Predicting Time to Delivery in Hypertensive Disorders: Assessing PlGF and sFlt-1 with the Novel Parameter ‘Mtp-Multiples of a Normal Term Placenta’
Abstract
:1. Introduction
1.1. Placental Aging and Dysfunction
1.2. Angiogenic Imbalance: Linking Placental Aging and Dysfunction
1.3. Angiogenic Markers as Predictors of Pregnancy Duration
2. Materials and Methods
Centiles | ≥37 Weeks |
---|---|
sFlt-1 | |
90 | 7901 |
95 | 9184 |
97.5 | 11,471 |
PlGF | |
2.5 | 48.9 |
5 | 54.4 |
10 | 68.6 |
2.1. Link for Calculating Mtps Using Excel: Supplementary Materials
2.2. Statistical Analysis
3. Results
4. Discussion
4.1. The Significance of the Mtp Index in Hypertensive Disorders of Pregnancy: Insights into Placental Aging and Angiogenic Profile
4.2. Insights into Pregnancy Duration from Angiogenic Marker Analysis: Past Studies and the Role of Mtp
4.3. Study Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evain-Brion, D.; Malassine, A. Human placenta as an endocrine organ. Growth Horm. IGF Res. 2003, 13, S34–S37. [Google Scholar] [CrossRef]
- Griffiths, S.K.; Campbell, J.P. Placental structure, function and drug transfer. Contin. Educ. Anaesth. Crit. Care Pain 2014, 15, 84–89. [Google Scholar] [CrossRef]
- Sultana, Z.; Maiti, K.; Aitken, J.; Morris, J.; Dedman, L.; Smith, R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am. J. Reprod. Immunol. 2017, 77, 12653. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.S.; Redman, C. The role of cellular senescence in ageing of the placenta. Placenta 2017, 52, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Scaife, P.J.; Simpson, A.; Kurlak, L.O.; Briggs, L.V.; Gardner, D.S.; Broughton Pipkin, F.; Jones, C.J.P.; Mistry, H.D. Increased Placental Cell Senescence and Oxidative Stress in Women with Pre-Eclampsia and Normotensive Post-Term Pregnancies. Int. J. Mol. Sci. 2021, 22, 7295. [Google Scholar] [CrossRef] [PubMed]
- Kajdy, A.; Modzelewski, J.; Cymbaluk-Płoska, A.; Kwiatkowska, E.; Bednarek-Jędrzejek, M.; Borowski, D.; Stefańska, K.; Rabijewski, M.; Torbé, A.; Kwiatkowski, S. Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth. Int. J. Mol. Sci. 2021, 22, 4186. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.; McCarthy, C.; McCarthy, F.P. Placental Ageing in Adverse Pregnancy Outcomes: Telomere Shortening, Cell Senescence, and Mitochondrial Dysfunction. Oxidative Med. Cell. Longev. 2019, 2019, 3095383. [Google Scholar] [CrossRef] [PubMed]
- Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C.M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative stress: Normal pregnancy versus preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1866, 165354. [Google Scholar] [CrossRef] [PubMed]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef]
- Redman, C.W.; Sargent, I.L.; Staff, A.C. IFPA Senior Award Lecture: Making sense of pre-eclampsiaetwo placental causes of preeclampsia? Placenta 2014, 35, S20–S25. [Google Scholar] [CrossRef]
