Cutting-Edge Techniques and Drugs for the Treatment of Pulmonary Embolism: Current Knowledge and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Mechanical Thrombectomy
4.2. Catheter-Directed Thrombolysis
4.2.1. Catheter Directed Thrombolysis (CDT)
- In a pilot RCT, CDT with 20 mg rtPA was compared with anticoagulation in 23 patients with intermediate–high-risk PE [42]. The primary efficacy endpoint, measured at 48 h after randomization, was defined as a ≥25% reduction in the RV/LV ratio, a reduction in echocardiographic-estimated pulmonary pressure (sPAP) by 30% from baseline, or the achievement of normal systolic pulmonary pressure, or a ≥30% reduction in the Qanadli score. Safety was assessed by evaluating the absence of intracranial or life-threatening bleeding [33]. The limitations of the study were the reduced sample size and the lack of clinical endpoints. However, CDT appeared to be safe and effective in this setting [42].
- The CANARY trial aimed to perform a larger comparison between CDT and anticoagulation in patients with intermediate–high-risk PE. The protocol for the CDT group involved the administration of 12 mg rtPA for unilateral PE or 24 mg for bilateral PE over 24 h. On the other hand, the anticoagulation group received enoxaparin at standard doses. However, due to the COVID-19 pandemic, the RCT was prematurely interrupted. Despite this, the study was not able to detect a statistically significant difference between anticoagulation monotherapy and CDT regarding the primary endpoint of the proportion of patients with a 3-month RV/LV ratio of greater than 0.9. Nevertheless, the RCT showed a low risk of major bleeding in the CDT arm and an improvement in the 3-month RV echocardiographic recovery [40].
- In a meta-analysis comprising six studies, the efficacy of CDT versus standard anticoagulation was compared with 30-day, 90-day, and one-year mortality rates, as well as the occurrence of major bleeding events. The results of the study highlighted the benefit of CDT over standard anticoagulation at 30-day and one-year mortality, while the 90-day mortality rate remained similar between the two groups. Notably, the study observed that the rate of major bleeding events was comparable between the two groups [43].
4.2.2. Ultrasound-Assisted Catheter-Directed Thrombolysis (US-CDT)
- The ULTIMA trial compared US-CDT plus unfractionated heparin (UFH) anticoagulation to UFH in 59 patients with an intermediate–high risk PE and RV/LV ratio ≥1. The authors observed in the US-CDT group a significant reduction in RV strain and pulmonary artery pressure, a lower bleeding risk than systemic thrombolysis [46], a lower rate of recurrent PE in the CDT group and a non-significant trend towards lower mortality.
- In the PERFECT registry, 101 PE patients were prospectively enrolled and treated with catheter-directed mechanical or pharmacomechanical thrombectomy and/or CDT using rtPA or urokinase. In the study, 85.7% of patients with massive PE and 97.3% of patients with submassive PE achieved clinical success, defined as hemodynamic improvement, reduced pulmonary pressure, reduction in right ventricular dilation, and survival to hospital discharge. However, no significant differences in sPAP reduction were observed between the CDT and US-CDT groups [47].
- The SUNSET sPE RCT aimed to evaluate the efficacy of US-CDT in reducing the thrombotic burden in patients with intermediate–high risk PE, as compared to traditional CDT. The study did not show a significant difference in the reduction in the pulmonary arterial thrombus, measured by the change in the Miller scoring system, between groups. However, both methods were found to produce a significant improvement in RV function, with a superior RV/LV ratio reduction observed in the US-CDT group. It remains unclear whether US-CDT use produces a better lytic effect that provides a clinical advantage significant enough to justify the higher cost of the catheter as compared to the traditional one [48].
Study | Device | FDA/CE [33,34] | Cohort | Comparison | Analyzed Outcomes |
---|---|---|---|---|---|
Panel A: Published studies | |||||
Kroupa [42] | Cragg-McNamara | AGEN/MGEN | IR-PE | CDT (rtPA) + UFH versus UFH or LMWH | RV/LV ratio, sPAP, Qanadli score, and safety (intracranial or life-threatening bleeding) |
CANARY [40] | Cragg-McNamara | AGEN/MGEN | IR-PE | CDT (rtPA) + UFH versus LMWH | RV/LV ratio, RV recovery |
ULTIMA [46] | EKOS | APE/MPE | IR-PE | US-CDT (rtPA) + UFH versus UFH | RV/LV ratio |
SUNSET [48] | Cragg-McNamara Uni-Fuse EKOS | AGEN/MGEN APE/MGEN APE/MPE | IR-PE | CDT (rtPA) versus US-CDT (rtPA) | RV/LV ratio, Miller score, intensive care unit stay, in-hospital stay, bleeding, and adverse events up to 90 d |
Panel B: Ongoing studies | |||||
BETULA [49] | Uni-Fuse | APE/MGEN | IR-PE | CDT (rtPA) versus UFH | RV/LV ratio, lung perfusion, LOS, 30 d mortality, recurrent PE, LOS, reduction in embolic extension |
PE-TRACT [50] | MT or CDT | -- | IR-PE | MT or CDT versus AC | PVO2, NYHA class, incidence of major bleeding within 7th day |
HI-PEITHO [51] | EKOS | APE/MPE | IR-PE | US-CDT (rtPA) + UFH versus LMWH o UFH | PE-related death, PE decompensation, PE recurrence |
STRATIFY [52] | US-CDT | -- | IR-PE | US-CDT (rtPA) + UFH or LMWH versus LDT + UFH or LMWH versus UFH or LMWH | Miller Score |
- In the SEATTLE II trial, 150 patients with submassive and massive PE were enrolled to study the efficacy and safety of US-CDT plus standard anticoagulation. The results showed that the US-CDT procedure significantly reduced the RV/LV ratio, the number of patients with right ventricular disease, and the sPAP after 48 h, in association with a low rate of recurrent PE and chronic thromboembolic pulmonary hypertension at 6 months. However, 10% of the population showed major bleeding events [13,53].
- The OPTALYSE RCT was conducted to assess the efficacy of US-CDT in patients with intermediate-risk PE. The study focused on identifying the optimal rtPA dose and delivery duration for US-CDT. The findings revealed that using a lower rtPA dose and a shorter duration of administration in US-CDT led to improved right ventricular function and a reduction in clot burden when compared to baseline. Although the rate of major bleeding was low, one intracranial hemorrhage event attributable to US-CDT treatment and four cases of major bleeding were described [54].
