The Beneficial Impact of Pulmonary Rehabilitation in Idiopathic Pulmonary Fibrosis: A Review of the Current Literature
Abstract
:1. Introduction
2. Can PR Improve Exercise Capacity, HRQOL, and Cardiovascular (CV) Outcomes in IPF Patients?
2.1. The Impact of PR on Exercise Capacity
2.2. PR and Quality of Life in IPF
2.3. Pulmonary Rehabilitation, Cardiovascular Outcomes, and Body Composition in Idiopathic Pulmonary Fibrosis
3. How Long Do the Effects of PR Last in IPF Patients?
4. Do PR and AFDs Have a Synergistic Effect When Combined?
5. Which Are the Most Appropriate Settings and Programmes for PR in IPF Patients?
6. Future Directions of PR in IPF
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moran-Mendoza, O.; Colman, R.; Kalluri, M.; Cabalteja, C.; Harle, I. A comprehensive and practical approach to the management of idiopathic pulmonary fibrosis. Expert Rev. Respir. Med. 2019, 13, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.; Wisse, A.; Manns, S.T. Clinical course and management of idiopathic pulmonary fibrosis. Multidiscip. Respir. Med. 2019, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- King, T.E.; Pardo, A.; Selman, M. Idiopathic pulmonary fibrosis. Lancet 2011, 378, 1949–1961. [Google Scholar] [CrossRef] [PubMed]
- Torrisi, S.E.; Kahn, N.; Vancheri, C.; Kreuter, M. Evolution and treatment of idiopathic pulmonary fibrosis. Presse Med. 2020, 49, 104025. [Google Scholar] [CrossRef] [PubMed]
- King, T.E., Jr.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A Phase 3 Trial of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Richeldi, L.; Du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; et al. Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Millan-Billi, P.; Serra, C.; Alonso Leon, A.; Castillo, D. Comorbidities, Complications and Non-Pharmacologic Treatment in Idiopathic Pulmonary Fibrosis. Med. Sci. 2018, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Rochester, C.L.; Alison, J.A.; Carlin, B.; Jenkins, A.R.; Cox, N.S.; Bauldoff, G.; Bhatt, S.P.; Bourbeau, J.; Burtin, C.; Camp, P.G.; et al. Pulmonary Rehabilitation for Adults with Chronic Respiratory Disease: An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2023, 208, e7–e26. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.E.; Cox, N.S.; Houchen-Wolloff, L.; Rochester, C.L.; Garvey, C.; ZuWallack, R.; Nici, L.; Limberg, T.; Lareau, S.C.; Yawn, B.P.; et al. Defining Modern Pulmonary Rehabilitation. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2021, 18, E12–E29. [Google Scholar] [CrossRef]
- Holland, A.; Hill, C. Physical training for interstitial lung disease. Cochrane Database Syst. Rev. 2008, 4, CD006322. [Google Scholar]
- Schwarzkopf, L.; Witt, S.; Waelscher, J.; Polke, M.; Kreuter, M. Associations between comorbidities, their treatment and survival in patients with interstitial lung diseases—A claims data analysis. Eur. Respir. J. 2018, 52 (Suppl. 62), PA4793. [Google Scholar]
- Bernard, S.; Whittom, F.; LeBLANC, P.; Jobin, J.; Belleau, R.; Bérubé, C.; Carrier, G.; Maltais, F. Aerobic and strength training in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999, 159, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Mador, M.J.; Kufel, T.J.; Pineda, L.A.; Steinwald, A.; Aggarwal, A.; Upadhyay, A.M.; Khan, M.A. Effect of pulmonary rehabilitation on quadriceps fatiguability during exercise. Am. J. Respir. Crit. Care Med. 2001, 163, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Dowman, L.; Hill, C.J.; Holland, A.E. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst. Rev. 2014, 2, CD006322. [Google Scholar] [CrossRef] [PubMed]
