Are the Spinal Changes in the Course of Scoliogeny Primary but Secondary?
Abstract
:1. Introduction
2. Effect of Growth on Spinal and Rib Cage Deformity
3. Intervertebral Disc and Adolescent Idiopathic Scoliosis
4. The Role of the Thoracic Cage in IS Scoliogeny [39]
5. Segmental Rib Index, Spinal Deformity, and the Scoliogenic Implications [41]
6. Lateral Spinal Profile and Adolescent Idiopathic Scoliosis
7. Genetics and Epigenetics
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, F.; Chu, W.C.W.; Sun, G.; Zhu, Z.Z.; Wang, W.J.; Cheng, J.C.Y.; Qiu, Y. Rib length asymmetry in thoracic adolescent idiopathic scoliosis: Is it primary or secondary? Eur. Spine J. 2011, 20, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Burwell, R.G.; Cole, A.A.; Cook, T.A.; Grivas, T.B.; Kiel, A.W.; Moulton, A.; Thirlwall, A.S.; Upadhyay, S.S.; Webb, J.K.; Wemyss-Holden, S.A.; et al. Pathogenesis of idiopathic scoliosis. The Nottingham concept. Acta Orthop. Belg. 1992, 58 (Suppl. S1), 33–58. [Google Scholar]
- Qiu, Y.; Sun, G.Q.; Zhu, F.; Wang, W.J.; Zhu, Z.Z. Rib length discrepancy in patients with adolescent idiopathic scoliosis. Stud. Health Technol. Inform. 2010, 158, 63–66. [Google Scholar] [PubMed]
- Schlager, B.; Krump, F.; Boettinger, J.; Jonas, R.; Liebsch, C.; Ruf, M.; Beer, M.; Wilke, H.J. Morphological patterns of the rib cage and lung in the healthy and adolescent idiopathic scoliosis. J. Anat. 2021, 240, 120–130. [Google Scholar] [CrossRef]
- Sevastik, J.A. Dysfunction of the autonomic nerve system (ANS) in the aetiopathogenesis of adolescent idiopathic scoliosis. Stud. Health Technol. Inform. 2002, 88, 20–23. [Google Scholar]
- Sevastik, J.; Burwell, R.G.; Dangerfield, P.H. A new concept for the etiopathogenesis of the thoracospinal deformity of idiopathic scoliosis: Summary of an electronic focus group debate of the IBSE. Eur. Spine J. 2003, 12, 440–450. [Google Scholar] [CrossRef]
- Grivas, T.B.; Vasiliadis, E.S.; Mihas, C.; Savvidou, O. The effect of growth on the correlation between the spinal and rib cage deformity: Implications on idiopathic scoliosis pathogenesis. Scoliosis 2007, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Grivas, T.B.; Vasiliadis, E.; Malakasis, M.; Mouzakis, V.; Segos, D. Intervertebral disc biomechanics in the pathogenesis of idiopathic scoliosis. Stud. Health Technol. Inform. 2006, 123, 80–83. [Google Scholar] [PubMed]
- Grivas, T.B.; Vasiliadis, E.S.; Rodopoulos, G.; Bardakos, N. The role of the intervertebral disc in correction of scoliotic curves. A theoretical model of idiopathic scoliosis pathogenesis. Stud. Health Technol. Inform. 2008, 140, 33–36. [Google Scholar]
- Grivas, T.B.; Daggas, S.; Polyzois, B.; Samelis, P. The double rib contour sign in lateral spinal radiographs. Aetiologic implications for scoliosis? Stud. Health Technol. Inf. 2002, 88, 38–43. [Google Scholar]
- Grivas, T.B.; Dangas, S.; Lafogianni, S.; Samelis, P.; Polyzois, D. The Double Rib Contour Sign (DRCS) in lateral spinal radiographs: Aetiologic implications for scoliosis. In Proceedings of the 25th “Nicolas Giannestras—Panayiotis Smyrnis” Anniversary Symposium of Spinal Column Diseases, Patras, Greece, 21–23 May 1999. [Google Scholar]
- Grivas, T.B. Rib index. Scoliosis 2014, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Grivas, T.B.; Daggas, S.; Samelis, P.; Cmazioti, C.; Kandris, P. Lateral spinal profile in school-screening referrals with and without late onset idiopathic scoliosis 10°–20°. Stud. Health Technol. Inform. 2002, 91, 25–31. [Google Scholar]