4.3. Inhibition of Factor XI and Factor XII
4.4. Thrombin Activatable Fibrinolysis Inhibitor
4.5. Inhibition of Complement Activation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demelo-Rodriguez, P.; Galeano-Valle, F.; Salzano, A.; Biskup, E.; Vriz, O.; Cittadini, A.; Falsetti, L.; Ranieri, B.; Russo, V.; Stanziola, A.A.; et al. Pulmonary Embolism. Heart Fail. Clin. 2020, 16, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of. Eur. Heart J. 2019, 41, 543–603. [Google Scholar] [CrossRef]
- Falsetti, L.; Marra, A.M.; Zaccone, V.; Sampaolesi, M.; Riccomi, F.; Giovenali, L.; Guerrieri, E.; Viticchi, G.; D’Agostino, A.; Gentili, T.; et al. Echocardiographic predictors of mortality in intermediate-risk pulmonary embolism. Intern. Emerg. Med. 2022, 17, 1287–1299. [Google Scholar] [CrossRef]
- Casazza, F.; Becattini, C.; Bongarzoni, A.; Cuccia, C.; Roncon, L.; Favretto, G.; Zonzin, P.; Pignataro, L.; Agnelli, G. Clinical features and short term outcomes of patients with acute pulmonary embolism. The Italian Pulmonary Embolism Registry (IPER). Thromb. Res. 2012, 130, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Piazza, G. Off the beaten path: The need for innovation in medical therapy to improve outcomes in acute pulmonary embolism. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 10–12. [Google Scholar] [CrossRef]
- Gupta, A.; Day, J.R.; Streiff, M.B.; Takemoto, C.; Jung, K.; Abro, C.; Gehrie, E.; Bloch, E.; Tobian, A.; Goel, R. Mortality and Associated Comorbidities Among Patients Hospitalized for Deep Vein Thrombosis and Pulmonary Embolism in the United States: Results from a Nationally Representative Database. Blood 2020, 136, 39–40. [Google Scholar] [CrossRef]
- Klok, F.A.; Hösel, V.; Clemens, A.; Yollo, W.D.; Tilke, C.; Schulman, S.; Lankeit, M.; Konstantinides, S.V. Prediction of bleeding events in patients with venous thromboembolism on stable anticoagulation treatment. Eur. Respir. J. 2016, 48, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Chopard, R.; Bertoletti, L.; Piazza, G.; Jimenez, D.; Barillari, G.; Llamas, P.; Rubio, C.M.; Aujayeb, A.; Monreal, M.; Meneveau, N. External validation of the PE-SARD risk score for predicting early bleeding in acute pulmonary embolism in the RIETE Registry. Thromb. Res. 2024, 235, 22–31. [Google Scholar] [CrossRef]
- Jara-Palomares, L.; Jiménez, D.; Bikdeli, B.; Muriel, A.; Rali, P.; Yamashita, Y.; Morimoto, T.; Kimura, T.; Le Mao, R.; Riera-Mestre, A.; et al. Derivation and validation of a clinical prediction rule for thrombolysis-associated major bleeding in patients with acute pulmonary embolism: The BACS score. Eur. Respir. J. 2020, 56, 2002336. [Google Scholar] [CrossRef]
- Ruíz-Giménez, N.; Suárez, C.; González, R.; Nieto, J.; Todolí, J.; Samperiz, Á.; Monreal, M. Predictive variables for major bleeding events in patients presenting with documented acute venous thromboembolism. Findings from the RIETE Registry. Thromb. Haemost. 2008, 100, 26–31. [Google Scholar] [CrossRef]
- Milioglou, I.; Farmakis, I.; Wazirali, M.; Ajluni, S.; Khawaja, T.; Chatuverdi, A.; Giannakoulas, G.; Shishehbor, M.; Li, J. Percutaneous thrombectomy in patients with intermediate- and high-risk pulmonary embolism and contraindications to thrombolytics: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2022, 55, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Lauder, L.; Pérez Navarro, P.; Götzinger, F.; Ewen, S.; Al Ghorani, H.; Haring, B.; Lepper, P.M.; Kulenthiran, S.; Böhm, M.; Link, A.; et al. Mechanical thrombectomy in intermediate- and high-risk acute pulmonary embolism: Hemodynamic outcomes at three months. Respir. Res. 2023, 24, 257. [Google Scholar] [CrossRef] [PubMed]
- Piazza, G.; Hohlfelder, B.; Jaff, M.R.; Ouriel, K.; Engelhardt, T.C.; Sterling, K.M.; Jones, N.J.; Gurley, J.C.; Bhatheja, R.; Kennedy, R.J.; et al. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism. JACC Cardiovasc. Interv. 2015, 8, 1382–1392. [Google Scholar] [CrossRef] [PubMed]
- Meyer, G.; Vicaut, E.; Danays, T.; Agnelli, G.; Becattini, C.; Beyer-Westendorf, J.; Bluhmki, E.; Bouvaist, H.; Brenner, B.; Couturaud, F.; et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N. Engl. J. Med. 2014, 370, 1402–1411. [Google Scholar] [CrossRef] [PubMed]
- Jaff, M.R.; McMurtry, M.S.; Archer, S.L.; Cushman, M.; Goldenberg, N.; Goldhaber, S.Z.; Jenkins, J.S.; Kline, J.A.; Michaels, A.D.; Thistlethwaite, P.; et al. Management of Massive and Submassive Pulmonary Embolism, Iliofemoral Deep Vein Thrombosis, and Chronic Thromboembolic Pulmonary Hypertension. Circulation 2011, 123, 1788–1830. [Google Scholar] [CrossRef] [PubMed]
- Giri, J.; Sista, A.K.; Weinberg, I.; Kearon, C.; Kumbhani, D.J.; Desai, N.D.; Piazza, G.; Gladwin, M.T.; Chatterjee, S.; Kobayashi, T.; et al. Interventional Therapies for Acute Pulmonary Embolism: Current Status and Principles for the Development of Novel Evidence: A Scientific Statement From the American Heart Association. Circulation 2019, 140, e774–e801. [Google Scholar] [CrossRef] [PubMed]