- Nici, L.; Donner, C.; Wouters, E.; Zuwallack, R.; Ambrosino, N.; Bourbeau, J.; Carone, M.; Celli, B.; Engelen, M.; Fahy, B.; et al. American Thoracic Society/European Respiratory Society Statement on Pulmonary Rehabilitation. Am. J. Respir. Crit. Care Med. 2012, 173, 1390–1413. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Li, X.; Xie, Y.; Li, J. Clinical evidence for improving exercise tolerance and quality of life with pulmonary rehabilitation in patients with idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Clin. Rehabil. 2022, 36, 999–1015. [Google Scholar] [CrossRef] [PubMed]
- Luu, B.; Gupta, A.; Fabiano, N.; Wong, S.; Fiedorowicz, J.G.; Fidler, L.; Shorr, R.; Solmi, M. Influence of pulmonary rehabilitation on symptoms of anxiety and depression in interstitial lung disease: A systematic review of randomized controlled trials. Respir. Med. 2023, 219, 107433. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Neto, M.; Silva, C.M.; Ezequiel, D.; Conceição, C.S.; Saquetto, M.; Machado, A.S. Impact of Pulmonary Rehabilitation on Exercise Tolerance and Quality of Life in Patients With Idiopathic Pulmonary Fibrosis. J. Cardiopulm. Rehabil. Prev. 2018, 38, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, X.; Wang, L.; Liu, R.; Xie, Y.; Li, S.; Li, J. Pulmonary Rehabilitation for Exercise Tolerance and Quality of Life in IPF Patients: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2019, 2019, 8498603. [Google Scholar] [CrossRef]
- Li, X.; Yu, R.; Wang, P.; Wang, A.; Huang, H. Effects of Exercise Training on Cardiopulmonary Function and Quality of Life in Elderly Patients with Pulmonary Fibrosis: A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7643. [Google Scholar] [CrossRef]
- Song, S.; Feng, Z.; Liu, W.; Li, J. The role of pulmonary rehabilitation in idiopathic pulmonary fibrosis: An overview of systematic reviews. PLoS ONE 2023, 18, e0295367. [Google Scholar] [CrossRef] [PubMed]
- Arizono, S.; Taniguchi, H.; Sakamoto, K.; Kondoh, Y.; Kimura, T.; Kataoka, K.; Ogawa, T.; Watanabe, F.; Nishiyama, O.; Nishimura, K.; et al. Endurance time is the most responsive exercise measurement in idiopathic pulmonary fibrosis. Respir. Care 2014, 59, 1108–1115. [Google Scholar] [CrossRef]
- Choi, H.E.; Kim, T.H.; Jang, J.H.; Jang, H.-J.; Yi, J.; Jung, S.Y.; Kim, D.-W.; Lee, J.H. The Efficacy of Pulmonary Rehabilitation in Patients with Idiopathic Pulmonary Fibrosis. Life 2023, 13, 403. [Google Scholar] [CrossRef] [PubMed]
- Cerdán-De-Las-Heras, J.; Balbino, F.; Løkke, A.; Catalán-Matamoros, D.; Hilberg, O.; Bendstrup, E. Tele-Rehabilitation Program in Idiopathic Pulmonary Fibrosis-A Single-Center Randomized Trial. Int. J. Environ. Res. Public Health 2021, 18, 10016. [Google Scholar] [CrossRef] [PubMed]
- Gaunaurd, I.A.; Gómez-Marín, O.W.; Ramos, C.F.; Sol, C.M.; Cohen, M.I.; Cahalin, L.P.; Cardenas, D.D.; Jackson, R.M. Physical activity and quality of life improvements of patients with idiopathic pulmonary fibrosis completing a pulmonary rehabilitation program. Respir. Care 2014, 59, 1872–1879. [Google Scholar] [CrossRef] [PubMed]
- Iwanami, Y.; Ebihara, K.; Nakao, K.; Sato, N.; Miyagi, M.; Nakamura, Y.; Sakamoto, S.; Kishi, K.; Homma, S.; Ebihara, S. Benefits of Pulmonary Rehabilitation in Patients with Idiopathic Pulmonary Fibrosis Receiving Antifibrotic Drug Treatment. J. Clin. Med. 2022, 11, 5336. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.M.; Gómez-Marín, O.W.; Ramos, C.F.; Sol, C.M.; Cohen, M.I.; Gaunaurd, I.A.; Cahalin, L.P.; Cardenas, D.D. Exercise limitation in IPF patients: A randomized trial of pulmonary rehabilitation. Lung 2014, 192, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Jarosch, I.; Schneeberger, T.; Gloeckl, R.; Kreuter, M.; Frankenberger, M.; Neurohr, C.; Prasse, A.; Freise, J.; Behr, J.; Hitzl, W.; et al. Short-Term Effects of Comprehensive Pulmonary Rehabilitation and its Maintenance in Patients with Idiopathic Pulmonary Fibrosis: A Randomized Controlled Trial. J. Clin. Med. 2020, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, K.; Nishiyama, O.; Ogura, T.; Mori, Y.; Kozu, R.; Arizono, S.; Tsuda, T.; Tomioka, H.; Tomii, K.; Sakamoto, K.; et al. Long-term effect of pulmonary rehabilitation in idiopathic pulmonary fibrosis: A randomised controlled trial. Thorax 2023, 78, 784–791. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Y.; Su, Y.; Weng, D.; Zhang, F.; Wu, Q.; Chen, T.; Li, Q.; Zhou, Y.; Hu, Y.; et al. New pulmonary rehabilitation exercise for pulmonary fibrosis to improve the pulmonary function and quality of life of patients with idiopathic pulmonary fibrosis: A randomized control trial. Ann. Palliat. Med. 2021, 10, 7289–7297. [Google Scholar] [CrossRef]
- Vainshelboim, B.; Oliveira, J.; Yehoshua, L.; Weiss, I.; Fox, B.D.; Fruchter, O.; Kramer, M.R. Exercise training-based pulmonary rehabilitation program is clinically beneficial for idiopathic pulmonary fibrosis. Respiration 2014, 88, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Vainshelboim, B.; Oliveira, J.; Fox, B.D.; Soreck, Y.; Fruchter, O.; Kramer, M.R. Long-term effects of a 12-week exercise training program on clinical outcomes in idiopathic pulmonary fibrosis. Lung 2015, 193, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Vainshelboim, B.; Fox, B.D.; Kramer, M.R.; Izhakian, S.; Gershman, E.; Oliveira, J. Short-Term Improvement in Physical Activity and Body Composition After Supervised Exercise Training Program in Idiopathic Pulmonary Fibrosis. Arch. Phys. Med. Rehabil. 2016, 97, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Vainshelboim, B.; Kramer, M.R.; Fox, B.D.; Izhakian, S.; Sagie, A.; Oliveira, J. Supervised exercise training improves exercise cardiovascular function in idiopathic pulmonary fibrosis. Eur. J. Phys. Rehabilitation Med. 2017, 53, 209–218. [Google Scholar] [CrossRef]
- Yuen, H.K.; Lowman, J.D.; Oster, R.A.; De Andrade, J.A. Home-Based Pulmonary Rehabilitation for Patients With Idiopathic Pulmonary Fibrosis: A PILOT STUDY. J. Cardiopulm. Rehabil. Prev. 2019, 39, 281–284. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, H.; Li, F.; Yu, Z.; Yuan, C.; Oliver, B.; Li, J. Pulmonary Daoyin as a traditional Chinese medicine rehabilitation programme for patients with IPF: A randomized controlled trial. Respirology 2021, 26, 360–369. [Google Scholar] [PubMed]
- Clanton, T.L. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J. Appl. Physiol. 2007, 102, 2379–2388. [Google Scholar] [CrossRef]
- Blanco, I.; Ribas, J.; Xaubet, A.; Gómez, F.P.; Roca, J.; Rodriguez-Roisin, R.; Barberà, J.A. Effects of inhaled nitric oxide at rest and during exercise in idiopathic pulmonary fibrosis. J. Appl. Physiol. 2011, 110, 638–645. [Google Scholar] [CrossRef]
- Otake, K.; Misu, S.; Fujikawa, T.; Sakai, H.; Tomioka, H. Exertional Desaturation Is More Severe in Idiopathic Pulmonary Fibrosis Than in Other Interstitial Lung Diseases. Phys. Ther. Res. 2023, 26, 32–37. [Google Scholar] [CrossRef]
- Agustí, A.G.N.; Roca, J.; Gea, J.; Wagner, P.D.; Xaubet, A.; Rodriguez-Roisin, R. Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 1991, 143, 219–225. [Google Scholar] [CrossRef]
- Hansen, J.E.; Wasserman, K. Pathophysiology of activity limitation in patients with interstitial lung disease. Chest 1996, 109, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Kenny, W.L.; Wilmore, J.H.; Costil, D.L. Physiology of Sport and Exercise; Human Kinetics Publishers: Champaign, IL, USA, 2012; Available online: https://books.google.nl/books?hl=it&lr=&id=XoZGEAAAQBAJ&oi=fnd&pg=PP1&dq=Kenney+WL,+Wilmore+JH,+Costill+DL.+Physiology+of+sport+and+exercise.+5th+Edn+Champaign,+Human+Kinetics,+2012&ots=uQ2kjdCb_I&sig=BpA-WxhxzoIuXv3v1NASNAiRmVQ#v=onepage&q&f=false (accessed on 10 January 2024).