- Biron-Shental, T.; Sukenik-Halevy, R.; Sharon, Y.; Goldberg-Bittman, L.; Kidron, D.; Fejgin, M.D.; Amiel, A. Short telomeres may play a role in placental dysfunction in preeclampsia and intrauterine growth restriction. Am. J. Obstet. Gynecol. 2010, 202, 381.e1–381.e7. [Google Scholar] [CrossRef] [PubMed]
- Cindrova-Davies, T.; Fogarty, N.M.E.; Jones, C.J.P.; Kingdom, J.; Burton, G.J. Evidence of oxidative stress-induced senescence in mature, post-mature and pathological human placentas. Placenta 2018, 68, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Burke, S.D.; Karumanchi, S.A. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am. J. Obstet. Gynecol. 2020, 226, S1019–S1034. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, A.; Beardmore-Gray, A.; Duhig, K.; Webster, L.; Chappell, L.; Shennan, A. Placental growth factor in suspected preterm pre-eclampsia: A review of the evidence and practicalities of implementation. BJOG: Int. J. Obstet. Gynaecol. 2020, 127, 1590–1597. [Google Scholar] [CrossRef] [PubMed]
- Maynard, S.E.; Min, J.-Y.; Merchan, J.; Lim, K.-H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef] [PubMed]
- McElwain, C.J.; Tuboly, E.; McCarthy, F.P.; McCarthy, C.M. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front. Endocrinol. 2020, 11, 655. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.; Staff, A.C. Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. Am. J. Obstet. Gynecol. 2015, 213 (Suppl. S4), S9.e1–S9.e4. [Google Scholar] [CrossRef]
- Stepan, H.; Hund, M.; Andraczek, T. Combining Biomarkers to Predict Pregnancy Complications and Redefine Preeclampsia: The Angiogenic-Placental Syndrome. Hypertension 2020, 75, 918–926. [Google Scholar] [CrossRef]
- Shinar, S.; Tigert, M.; Agrawal, S.; Parks, W.A.; Kingdom, J.C. Placental growth factor as a diagnostic tool for placental mediated fetal growth restriction. Pregnancy Hypertens. 2021, 25, 123–128. [Google Scholar] [CrossRef]
- Chappell, L.C.; Duckworth, S.; Seed, P.T.; Griffin, M.; Myers, J.; Mackillop, L.; Simpson, N.; Waugh, J.; Anumba, D.; Kenny, L.C.; et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: A prospective multicenter study. Circulation 2013, 128, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.R.; Woelkers, D.A.; Newman, R.B.; Combs, C.A.; How, H.Y.; Boggess, K.A.; Martin, J.N., Jr.; Kupfer, K.; Sibai, B.M. Placental growth factor predicts time to delivery in women with signs or symptoms of early preterm preeclampsia: A prospective multicenter study. Am. J. Obs. Gynecol. 2020, 222, 259.e1–259.e11. [Google Scholar] [CrossRef]