- Toma, C.; Bunte, M.C.; Cho, K.H.; Jaber, W.A.; Chambers, J.; Stegman, B.; Gondi, S.; Leung, D.A.; Savin, M.; Khandhar, S.; et al. Percutaneous mechanical thrombectomy in a real-world pulmonary embolism population: Interim results of the FLASH registry. Catheter. Cardiovasc. Interv. 2022, 99, 1345–1355. [Google Scholar] [CrossRef]
- Tu, T.; Toma, C.; Tapson, V.F.; Adams, C.; Jaber, W.A.; Silver, M.; Khandhar, S.; Amin, R.; Weinberg, M.; Engelhardt, T.; et al. A Prospective, Single-Arm, Multicenter Trial of Catheter-Directed Mechanical Thrombectomy for Intermediate-Risk Acute Pulmonary Embolism. JACC Cardiovasc. Interv. 2019, 12, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Sista, A.K.; Horowitz, J.M.; Tapson, V.F.; Rosenberg, M.; Elder, M.D.; Schiro, B.J.; Dohad, S.; Amoroso, N.E.; Dexter, D.J.; Loh, C.T.; et al. Indigo Aspiration System for Treatment of Pulmonary Embolism. JACC Cardiovasc. Interv. 2021, 14, 319–329. [Google Scholar] [CrossRef]
- Dumantepe, M.; Teymen, B.; Akturk, U.; Seren, M. The Efficacy of Rotational Thrombectomy on the Mortality of Patients with Massive and Submassive Pulmonary Embolism. J. Card. Surg. 2015, 30, 324–332. [Google Scholar] [CrossRef]
- Meneveau, N.; Guillon, B.; Planquette, B.; Piton, G.; Kimmoun, A.; Gaide-Chevronnay, L.; Aissaoui, N.; Neuschwander, A.; Zogheib, E.; Dupont, H.; et al. Outcomes after extracorporeal membrane oxygenation for the treatment of high-risk pulmonary embolism: A multicentre series of 52 cases. Eur. Heart J. 2018, 39, 4196–4204. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.B.; Giri, J.; Kobayashi, T.; Ruel, M.; Mittnacht, A.J.C.; Rivera-Lebron, B.; DeAnda, A.; Moriarty, J.M.; MacGillivray, T.E. Surgical Management and Mechanical Circulatory Support in High-Risk Pulmonary Embolisms: Historical Context, Current Status, and Future Directions: A Scientific Statement From the American Heart Association. Circulation 2023, 147, E628–E647. [Google Scholar] [CrossRef] [PubMed]
- Zuin, M.; Rigatelli, G.; Daggubati, R.; Nguyen, T.; Roncon, L. Impella RP in hemodynamically unstable patients with acute pulmonary embolism. J. Artif. Organs 2020, 23, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Mujer, M.; John, A.; Darki, A. VA-ECMO-assisted aspiration thrombectomy in a patient presenting with acute massive PE with absolute contraindications to thrombolytics. Catheter. Cardiovasc. Interv. 2022, 100, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Lashin, H.; Spiritoso, R. Impella RP as Rescue Measure for Pulmonary Embolism With Hemodynamic Compromise. JACC Case Rep. 2019, 1, 626–627. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.M.; Jaber, W.A.; Stegman, B.; Rosenberg, M.; Fanola, C.; Bhat, A.P.; Gondi, S.; Castle, J.; Ahmed, M.; Brown, M.A.; et al. Mechanical Thrombectomy for High-Risk Pulmonary Embolism: Insights From the US Cohort of the FLASH Registry. J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 101124. [Google Scholar] [CrossRef]
- Gonsalves, C.F.; Gibson, C.M.; Stortecky, S.; Alvarez, R.A.; Beam, D.M.; Horowitz, J.M.; Silver, M.J.; Toma, C.; Rundback, J.H.; Rosenberg, S.P.; et al. Randomized controlled trial of mechanical thrombectomy vs catheter-directed thrombolysis for acute hemodynamically stable pulmonary embolism: Rationale and design of the PEERLESS study. Am. Heart J. 2023, 266, 128–137. [Google Scholar] [CrossRef]
- Saleh Velez, F.G.; Ortiz Garcia, J.G. Management dilemmas in acute ischemic stroke and concomitant acute pulmonary embolism: Case series and literature review. eNeurologicalSci 2021, 23, 100341. [Google Scholar] [CrossRef]
- Toma, C. Impact of a blood return system on mechanical thrombectomy-associated blood loss and hemodynamic outcomes in a pulmonary embolism registry. Eur. Heart J. 2022, 43, ehac544.1893. [Google Scholar] [CrossRef]
- Monteleone, P.; Ahern, R.; Banerjee, S.; Desai, K.R.; Kadian-Dodov, D.; Webber, E.; Omidvar, S.; Troy, P.; Parikh, S.A. Modern Treatment of Pulmonary Embolism (USCDT vs MT): Results From a Real-World, Big Data Analysis (REAL-PE). J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 101192. [Google Scholar] [CrossRef]
- Abrahamian, A.; Khokher, W.; Ahmad, R.; Holtzapple, Z.; Patel, R.; Assaly, R.A.; Safi, F. Catheter-directed thrombolysis vs. mechanical thrombectomy in treatment of acute pulmonary embolism: A systemic review and meta-analysis of dual arm studies. Chest 2023, 164, A5245–A5246. [Google Scholar] [CrossRef]
- Fleitas Sosa, D.; Lehr, A.L.; Zhao, H.; Roth, S.; Lakhther, V.; Bashir, R.; Cohen, G.; Panaro, J.; Maldonado, T.S.; Horowitz, J.; et al. Impact of pulmonary embolism response teams on acute pulmonary embolism: A systematic review and meta-analysis. Eur. Respir. Rev. 2022, 31, 220023. [Google Scholar] [CrossRef]