- Miki, K.; Maekura, R.; Miki, M.; Kitada, S.; Yoshimura, K.; Tateishi, Y.; Mori, M. Exertional acidotic responses in idiopathic pulmonary fibrosis: The mechanisms of exertional dyspnea. Respir. Physiol. Neurobiol. 2013, 185, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Markovitz, G.H.; Cooper, C.B. Exercise and interstitial lung disease. Curr. Opin. Pulm. Med. 1998, 4, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Luxton, N.; Alison, J.A.; Wu, J.; Mackey, M.G. Relationship between field walking tests and incremental cycle ergometry in COPD. Respirology 2008, 13, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Ruppel, G.L.; Espiritu, J.R.D. Exercise-Induced Oxygen Desaturation during the 6-Minute Walk Test. Med. Sci. 2020, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, L.H. Utility of the six-minute walk test in patients with idiopathic pulmonary fibrosis. Multidiscip. Respir. Med. 2018, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Keteyian, S.J.; Brawner, C.A.; Savage, P.D.; Ehrman, J.K.; Schairer, J.; Divine, G.; Aldred, H.; Ophaug, K.; Ades, P.A. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am. Heart J. 2008, 156, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, O.; Kondoh, Y.; Kimura, T.; Kato, K.; Kataoka, K.; Ogawa, T.; Watanabe, F.; Arizono, S.; Nishimura, K.; Taniguchi, H. Effects of pulmonary rehabilitation in patients with idiopathic pulmonary fibrosis. Respirology 2008, 13, 394–399. [Google Scholar] [CrossRef]
- Manali, E.D.; Lyberopoulos, P.; Triantafillidou, C.; Kolilekas, L.F.; Sotiropoulou, C.; Milic-Emili, J.; Roussos, C.; Papiris, S.A. MRC chronic Dyspnea Scale: Relationships with cardiopulmonary exercise testing and 6-minute walk test in idiopathic pulmonary fibrosis patients: A prospective study. BMC Pulm. Med. 2010, 10, 32. [Google Scholar] [CrossRef]
- O’Donnell, D.E.; Lam, M.; Webb, K.A. Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1998, 158 Pt 1, 1557–1565. [Google Scholar] [CrossRef]
- Arizono, S.; Taniguchi, H.; Nishiyama, O.; Kondoh, Y.; Kimura, T.; Kataoka, K.; Ogawa, T.; Watanabe, F.; Nishimura, K.; Senjyu, H.; et al. Improvements in quadriceps force and work efficiency are related to improvements in endurance capacity following pulmonary rehabilitation in COPD patients. Intern. Med. 2011, 50, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Oga, T.; Nishimura, K.; Tsukino, M.; Hajiro, T.; Ikeda, A.; Izumi, T. The effects of oxitropium bromide on exercise performance in patients with stable chronic obstructive pulmonary disease. A comparison of three different exercise tests. Am. J. Respir. Crit. Care Med. 2000, 161, 1897–1901. [Google Scholar] [CrossRef]
- Yin, S.; Njai, R.; Barker, L.; Siegel, P.Z.; Liao, Y. Summarizing health-related quality of life (HRQOL): Development and testing of a one-factor model. Popul. Health Metr. 2016, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Engström, C.; Persson, L.; Larsson, S.; Sullivan, M. Health-related quality of life in COPD: Why both disease-specific and generic measures should be used. Eur. Respir. J. 2001, 18, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Swigris, J.J.; Brown, K.K.; Behr, J.; du Bois, R.M.; King, T.E.; Raghu, G.; Wamboldt, F.S. The SF-36 and SGRQ: Validity and first look at minimum important differences in IPF. Respir. Med. 2010, 104, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Tomioka, H.; Imanaka, K.; Hashimoto, K.; Iwasaki, H. Health-related