- Rana, S.; Powe, C.E.; Salahuddin, S.; Verlohren, S.; Perschel, F.H.; Levine, R.J.; Lim, K.-H.; Wenger, J.B.; Thadhani, R.; Karumanchi, S.A. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation 2012, 125, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Verlohren, S.; Herraiz, I.; Lapaire, O.; Schlembach, D.; Moertl, M.; Zeisler, H.; Calda, P.; Holzgreve, W.; Galindo, A.; Engels, T.; et al. The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am. J. Obs. Gynecol. 2012, 206, 58.e1. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, I.; Llurba, E.; Verlohren, S.; Galindo, A.; Spanish Group for the Study of Angiogenic Markers in Preeclampsia. Update on the Diagnosis and Prognosis of Preeclampsia with the Aid of the sFlt-1/PlGF Ratio in Singleton Pregnancies. Fetal Diagn. Ther. 2017, 43, 81–89. [Google Scholar] [CrossRef]
- Verlohren, S.; Herraiz, I.; Lapaire, O.; Schlembach, D.; Zeisler, H.; Calda, P.; Sabria, J.; Markfeld-Erol, F.; Galindo, A.; Schoofs, K.; et al. New gestational phase-specific cutoff values for the use of the soluble fms-like tyrosine kinase-1/placental growth factor ratio as a diagnostic test for preeclampsia. Hypertension 2014, 63, 346–352. [Google Scholar] [CrossRef]
- Verlohren, S.; Galindo, A.; Schlembach, D.; Zeisler, H.; Herraiz, I.; Moertl, M.G.; Pape, J.; Dudenhausen, J.W.; Denk, B.; Stepan, H. An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am. J. Obstet. Gynecol. 2010, 202, 161.e1–161.e11. [Google Scholar] [CrossRef] [PubMed]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef]
- Bardin, N.; Murthi, P.; Alfaidy, N. Normal and pathological placental angiogenesis. BioMed Res. Int. 2015, 2015, 354359. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Dołęgowska, B.; Kwiatkowska, E.; Rzepka, R.; Marczuk, N.; Loj, B.; Mikolajek-Bedner, W.; Torbe, A. Do the physiological aging of the placenta and the changes in angiogenesis marker sFlt-1 and PlGF concentrations predispose patients to late-onset preeclampsia? J. Matern. Neonatal Med. 2017, 32, 11–20. [Google Scholar] [CrossRef]
- Bowe, S.; Mitlid-Mork, B.; Georgieva, A.; Gran, J.M.; Redman, C.W.G.; Staff, A.C.; Sugulle, M. The association between placenta-associated circulating biomarkers and composite adverse delivery outcome of a likely placental cause in healthy post-date pregnancies. Acta Obstet. Gynecol. Scand. 2021, 100, 1893–1901. [Google Scholar] [CrossRef]
- Giardini, V.; Grilli, L.; Terzaghi, A.; Todyrenchuk, L.; Zavettieri, C.; Mazzoni, G.; Cozzolino, S.; Casati, M.; Vergani, P.; Locatelli, A. sFlt-1 Levels as a Predicting Tool in Placental Dysfunction Complications in Multiple Pregnancies. Biomedicines 2023, 11, 2917. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.P.; Madiwale, S.D.; Sundrani, D.P.; Joshi, S.R. Fatty acids, inflammation and angiogenesis in women with gestational diabetes mellitus. Biochimie 2023, 212, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Giardini, V.; Gambacorti-Passerini, C.; Casati, M.; Carrer, A.; Vergani, P. Analogies between COVID-19 and Preeclampsia: Focus on Therapies. Int. J. Transl. Med. 2023, 3, 203–216. [Google Scholar] [CrossRef]