- Götzinger, F.; Lauder, L.; Sharp, A.S.P.; Lang, I.M.; Rosenkranz, S.; Konstantinides, S.; Edelman, E.R.; Böhm, M.; Jaber, W.; Mahfoud, F. Interventional therapies for pulmonary embolism. Nat. Rev. Cardiol. 2023, 20, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Pruszczyk, P.; Klok, F.K.; Kucher, N.; Roik, M.; Meneveau, N.; Sharp, A.S.; Nielsen-Kudsk, J.N.-K.; Obradović, S.; Barco, S.; Giannini, F.; et al. Percutaneous treatment options for acute pulmonary embolism: A clinical consensus statement by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function and the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention 2022, 18, e623–e638. [Google Scholar] [CrossRef] [PubMed]
- Rajput, F.A.; Du, L.; Woods, M.; Jacobson, K. Percutaneous Vacuum-Assisted Thrombectomy Using AngioVac Aspiration System. Cardiovasc. Revascularization Med. 2020, 21, 489–493. [Google Scholar] [CrossRef]
- Pandya, Y.K.; Tzeng, E. Mechanical thrombectomy devices for the management of pulmonary embolism. JVS-Vascular Insights 2024, 2, 100053. [Google Scholar] [CrossRef]
- Srivathsa, M.; Illindala, U.; Al-Jadda, A. A Differentiated Approach Delivering Targeted Thrombectomy for VTE. JACC Basic to Transl. Sci. 2023, 8, 1419–1420. [Google Scholar] [CrossRef]
- Andersen, A.; Musialek, P.; Araszkiewicz, A.; Schultz, J.; Nielsen-Kudsk, J.E.; Tekieli, L.; Zajdel, W.; Sławek-Szmyt, S.; Taff, Y.; Weinberg, I. First-in-Human Trial of Mechanical-Electric Thrombectomy in Acute Pulmonary Embolism. JACC Cardiovasc. Interv. 2023, 16, 623–625. [Google Scholar] [CrossRef]
- Bashir, R.; Foster, M.; Iskander, A.; Darki, A.; Jaber, W.; Rali, P.M.; Lakhter, V.; Gandhi, R.; Klein, A.; Bhatheja, R.; et al. Pharmacomechanical Catheter-Directed Thrombolysis With the Bashir Endovascular Catheter for Acute Pulmonary Embolism. JACC Cardiovasc. Interv. 2022, 15, 2427–2436. [Google Scholar] [CrossRef]
- Sadeghipour, P.; Jenab, Y.; Moosavi, J.; Hosseini, K.; Mohebbi, B.; Hosseinsabet, A.; Chatterjee, S.; Pouraliakbar, H.; Shirani, S.; Shishehbor, M.H.; et al. Catheter-Directed Thrombolysis vs Anticoagulation in Patients With Acute Intermediate-High–risk Pulmonary Embolism. JAMA Cardiol. 2022, 7, 1189. [Google Scholar] [CrossRef]
- Planer, D.; Yanko, S.; Matok, I.; Paltiel, O.; Zmiro, R.; Rotshild, V.; Amir, O.; Elbaz-Greener, G.; Raccah, B.H. Catheter-directed thrombolysis compared with systemic thrombolysis and anticoagulation in patients with intermediate- or high-risk pulmonary embolism: Systematic review and network meta-analysis. Can. Med. Assoc. J. 2023, 195, E833–E843. [Google Scholar] [CrossRef] [PubMed]
- Kroupa, J.; Buk, M.; Weichet, J.; Malikova, H.; Bartova, L.; Linkova, H.; Ionita, O.; Kozel, M.; Motovska, Z.; Kocka, V. A pilot randomised trial of catheter-directed thrombolysis or standard anticoagulation for patients with intermediate-high risk acute pulmonary embolism. EuroIntervention 2022, 18, e639–e646. [Google Scholar] [CrossRef]
- Siordia, J.A.; Kaur, A. Catheter-directed Thrombolysis versus Systemic Anticoagulation for Submassive Pulmonary Embolism: A Meta-Analysis. Curr. Cardiol. Rev. 2022, 18, e030621193818. [Google Scholar] [CrossRef] [PubMed]
- Blinc, A.; Francis, C.W.; Trudnowski, J.L.; Carstensen, E.L. Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood 1993, 81, 2636–2643. [Google Scholar] [CrossRef]
- Francis, C.W.; Blinc, A.; Lee, S.; Cox, C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med. Biol. 1995, 21, 419–424. [Google Scholar] [CrossRef]
- Kucher, N.; Boekstegers, P.; Müller, O.J.; Kupatt, C.; Beyer-Westendorf, J.; Heitzer, T.; Tebbe, U.; Horstkotte, J.; Müller, R.; Blessing, E.; et al. Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism. Circulation 2014, 129, 479–486. [Google Scholar] [CrossRef]
- Kuo, W.T.; Banerjee, A.; Kim, P.S.; DeMarco, F.J.; Levy, J.R.; Facchini, F.R.; Unver, K.; Bertini, M.J.; Sista, A.K.; Hall, M.J.; et al. Pulmonary Embolism Response to Fragmentation, Embolectomy, and Catheter Thrombolysis (PERFECT). Chest 2015, 148, 667–673. [Google Scholar] [CrossRef]
- Avgerinos, E.D.; Jaber, W.; Lacomis, J.; Markel, K.; McDaniel, M.; Rivera-Lebron, B.N.; Ross, C.B.; Sechrist, J.; Toma, C.; Chaer, R.; et al. Randomized Trial Comparing Standard Versus Ultrasound-Assisted Thrombolysis for Submassive Pulmonary Embolism. JACC Cardiovasc. Interv. 2021, 14, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Low Dose Catheter Directed Thrombolysis for Acute Pulmonary Embolism (BETULA). Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03854266 (accessed on 25 March 2024).
- Pulmonary Embolism—Thrombus Removal With Catheter-Directed Therapy (PE-TRACT). Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05591118 (accessed on 25 March 2024).
- Klok, F.A.; Piazza, G.; Sharp, A.S.P.; Ní Ainle, F.; Jaff, M.R.; Chauhan, N.; Patel, B.; Barco, S.; Goldhaber, S.Z.; Kucher, N.; et al. Ultrasound-facilitated, catheter-directed thrombolysis vs anticoagulation alone for acute intermediate-high-risk pulmonary embolism: Rationale and design of the HI-PEITHO study. Am. Heart J. 2022, 251, 43–53. [Google Scholar] [CrossRef]
- Low Dose Thrombolysis, Ultrasound Assisted Thrombolysis or Heparin for Intermediate High Risk Pulmonary Embolism (STRATIFY). Available online: https://clinicaltrials.gov/study/NCT04088292 (accessed on 25 March 2024).