quality of life in patients with idiopathic pulmonary fibrosis--cross-sectional and longitudinal study. Intern. Med. 2007, 46, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Swigris, J.J.; Kuschner, W.G.; Jacobs, S.S.; Wilson, S.R.; Gould, M.K. Health-related quality of life in patients with idiopathic pulmonary fibrosis: A systematic review. Thorax 2005, 60, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Nathan, S.D.; Basavaraj, A.; Reichner, C.; Shlobin, O.A.; Ahmad, S.; Kiernan, J.; Burton, N.; Barnett, S.D. Prevalence and impact of coronary artery disease in idiopathic pulmonary fibrosis. Respir. Med. 2010, 104, 1035–1041. [Google Scholar] [CrossRef]
- Ryerson, C.J.; Cayou, C.; Topp, F.; Hilling, L.; Camp, P.G.; Wilcox, P.G.; Khalil, N.; Collard, H.R.; Garvey, C. Pulmonary rehabilitation improves long-term outcomes in interstitial lung disease: A prospective cohort study. Respir. Med. 2014, 108, 203–210. [Google Scholar] [CrossRef]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.-F.; Flaherty, K.R.; Lasky, J.A.; et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef]
- Holland, A.E.; Hill, C.J.; Conron, M.; Munro, P.; McDonald, C.F. Short term improvement in exercise capacity and symptoms following exercise training in interstitial lung disease. Thorax 2008, 63, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, M.; Wuyts, W.A.; Wijsenbeek, M.; Bajwah, S.; Maher, T.M.; Stowasser, S.; Male, N.; Stansen, W.; Schoof, N.; Orsatti, L.; et al. Health-related quality of life and symptoms in patients with IPF treated with nintedanib: Analyses of patient-reported outcomes from the INPULSIS® trials. Respir. Res. 2020, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Richeldi, L. Current approaches to the management of idiopathic pulmonary fibrosis. Respir. Med. 2017, 129, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Rogante, M.; Kairy, D.; Giacomozzi, C.; Grigioni, M. A quality assessment of systematic reviews on telerehabilitation: What does the evidence tell us? Ann. Ist. Super. Sanita 2015, 51, 11–18. [Google Scholar] [PubMed]
- Albores, J.; Marolda, C.; Haggerty, M.; Gerstenhaber, B.; ZuWallack, R. The use of a home exercise program based on a computer system in patients with chronic obstructive pulmonary disease. J. Cardiopulm. Rehabil. Prev. 2013, 33, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Chen, S.; Pasco, D.; Pope, Z. A meta-analysis of active video games on health outcomes among children and adolescents. Obes. Rev. 2015, 16, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.-C.; et al. An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J.-S.; Yu, X.-Q.; Li, S.-Y.; Upur, H.; Xie, Y.; Wang, Y.-F.; Li, F.-S.; Wang, M.-H. An evaluation of activity tolerance, patient-reported outcomes and satisfaction with the effectiveness of pulmonary daoyin on patients with chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 2333–2342. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
Study | Study Type | IPF Subjects | Main Findings |
---|---|---|---|
Arizono, 2014 [22] | OS | 48 total: 24 PR 24 CT | PR vs. CT: ↑ET, ↑peak WR, ↑AT, ↑work efficiency, ↑6MWD, and ↑ISWD |
Choi 2023 [23] | OS | 25 total: 13 PR 12 CT | PR vs. CT: ↑VO2 max, ↑VE/VCO2 slopes, ↑HR max, and ↑RER at VO2 max |
Cerdán-de-las-Heras, 2021 [24] | RCT | 29 total: 15 PR 14 CT | PR vs. CT: ↑∆6MWD |
