---|---|---|---|---|
ON SITE FOLLOW-UP—N (%) | 3 (60) | 2 (50) | 1 (33) | 1 (100) |
CONTACT BY PHONE—N (%) | 2 (40) | 2 (50) | 2 (67) | 0 (0) |
NO SYMPTOMS—N (%) | 3 (60) | 3 (75) | 2 (67) | 1 (100) |
PRESENCE OF PVCS ON FOLLOW-UP ECG—N (%) | 3 (60) | 1 (25) | 1 (33) | 0 (0) |
24-H-HOLTER ECG—N (%) | 4 (80) | 3 (75) | 2 (67) | 1 (100) |
PVC NUMBER ON HOLTER | 6000, 26,000, 29,000, 34,000 | 304,200, 14,800 | 4200, 14,800 | 30 |
LEISURE-TIME (N = 23) | COMPETITIVE (N = 19) | p VALUE | |
---|---|---|---|
RESUMPTION OF PHYSICAL ACTIVITY—N (%) | 16 (70) | 17 (90) | p = 0.24 |
RESUMPTION OF COMPETITIVE PHYSICAL ACTIVITY—N (%) | 10 (59) | ||
WORKOUTS PER WEEK—N (%) | 2.5 (2–4) | 3 (2–4) | p = 0.3 |
WORKOUT HOURS PER WEEK—MEDIAN [IQR] | 4 (3.25–6) | 7 (6–8.5) | p = 0.007 |
IMPROVEMENT OF SYMPTOMS DURING SPORT ACTIVITY— N (%) | 14 (88%) | 12 (70%) | p = 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valeri, Y.; Compagnucci, P.; Volpato, G.; Luciani, L.; Crepaldi, E.; Maiorino, F.; Parisi, Q.; Cipolletta, L.; Campanelli, F.; D’Angelo, L.; et al. Idiopathic Premature Ventricular Contraction Catheter Ablation, Sedentary Population vs. Athlete’s Populations: Outcomes and Resumption of Sports Activity. J. Clin. Med. 2024, 13, 1871. https://doi.org/10.3390/jcm13071871
Valeri Y, Compagnucci P, Volpato G, Luciani L, Crepaldi E, Maiorino F, Parisi Q, Cipolletta L, Campanelli F, D’Angelo L, et al. Idiopathic Premature Ventricular Contraction Catheter Ablation, Sedentary Population vs. Athlete’s Populations: Outcomes and Resumption of Sports Activity. Journal of Clinical Medicine. 2024; 13(7):1871. https://doi.org/10.3390/jcm13071871
Chicago/Turabian StyleValeri, Yari, Paolo Compagnucci, Giovanni Volpato, Lara Luciani, Eleonora Crepaldi, Francesco Maiorino, Quintino Parisi, Laura Cipolletta, Francesca Campanelli, Leonardo D’Angelo, and et al. 2024. "Idiopathic Premature Ventricular Contraction Catheter Ablation, Sedentary Population vs. Athlete’s Populations: Outcomes and Resumption of Sports Activity" Journal of Clinical Medicine 13, no. 7: 1871. https://doi.org/10.3390/jcm13071871
APA StyleValeri, Y., Compagnucci, P., Volpato, G., Luciani, L., Crepaldi, E., Maiorino, F., Parisi, Q., Cipolletta, L., Campanelli, F., D’Angelo, L., Gaggiotti, G., Gasperetti, A., Giovagnoni, A., Curcio, A., Dello Russo, A., & Casella, M. (2024). Idiopathic Premature Ventricular Contraction Catheter Ablation, Sedentary Population vs. Athlete’s Populations: Outcomes and Resumption of Sports Activity. Journal of Clinical Medicine, 13(7), 1871. https://doi.org/10.3390/jcm13071871