- Nguyen, P.C.; Stevens, H.; Peter, K.; McFadyen, J.D. Submassive Pulmonary Embolism: Current Perspectives and Future Directions. J. Clin. Med. 2021, 10, 3383. [Google Scholar] [CrossRef]
- Tapson, V.F.; Sterling, K.; Jones, N.; Elder, M.; Tripathy, U.; Brower, J.; Maholic, R.L.; Ross, C.B.; Natarajan, K.; Fong, P.; et al. A Randomized Trial of the Optimum Duration of Acoustic Pulse Thrombolysis Procedure in Acute Intermediate-Risk Pulmonary Embolism. JACC Cardiovasc. Interv. 2018, 11, 1401–1410. [Google Scholar] [CrossRef]
- Pasha, A.K.; Siddiqui, M.U.; Siddiqui, M.D.; Ahmed, A.; Abdullah, A.; Riaz, I.; Murad, M.H.; Bjarnason, H.; Wysokinski, W.E.; McBane, R.D. Catheter directed compared to systemically delivered thrombolysis for pulmonary embolism: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2022, 53, 454–466. [Google Scholar] [CrossRef]
- Zuin, M.; Piazza, G.; Barco, S.; Bikdeli, B.; Hobohm, L.; Giannakoulas, G.; Konstantinides, S. Time-based reperfusion in haemodynamically unstable pulmonary embolism patients: Does early reperfusion therapy improve survival? Eur. Heart J. Acute Cardiovasc. Care 2023, 12, 714–720. [Google Scholar] [CrossRef]
- Patel, I.J.; Rahim, S.; Davidson, J.C.; Hanks, S.E.; Tam, A.L.; Walker, T.G.; Wilkins, L.R.; Sarode, R.; Weinberg, I. Society of Interventional Radiology Consensus Guidelines for the Periprocedural Management of Thrombotic and Bleeding Risk in Patients Undergoing Percutaneous Image-Guided Interventions—Part II: Recommendations. J. Vasc. Interv. Radiol. 2019, 30, 1168–1184.e1. [Google Scholar] [CrossRef]
- Sanchez, O.; Charles-Nelson, A.; Ageno, W.; Barco, S.; Binder, H.; Chatellier, G.; Duerschmied, D.; Empen, K.; Ferreira, M.; Girard, P.; et al. Reduced-Dose Intravenous Thrombolysis for Acute Intermediate–High-risk Pulmonary Embolism: Rationale and Design of the Pulmonary Embolism International THrOmbolysis (PEITHO)-3 trial. Thromb. Haemost. 2022, 122, 857–866. [Google Scholar] [CrossRef]
- Weitz, J.I.; Chan, N.C. Novel antithrombotic strategies for treatment of venous thromboembolism. Blood 2020, 135, 351–359. [Google Scholar] [CrossRef]
- Sevitt, S. The structure and growth of valve-pocket thrombi in femoral veins. J. Clin. Pathol. 1974, 27, 517–528. [Google Scholar] [CrossRef]
- Mackman, N. New insights into the mechanisms of venous thrombosis. J. Clin. Investig. 2012, 122, 2331–2336. [Google Scholar] [CrossRef]
- BRILL, A.; FUCHS, T.A.; SAVCHENKO, A.S.; THOMAS, G.M.; MARTINOD, K.; DE MEYER, S.F.; BHANDARI, A.A.; WAGNER, D.D. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 2012, 10, 136–144. [Google Scholar] [CrossRef]
- Kaplan, M.J.; Radic, M. Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity. J. Immunol. 2012, 189, 2689–2695. [Google Scholar] [CrossRef]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef]
- von Brühl, M.-L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef]
- Grover, S.P.; Olson, T.M.; Cooley, B.C.; Mackman, N. Model-dependent contributions of FXII and FXI to venous thrombosis in mice. J. Thromb. Haemost. 2020, 18, 2899–2909. [Google Scholar] [CrossRef]
- Sharman Moser, S.; Chodick, G.; Ni, Y.G.; Chalothorn, D.; Wang, M.-D.; Shuldiner, A.R.; Morton, L.; Salomon, O.; Jalbert, J.J. The Association between Factor XI Deficiency and the Risk of Bleeding, Cardiovascular, and Venous Thromboembolic Events. Thromb. Haemost. 2022, 122, 808–817. [Google Scholar] [CrossRef]
- Georgi, B.; Mielke, J.; Chaffin, M.; Khera, A.V.; Gelis, L.; Mundl, H.; van Giezen, J.J.J.; Ellinor, P.; Kathiresan, S.; Ziegelbauer, K.; et al. Leveraging Human Genetics to Estimate Clinical Risk Reductions Achievable by Inhibiting Factor XI. Stroke 2019, 50, 3004–3012. [Google Scholar] [CrossRef]
- MORANGE, P.E.; TREGOUET, D.A. Lessons from genome-wide association studies in venous thrombosis. J. Thromb. Haemost. 2011, 9, 258–264. [Google Scholar] [CrossRef]
- Daghlas, I.; Gill, D. Leveraging genetic predictors of factor XI levels to anticipate results from clinical trials. Eur. J. Neurol. 2023, 30, 2112–2116. [Google Scholar] [CrossRef]
- Stavrou, E.; Schmaier, A.H. Factor XII: What does it contribute to our understanding of the physiology and pathophysiology of hemostasis & thrombosis. Thromb. Res. 2010, 125, 210–215. [Google Scholar] [CrossRef]
- Johnson, C.Y.; Tuite, A.; Morange, P.E.; Tregouet, D.A.; Gagnon, F. The Factor XII −4C>T Variant and Risk of Common Thrombotic Disorders: A HuGE Review and Meta-Analysis of Evidence From Observational Studies. Am. J. Epidemiol. 2011, 173, 136–144. [Google Scholar] [CrossRef]
- Willmann, S.; Marostica, E.; Snelder, N.; Solms, A.; Jensen, M.; Lobmeyer, M.; Lensing, A.W.A.; Bethune, C.; Morgan, E.; Yu, R.Z.; et al. PK/PD modeling of FXI antisense oligonucleotides to bridge the dose-FXI activity relation from healthy volunteers to end-stage renal disease patients. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 890–901. [Google Scholar] [CrossRef]