sFlt-1/PlGF | ||||
---|---|---|---|---|
n = 240 | ||||
Mtp | Low | Medium | High | Very High |
56 (23) | 71 (30) | 80 (33) | 33 (14) | |
PlGF 2.5th c | 4.4 [3.2–9.3] | 2.0 [1.6–2.4] | 1.2 [0.7–1.7] | 0.7 [0.3–1.1] |
PlGF 5th c | 3.9 [2.8–8.3] | 1.8 [1.5–2.2] | 1.1 [0.6–1.6] | 0.6 [0.3–1.0] |
PlGF 10th c | 3.1 [2.3–6.6] | 1.4 [1.2–1.7] | 0.9 [0.5–1.2] | 0.5 [0.2–0.8] |
sFlt-1 90th c | 0.4 [0.3–0.6] | 0.9 [0.7–1.1] | 1.4 [1.0–1.8] | 1.7 [1.2–2.1] |
sFlt-1 95th c | 0.3 [0.2–0.5] | 0.7 [0.6–0.9] | 1.2 [0.9–1.6] | 1.4 [1.0–1.8] |
sFlt-1 97.5th c | 0.3 [0.2–0.4] | 0.6 [0.5–0.7] | 0.9 [0.7–1.3] | 1.2 [0.8–1.5] |
sFlt-1/PlGF | Time to Delivery | |||||
---|---|---|---|---|---|---|
All | n < 37 Weeks | n < 34 Weeks | ||||
n = 240 | n = 153 (64) | n = 81 (34) | ||||
n | Days | n | Days | n | Days | |
low | 56 (23) | 10 [4–23] | 40 (26) | 17 [9–28] | 15 (18) | 49 [25–65] |
medium | 71 (30) | 4 [2–9] | 25 (16) | 10 [5–16] | 7 (9) | 10 [4–34] |
high | 80 (33) | 6 [2–12] | 63 (42) | 7 [3–14] | 48 (59) | 7 [3–14] |
very high | 33 (14) | 3 [1–6] | 25 (16) | 4 [2–6] | 11(14) | 2 [0–5] |
Mtp Category | Time to Delivery | |||||
---|---|---|---|---|---|---|
All | n < 37 Weeks | n < 34 Weeks | ||||
n = 240 | n = 153 (64) | n = 81 (34) | ||||
n | Days | n | Days | n | Days | |
Mtp PlGF 10th c ≤ 0.5 | 47 (20) | 6 [2–10] | 42 (28) | 6 [2–12] | 35 (43) | 6 [2–12] |
Mtp PlGF 10th c < 1 | 89 (37) | 5 [2–10] | 71 (46) | 6 [2–13] | 50 (62) | 6 [3–14] |
Mtp PlGF 10th c ≥ 2 | 60 (25) | 9 [4–22] | 40 (26) | 15 [7–27] | 17 (21) | 27 [23–61] |
Mtp PlGF 10th c ≥ 3 | 29 (12) | 11 [4–27] | 21 (14) | 22 [8–51] | 11 (14) | 51 [25–70] |
Mtp PlGF 5th c ≤ 0.5 | 30 (13) | 4 [1–7] | 28 (18) | 5 [2–8] | 27 (33) | 6 [2–9] |
Mtp PlGF 5th c ≤ 1 | 69 (29) | 5 [2–10] | 56 (37) | 6 [3–13] | 41 (51) | 6 [3–14] |
Mtp PlGF 2.5th c ≤ 0.5 | 21 (9) | 4 [1–6] | 18 (12) | 4 [1–7] | 17 (21) | 4 [2–7] |
Mtp PlGF 2.5th c ≤ 1 | 64 (27) | 5 [2–10] | 54 (35) | 6 [2–12] | 41 (51) | 6 [3–14] |
Mtp sFlt-1 90th c ≤ 0.5 | 55 (23) | 15 [4–28] | 37 (24) | 24 [15–43] | 20 (25) | 41 [26–55] |
Mtp sFlt-1 90th c > 1 | 109 (45) | 4 [2–7] | 76 (50) | 6 [2–10] | 45 (56) | 5 [1–10] |
Mtp sFlt-1 90th c ≥ 2 | 24 (10) | 3 [1–7] | 19 (12) | 4 [2–9] | 13 (16) | 3 [0–14] |
Mtp sFlt-1 90th c ≥ 3 | 7 (3) | 1 [0–2] | 5 (3) | 0 [0–2] | 4 (5) | 0 [0–1] |
Mtp sFlt-1 95th c ≥ 1 | 98 (41) | 3 [2–7] | 71 (46) | 6 [2–9] | 42 (52) | 5 [1–8] |
Mtp sFlt-1 95th c ≥ 2 | 16 (7) | 3 [1–6] | 12 (8) | 4 [2–9] | 9 (11) | 3 [0–14] |
Mtp sFlt-1 97.5th c ≥ 1 | 63 (26) | 3 [1–7] | 45 (29) | 4 [2–7] | 29 (36) | 3 [1–7] |
Mtp sFlt-1 97.5th c ≥ 2 | 7 (3) | 1 [0–2] | 5 (3) | 0 [0–2] | 4 (5) | 0 [0–1] |
Mtp PlGF 10th c < 1 and Mtp sFlt-1 90th c > 1 | 57 (24) | 6 [2–8] | 51 (33) | 6 [2–9] | 35 (43) | 6 [2–14] |