Gaunard, 2014 [25] | RCT | 21 total: 11 PR 10 CT | PR vs. CT: ↓∆SGRQ-I and ↑∆IPAQ |
Iwanami, 2022 [26] | OS | 87 total: 29 PR 11 PR +AFD 26 CT 21 AFD | PR vs. AFD: ↑∆6MWD, ↑∆6MWD%, ↑∆mMRC PR+AFD vs. AFD: ↑∆6MWD PR vs. AFD: ↑∆mMRC PR group (pre- vs. post-PR): ↓mMRC, ↑ 6MWD and ↑6MWD% |
Jackson, 2014 [27] | RCT | 21 total: 11 PR 10 CT | PR vs. CT: ↑ET, ↑MIP, ↓SpO2, ↔6MWD ↑VO2 during exercise |
Jarosch, 2020 [28] | RCT | 44 total: 34 PR 17 CT | PR vs. CT: ↑∆6MWD, ↑∆ CRQ total score, ↑∆ SF-36 mental component summary score Between-group change in ∆CRQ total score persists after 3-month follow-up. |
Kataoka, 2022 [29] | RCT | 74 total: 38 PR 36 CT | PR vs. CT: ↑∆ET Between-group ∆6MWD last until the 26th week. |
Shen, 2021 [30] | RCT | 82 total: 39 PR 43 CT | 6th month PR vs. CT: ↓FVC decay, ↓FEV1 decay, ↓ΔDLCO decay, ↓SGRQ 12th month PR vs. CT: all results confirmed |
Vainshelboim, 2014 [31] | RCT | 32 total: PR 15 CT 17 | PR vs. CT: ↑FVC, ↑ΔMVV, ↑ΔPeak WR, ↑Δ6MWD ↑Δ30 s chair stand, ↓mMRC, ↓SGRQ |
Vainshelboim, 2015 [32] | RCT | 32 total: PR 15 CT 17 | 11th month PR vs. CT: ↑Δ30 s chair stand, ↓SGRQ In the PR group, a significant association between ΔSGRQ total score and Δ6MWD changes (r = −0.82, p < 0.001). |
Vainshelboim, 2016 [33] | RCT | 32 total: PR 15 CT 17 | PR vs. CT: ↑ΔIPAQ, ↓waist circumference, ↓body fat Correlation between ∆IPAQ and ∆body fat (r = −0.496, p = 0.06) |
Vainshelboim, 2017 [34] | RCT | 32 total: PR 15 CT 17 | PR vs. CT: ↑Δpeak circulatory power, ↑Δpeak cardiac power output, ↑ΔVO2 peak, ↑ΔHRR In the PR group, a correlation between ∆circulatory power and ∆6MWD (r = 0.66, p = 0.008), ∆circulatory power and ∆mMRC (r = −0.53, p = 0.042). |
Yuen, 2019 [35] | RCT | 20 total: PR 10 CT 10 | PR vs. CT: ↔ 6MWD, ↔ SGRQ |
Zhou, 2021 [36] | RCT | 94 total: PD 32 PR 31 CT 31 | 2nd month PD vs. CT: ↑∆6MWD, ↓SGRQ, ↓mMRC, ↑FVC 4th month PD vs. CT: ↑∆6MWD, ↓mMRC 2nd month PD vs. PR: ↑∆6MWD 2nd month PR vs. CT: ↑∆6MWD, ↓mMRC 4th month PR vs. CT: ↑∆6MWD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamparelli, S.S.; Lombardi, C.; Candia, C.; Iovine, P.R.; Rea, G.; Vitacca, M.; Ambrosino, P.; Bocchino, M.; Maniscalco, M. The Beneficial Impact of Pulmonary Rehabilitation in Idiopathic Pulmonary Fibrosis: A Review of the Current Literature. J. Clin. Med. 2024, 13, 2026. https://doi.org/10.3390/jcm13072026
Zamparelli SS, Lombardi C, Candia C, Iovine PR, Rea G, Vitacca M, Ambrosino P, Bocchino M, Maniscalco M. The Beneficial Impact of Pulmonary Rehabilitation in Idiopathic Pulmonary Fibrosis: A Review of the Current Literature. Journal of Clinical Medicine. 2024; 13(7):2026. https://doi.org/10.3390/jcm13072026
Chicago/Turabian StyleZamparelli, Stefano Sanduzzi, Carmen Lombardi, Claudio Candia, Paola Rebecca Iovine, Gaetano Rea, Michele Vitacca, Pasquale Ambrosino, Marialuisa Bocchino, and Mauro Maniscalco. 2024. "The Beneficial Impact of Pulmonary Rehabilitation in Idiopathic Pulmonary Fibrosis: A Review of the Current Literature" Journal of Clinical Medicine 13, no. 7: 2026. https://doi.org/10.3390/jcm13072026
APA StyleZamparelli, S. S., Lombardi, C., Candia, C., Iovine, P. R., Rea, G., Vitacca, M., Ambrosino, P., Bocchino, M., & Maniscalco, M. (2024). The Beneficial Impact of Pulmonary Rehabilitation in Idiopathic Pulmonary Fibrosis: A Review of the Current Literature. Journal of Clinical Medicine, 13(7), 2026. https://doi.org/10.3390/jcm13072026