- Yu, R.Z.; Gunawan, R.; Post, N.; Zanardi, T.; Hall, S.; Burkey, J.; Kim, T.-W.; Graham, M.J.; Prakash, T.P.; Seth, P.P.; et al. Disposition and Pharmacokinetics of a GalNAc3-Conjugated Antisense Oligonucleotide Targeting Human Lipoprotein (a) in Monkeys. Nucleic Acid Ther. 2016, 26, 372–380. [Google Scholar] [CrossRef]
- van Es, N.; De Caterina, R.; Weitz, J.I. Reversal agents for current and forthcoming direct oral anticoagulants. Eur. Heart J. 2023, 44, 1795–1806. [Google Scholar] [CrossRef]
- Dilger, A.K.; Pabbisetty, K.B.; Corte, J.R.; De Lucca, I.; Fang, T.; Yang, W.; Pinto, D.J.P.; Wang, Y.; Zhu, Y.; Mathur, A.; et al. Discovery of Milvexian, a High-Affinity, Orally Bioavailable Inhibitor of Factor XIa in Clinical Studies for Antithrombotic Therapy. J. Med. Chem. 2022, 65, 1770–1785. [Google Scholar] [CrossRef]
- Wong, P.C.; Crain, E.J.; Bozarth, J.M.; Wu, Y.; Dilger, A.K.; Wexler, R.R.; Ewing, W.R.; Gordon, D.; Luettgen, J.M. Milvexian, an orally bioavailable, small-molecule, reversible, direct inhibitor of factor XIa: In vitro studies and in vivo evaluation in experimental thrombosis in rabbits. J. Thromb. Haemost. 2022, 20, 399–408. [Google Scholar] [CrossRef]
- Chan, N.C.; Weitz, J.I. New Therapeutic Targets for the Prevention and Treatment of Venous Thromboembolism With a Focus on Factor XI Inhibitors. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1755–1763. [Google Scholar] [CrossRef]
- A Study Comparing Abelacimab to Apixaban in the Treatment of Cancer-Associated VTE (ASTER). Available online: https://clinicaltrials.gov/study/NCT05171049 (accessed on 25 March 2024).
- A Study Comparing Abelacimab to Dalteparin in the Treatment of Gastrointestinal/Genitourinary Cancer and Associated VTE (MAGNOLIA). Available online: https://www.clinicaltrials.gov/study/NCT05171075 (accessed on 25 March 2024).
- Galli, M.; Laborante, R.; Ortega-Paz, L.; Franchi, F.; Rollini, F.; D’Amario, D.; Capodanno, D.; Tremoli, E.; Gibson, C.M.; Mehran, R.; et al. Factor XI Inhibitors in Early Clinical Trials: A Meta-analysis. Thromb. Haemost. 2023, 123, 576–584. [Google Scholar] [CrossRef]
- Nopp, S.; Kraemmer, D.; Ay, C. Factor XI Inhibitors for Prevention and Treatment of Venous Thromboembolism: A Review on the Rationale and Update on Current Evidence. Front. Cardiovasc. Med. 2022, 9, 903029. [Google Scholar] [CrossRef]
- Ismayl, M.; Ismayl, A.; Hamadi, D.; Aboeata, A.; Goldsweig, A.M. Catheter-directed thrombolysis versus thrombectomy for submassive and massive pulmonary embolism: A systematic review and meta-analysis. Cardiovasc. Revascularization Med. 2024, 60, 43–52. [Google Scholar] [CrossRef]
- Silver, M.J.; Gibson, C.M.; Giri, J.; Khandhar, S.; Jaber, W.; Toma, C.; Mina, B.; Bowers, T.; Greenspon, L.; Kado, H.; et al. Outcomes in High-Risk Pulmonary Embolism Patients Undergoing FlowTriever Mechanical Thrombectomy or Other Contemporary Therapies: Results From the FLAME Study. Circ. Cardiovasc. Interv. 2023, 16, 669–676. [Google Scholar] [CrossRef]
- Ladenvall, C.; Gils, A.; Jood, K.; Blomstrand, C.; Declerck, P.J.; Jern, C. Thrombin Activatable Fibrinolysis Inhibitor Activation Peptide Shows Association With All Major Subtypes of Ischemic Stroke and With TAFI Gene Variation. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 955–962. [Google Scholar] [CrossRef]
- Foley, J.H.; Kim, P.; Nesheim, M.E. Thrombin-activable Fibrinolysis Inhibitor Zymogen Does Not Play a Significant Role in the Attenuation of Fibrinolysis. J. Biol. Chem. 2008, 283, 8863–8867. [Google Scholar] [CrossRef] [PubMed]
- LEEBEEK, F.W.G.; VAN GOOR, M.P.J.; GUIMARAES, A.H.C.; BROUWERS, G.J.; DE MAAT, M.P.M.; DIPPEL, D.W.J.; RIJKEN, D.C. High functional levels of thrombin-activatable fibrinolysis inhibitor are associated with an increased risk of first ischemic stroke. J. Thromb. Haemost. 2005, 3, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.L.K.; Nishimura, T.; Myles, T. Regulation of tissue inflammation by thrombin-activatable carboxypeptidase B (or TAFI). Adv. Exp. Med. Biol. 2008, 632, 61–69. [Google Scholar] [PubMed]
- Margetic, S. Inflammation and haemostasis. Biochem. Medica 2012, 22, 49–62. [Google Scholar] [CrossRef]
- Leurs, J.; Hendriks, D. Carboxypeptidase U (TAFIa): A metallocarboxypeptidase with a distinct role in haemostasis and a possible risk factor for thrombotic disease. Thromb. Haemost. 2005, 94, 471–487. [Google Scholar] [CrossRef] [PubMed]