Mtp PlGF 5th c ≤ 1 and Mtp sFlt-1 95th c ≥ 1 | 40 (17) | 5 [2–7] | 35 (23) | 6 [2–8] | 25 (31) | 6 [2–7] |
Mtp PlGF 2.5th c ≤ 1 and Mtp sFlt-1 97.5th c ≥ 1 | 22 (9) | 3 [1–7] | 20 (13) | 4 [2–7] | 17 (21) | 6 [2–7] |
Mtp Category | n | sFlt-1/PlGF | |||
---|---|---|---|---|---|
Low | Medium | High | Very High | ||
Mtp PlGF 10th c ≤ 0.5 | 47 | 0 | 2 (4) | 26 (56) | 19 (40) |
Mtp PlGF 10th c < 1 | 89 | 0 | 11 (12) | 48 (54) | 30 (34) |
Mtp PlGF 10th c ≥ 2 | 60 | 47 (78) | 9 (15) | 4 (7) | 0 |
Mtp PlGF 10th c ≥ 3 | 29 | 29 (100) | 0 | 0 | 0 |
Mtp PlGF 5th c ≤ 0.5 | 30 | 0 | 0 | 15 (50) | 15 (50) |
Mtp PlGF 5th c ≤ 1 | 69 | 0 | 7 (10) | 35 (51) | 27 (39) |
Mtp PlGF 2.5th c ≤ 0.5 | 21 | 0 | 0 | 7 (33) | 14 (67) |
Mtp PlGF 2.5th c ≤ 1 | 64 | 0 | 5 (8) | 35 (55) | 24 (37) |
Mtp sFlt-1 90th c ≤ 0.5 | 55 | 40 (73) | 12 (22) | 3 (5) | 0 |
Mtp sFlt-1 90th c > 1 | 109 | 2 (2) | 18 (17) | 57 (52) | 32 (29) |
Mtp sFlt-1 90th c ≥ 2 | 24 | 0 | 0 | 14 (58) | 10 (42) |
Mtp sFlt-1 90th c ≥ 3 | 7 | 0 | 0 | 4 (57) | 3 (43) |
Mtp sFlt-1 95th c ≥ 1 | 98 | 1 (1) | 14 (14) | 53 (54) | 30 (31) |
Mtp sFlt-1 95th c ≥ 2 | 16 | 0 | 0 | 10 (63) | 6 (37) |
Mtp sFlt-1 97.5th c ≥ 1 | 63 | 1 (1) | 3 (5) | 39 (62) | 20 (32) |
Mtp sFlt-1 97.5th c ≥ 2 | 7 | 0 | 0 | 4 (57) | 3 (43) |
Mtp PlGF 10th c < 1 and Mtp sFlt-1 90th c > 1 | 57 | 0 | 0 | 28 (49) | 29 (51) |
Mtp PlGF 5th c ≤ 1 and Mtp sFlt-1 95th c ≥ 1 | 40 | 0 | 0 | 16 (40) | 24 (60) |
Mtp PlGF 2.5th c ≤ 1 and Mtp sFlt-1 97.5th c ≥ 1 | 22 | 0 | 0 | 11 (50) | 11 (50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giardini, V.; Santagati, A.A.F.; Marelli, E.; Casati, M.; Cantarutti, A.; Vergani, P. Predicting Time to Delivery in Hypertensive Disorders: Assessing PlGF and sFlt-1 with the Novel Parameter ‘Mtp-Multiples of a Normal Term Placenta’. J. Clin. Med. 2024, 13, 1899. https://doi.org/10.3390/jcm13071899
Giardini V, Santagati AAF, Marelli E, Casati M, Cantarutti A, Vergani P. Predicting Time to Delivery in Hypertensive Disorders: Assessing PlGF and sFlt-1 with the Novel Parameter ‘Mtp-Multiples of a Normal Term Placenta’. Journal of Clinical Medicine. 2024; 13(7):1899. https://doi.org/10.3390/jcm13071899
Chicago/Turabian StyleGiardini, Valentina, Alice Angela Francesca Santagati, Elisabetta Marelli, Marco Casati, Anna Cantarutti, and Patrizia Vergani. 2024. "Predicting Time to Delivery in Hypertensive Disorders: Assessing PlGF and sFlt-1 with the Novel Parameter ‘Mtp-Multiples of a Normal Term Placenta’" Journal of Clinical Medicine 13, no. 7: 1899. https://doi.org/10.3390/jcm13071899
APA StyleGiardini, V., Santagati, A. A. F., Marelli, E., Casati, M., Cantarutti, A., & Vergani, P. (2024). Predicting Time to Delivery in Hypertensive Disorders: Assessing PlGF and sFlt-1 with the Novel Parameter ‘Mtp-Multiples of a Normal Term Placenta’. Journal of Clinical Medicine, 13(7), 1899. https://doi.org/10.3390/jcm13071899