- Claesen, K.; Mertens, J.C.; Leenaerts, D.; Hendriks, D. Carboxypeptidase U (CPU, TAFIa, CPB2) in Thromboembolic Disease: What Do We Know Three Decades after Its Discovery? Int. J. Mol. Sci. 2021, 22, 883. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Kochan, J.; Yin, O.; Warren, V.; Zamora, C.; Atiee, G.; Pav, J.; Orihashi, Y.; Vashi, V.; Dishy, V. A first-in-human study of DS-1040, an inhibitor of the activated form of thrombin-activatable fibrinolysis inhibitor, in healthy subjects. J. Thromb. Haemost. 2017, 15, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Sakai, N.; Takeuchi, M.; Imamura, H.; Shimamura, N.; Yoshimura, S.; Naito, H.; Kimura, N.; Masuo, O.; Hirotsune, N.; Morita, K.; et al. Safety, Pharmacokinetics and Pharmacodynamics of DS-1040, in Combination with Thrombectomy, in Japanese Patients with Acute Ischemic Stroke. Clin. Drug Investig. 2022, 42, 137–149. [Google Scholar] [CrossRef]
- Vanassche, T.; Rosovsky, R.P.; Moustafa, F.; Büller, H.R.; Segers, A.; Patel, I.; Shi, M.; Miyoshi, N.; Mani, V.; Fayad, Z.; et al. Inhibition of thrombin-activatable fibrinolysis inhibitor via DS-1040 to accelerate clot lysis in patients with acute pulmonary embolism: A randomized phase 1b study. J. Thromb. Haemost. 2023, 21, 2929–2940. [Google Scholar] [CrossRef]
- Schmidt, C.Q.; Schrezenmeier, H.; Kavanagh, D. Complement and the prothrombotic state. Blood 2022, 139, 1954–1972. [Google Scholar] [CrossRef]
- Delvasto-Nuñez, L.; Jongerius, I.; Zeerleder, S. It takes two to thrombosis: Hemolysis and complement. Blood Rev. 2021, 50, 100834. [Google Scholar] [CrossRef] [PubMed]
- Berentsen, S.; Hill, A.; Hill, Q.A.; Tvedt, T.H.A.; Michel, M. Novel insights into the treatment of complement-mediated hemolytic anemias. Ther. Adv. Hematol. 2019, 10, 204062071987332. [Google Scholar] [CrossRef] [PubMed]
- Yerigeri, K.; Kadatane, S.; Mongan, K.; Boyer, O.; Burke, L.L.; Sethi, S.K.; Licht, C.; Raina, R. Atypical Hemolytic-Uremic Syndrome: Genetic Basis, Clinical Manifestations, and a Multidisciplinary Approach to Management. J. Multidiscip. Healthc. 2023, 16, 2233–2249. [Google Scholar] [CrossRef] [PubMed]
- Camous, L.; Veyradier, A.; Darmon, M.; Galicier, L.; Mariotte, E.; Canet, E.; Parquet, N.; Azoulay, É. Macrovascular thrombosis in critically ill patients with thrombotic micro-angiopathies. Intern. Emerg. Med. 2014, 9, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Cervera, R.; Piette, J.; Font, J.; Khamashta, M.A.; Shoenfeld, Y.; Camps, M.T.; Jacobsen, S.; Lakos, G.; Tincani, A.; Kontopoulou-Griva, I.; et al. Antiphospholipid syndrome: Clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum. 2002, 46, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Ponce, A.; Rodríguez-Pintó, I.; Espinosa, G.; Quintas, H.; Erkan, D.; Shoenfeld, Y.; Cervera, R. Pulmonary involvement in catastrophic antiphospholipid syndrome: A descriptive analysis from the “CAPS Registry”. Semin. Arthritis Rheum. 2023, 63, 152265. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Tarantino, M.D.; Chaturvedi, S.; McCrae, K.R.; Roberts, J.C. Eculizumab for refractory thrombosis in antiphospholipid syndrome. Blood Adv. 2022, 6, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Santoro, L.; Falsetti, L.; Zaccone, V.; Nesci, A.; Tosato, M.; Giupponi, B.; Savastano, M.C.; Moroncini, G.; Gasbarrini, A.; Landi, F.; et al. Impaired Endothelial Function in Convalescent Phase of COVID-19: A 3 Month Follow Up Observational Prospective Study. J. Clin. Med. 2022, 11, 1774. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D. Complement inhibition in ANCA vasculitis. Néphrologie Thérapeutique 2019, 15, 409–412. [Google Scholar] [CrossRef]
- Zelek, W.M.; Harrison, R.A. Complement and COVID-19: Three years on, what we know, what we don’t know, and what we ought to know. Immunobiology 2023, 228, 152393. [Google Scholar] [CrossRef]
- Høiland, I.I.; Liang, R.A.; Brækkan, S.K.; Pettersen, K.; Ludviksen, J.K.; Latysheva, N.; Snir, O.; Ueland, T.; Hindberg, K.; Mollnes, T.E.; et al. Complement activation assessed by the plasma terminal complement complex and future risk of venous thromboembolism. J. Thromb. Haemost. 2019, 17, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Capecchi, M.; Ciavarella, A.; Artoni, A.; Abbattista, M.; Martinelli, I. Thrombotic Complications in Patients with Immune-Mediated Hemolysis. J. Clin. Med. 2021, 10, 1764. [Google Scholar] [CrossRef] [PubMed]
- Ketenciler, S.; Gemalmaz, H.; Yücel, C.; Kayalar, N. Successful treatment of massive pulmonary embolism in a pregnant woman complicated with atypical hemolytic uremic syndrome. J. Card. Surg. 2021, 36, 3924–3928. [Google Scholar] [CrossRef] [PubMed]
- Bataillard, A.; Hebrard, A.; Gaide-Chevronnay, L.; Casez, M.; Dessertaine, G.; Durand, M.; Chavanon, O.; Albaladejo, P. Extracorporeal life support for massive pulmonary embolism during pregnancy. Perfusion 2016, 31, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.A.; Samuelson Bannow, B.T. Pulmonary Embolism and Thrombocytopenia. In PERT Consortium Handbook of Pulmonary Embolism; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–18. [Google Scholar]
- Hillmen, P.; Muus, P.; Dührsen, U.; Risitano, A.M.; Schubert, J.; Luzzatto, L.; Schrezenmeier, H.; Szer, J.; Brodsky, R.A.; Hill, A.; et al. Effect of the complement inhibitor eculizumab on thromboembolism in patients with paroxysmal nocturnal hemoglobinuria. Blood 2007, 110, 4123–4128. [Google Scholar] [CrossRef] [PubMed]
- Loschi, M.; Porcher, R.; Barraco, F.; Terriou, L.; Mohty, M.; de Guibert, S.; Mahe, B.; Lemal, R.; Dumas, P.; Etienne, G.; et al. Impact of eculizumab treatment on paroxysmal nocturnal hemoglobinuria: A treatment versus no-treatment study. Am. J. Hematol. 2016, 91, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Cançado, R.D.; Araújo, A.d.S.; Sandes, A.F.; Arrais, C.; Lobo, C.L.D.C.; Figueiredo, M.S.; Gualandro, S.F.M.; Saad, S.T.O.; Costa, F.F. Consensus statement for diagnosis and treatment of paroxysmal nocturnal haemoglobinuria. Hematol. Transfus. Cell Ther. 2021, 43, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Araten, D.J.; Notaro, R.; Thaler, H.T.; Kernan, N.; Boulad, F.; Castro-Malaspina, H.; Small, T.; Scaradavou, A.; Magnan, H.; Prockop, S.; et al. Thrombolytic therapy is effective in paroxysmal nocturnal hemoglobinuria: A series of nine patients and a review of the literature. Haematologica 2012, 97, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Röth, A.; Bommer, M.; Hüttmann, A.; Herich-Terhürne, D.; Kuklik, N.; Rekowski, J.; Lenz, V.; Schrezenmeier, H.; Dührsen, U. Eculizumab in cold agglutinin disease (DECADE): An open-label, prospective, bicentric, nonrandomized phase 2 trial. Blood Adv. 2018, 2, 2543–2549. [Google Scholar] [CrossRef]
- Cofiell, R.; Kukreja, A.; Bedard, K.; Yan, Y.; Mickle, A.P.; Ogawa, M.; Bedrosian, C.L.; Faas, S.J. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS. Blood 2015, 125, 3253–3262. [Google Scholar] [CrossRef]
- Noris, M.; Remuzzi, G. Cardiovascular complications in atypical haemolytic uraemic syndrome. Nat. Rev. Nephrol. 2014, 10, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Meroni, P.L.; Macor, P.; Durigutto, P.; De Maso, L.; Gerosa, M.; Ferraresso, M.; Borghi, M.O.; Mollnes, T.E.; Tedesco, F. Complement activation in antiphospholipid syndrome and its inhibition to prevent rethrombosis after arterial surgery. Blood 2016, 127, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Kronbichler, A.; Frank, R.; Kirschfink, M.; Szilágyi, Á.; Csuka, D.; Prohászka, Z.; Schratzberger, P.; Lhotta, K.; Mayer, G. Efficacy of Eculizumab in a Patient With Immunoadsorption-Dependent Catastrophic Antiphospholipid Syndrome. Medicine 2014, 93, e143. [Google Scholar] [CrossRef] [PubMed]
- López-Benjume, B.; Rodríguez-Pintó, I.; Amigo, M.C.; Erkan, D.; Shoenfeld, Y.; Cervera, R.; Espinosa, G. Eculizumab use in catastrophic antiphospholipid syndrome (CAPS): Descriptive analysis from the “CAPS Registry”. Autoimmun. Rev. 2022, 21, 103055. [Google Scholar] [CrossRef]
- Siniscalchi, C.; Basaglia, M.; Riva, M.; Meschi, M.; Meschi, T.; Castaldo, G.; Di Micco, P. Catastrophic Antiphospholipid Syndrome: A Review. Immuno 2023, 4, 1. [Google Scholar] [CrossRef]
Hemodynamic Alterations | Right Ventricle Dysfunction | Biomarkers (TnI or BNP) | PESIc > III or sPESI > 1 | |
---|---|---|---|---|
American Heart Association | ||||
Low-risk | − | − | − | N/A |
Submassive | − | +/− | +/− | N/A |
Massive | + | N/A | N/A | N/A |
European Society of Cardiology | ||||
Low-risk | − | − | − | − |
Intermediate-low risk | − | +/− | +/− | + |
Intermediate-high risk | − | + | + | + |
High-risk | + | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falsetti, L.; Guerrieri, E.; Zaccone, V.; Viticchi, G.; Santini, S.; Giovenali, L.; Lagonigro, G.; Carletti, S.; Gialluca Palma, L.E.; Tarquinio, N.; et al. Cutting-Edge Techniques and Drugs for the Treatment of Pulmonary Embolism: Current Knowledge and Future Perspectives. J. Clin. Med. 2024, 13, 1952. https://doi.org/10.3390/jcm13071952
Falsetti L, Guerrieri E, Zaccone V, Viticchi G, Santini S, Giovenali L, Lagonigro G, Carletti S, Gialluca Palma LE, Tarquinio N, et al. Cutting-Edge Techniques and Drugs for the Treatment of Pulmonary Embolism: Current Knowledge and Future Perspectives. Journal of Clinical Medicine. 2024; 13(7):1952. https://doi.org/10.3390/jcm13071952
Chicago/Turabian StyleFalsetti, Lorenzo, Emanuele Guerrieri, Vincenzo Zaccone, Giovanna Viticchi, Silvia Santini, Laura Giovenali, Graziana Lagonigro, Stella Carletti, Linda Elena Gialluca Palma, Nicola Tarquinio, and et al. 2024. "Cutting-Edge Techniques and Drugs for the Treatment of Pulmonary Embolism: Current Knowledge and Future Perspectives" Journal of Clinical Medicine 13, no. 7: 1952. https://doi.org/10.3390/jcm13071952
APA StyleFalsetti, L., Guerrieri, E., Zaccone, V., Viticchi, G., Santini, S., Giovenali, L., Lagonigro, G., Carletti, S., Gialluca Palma, L. E., Tarquinio, N., & Moroncini, G. (2024). Cutting-Edge Techniques and Drugs for the Treatment of Pulmonary Embolism: Current Knowledge and Future Perspectives. Journal of Clinical Medicine, 13(7), 1952. https://doi.org/10.3390/jcm13071952