- Lotfi, N.; Chauhan, G.S.; Gardner, A.; Berryman, F.; Pynsent, P. The relationship between measures of spinal deformity and measures of thoracic trunk rotation. J. Spine Surg. 2020, 6, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Will, R.E.; Stokes, I.A.; Qiu, X. Cobb angle progression in adolescent scoliosis begins at the intervertebral disc. Spine 2009, 34, 2782–2786. [Google Scholar] [CrossRef]
- Colten, H.R.; Altevogt, B.M. (Eds.) Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; Institute of Medicine (US) Committee on Sleep Medicine and Research; National Academies Press (US): Washington, DC, USA, 2006. [Google Scholar]
- Shu, C.C.; Melrose, J. The adolescent idiopathic scoliotic IVD displays advanced aggrecanolysis and a glycosaminoglycan composition similar to that of aged human and ovine (sheep) IVDs. Eur. Spine J. 2018, 27, 2102–2113. [Google Scholar] [CrossRef]
- Antoniou, J.; Arlet, V.; Goswami, T.; Aebi, M.; Alini, M. Elevated synthetic activity in the convex side of scoliotic intervertebral discs and endplates compared with normal tissues. Spine 2001, 26, E198–E206. [Google Scholar] [CrossRef]
- Roberts, S.; Menage, J.; Eisenstein, S.M. The cartilage end-plate and intervertebral disc in scoliosis: Calcification and other sequelae. J. Orthop. Res. 1993, 11, 747–757. [Google Scholar] [CrossRef]
- Grivas, T.B.; Vasiliadis, E.S.; Kaspiris, A.; Khaldi, L.; Kletsas, D. Expression of matrix metalloproteinase-1 (MMP-1) in Wistar rat’s intervertebral disc after experimentally induced scoliotic deformity. Scoliosis 2011, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Brink, R.C.; Schlösser, T.P.C.; van Stralen, M.; Vincken, K.L.; Kruyt, M.C.; Hui, S.C.N.; Viergever, M.A.; Chu, W.C.W.; Cheng, J.C.Y.; Castelein, R.M. Anterior-posterior length discrepancy of the spinal column in adolescent idiopathic scoliosis-a 3D CT study. Spine J. 2018, 18, 2259–2265. [Google Scholar] [CrossRef]
- Grivas, T.B.; Vasiliadis, E.S.; Triantafyllopoulos, G.; Kaspiris, A. A comprehensive model of idiopathic scoliosis (IS) progression, based on the patho-biomechanics of the deforming “three joint complex. Scoliosis 2009, 4 (Suppl. 2), 2169. [Google Scholar] [CrossRef]
- Yong-Hing, K.; Kirkaldy-Willis, W.H. The pathophysiology of degenerative disease of the lumbar spine. Orthop. Clin. N. Am. 1983, 14, 491–504. [Google Scholar] [CrossRef]
- Taylor, T.F.K.; Ghosh, P.; Bushell, G.R. The contribution of the intervertebral disk to the scoliotic deformity. Clin. Orthop. 1981, 156, 79–90. [Google Scholar] [CrossRef]
- O’Brien, J. Mechanisms of progression in neuromuscular scoliosis. In Proceedings of the Eighth Philip Zorab Scoliosis Symposium, London, UK, 26–28 October 1988; Siegler, D., Harrison, D., Edgar, M., Eds.; Phillip Zorab Scoliosis Research Fund: London, UK, 1988; pp. 68–69. [Google Scholar]
- Toyama, Y. An experimental study on the pathology and role of intervertebral discs in the progression and correction of scoliotic deformity. Nippon Seikeigeka Gakkai Zasshi 1988, 62, 777–789. [Google Scholar] [PubMed]
- Perie, D.; Curnier, D.; de Gauzy, J.S. Correlation between nucleus zone migration within scoliotic intervertebral discs and mechanical properties distribution within scoliotic vertebrae. Magn. Reson. Imaging 2003, 21, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Jobnstone, Β.; Bayliss, Μ.T. The extracellular matrix of the intervertebral disc: Proteoglycan biochemistry. In Lumbar Spine Disorders: Current Concepts; Aspden, R.M., Porter, Κ.W., Eds.; World Scientific: Singapore, 1995; pp. 51–62. [Google Scholar]
- Urban, J.P.; Maroudas, A.; Bayliss, M.T.; Dillon, J. Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology 1979, 16, 447–464. [Google Scholar] [CrossRef]
- Urban, J.P.G.; McMullin, J.F. The relationship between disc proteoglycan content and disc height. In Pathogenesis of Scoliosis. Proceedings of an International Conference; Jacobs, R.R., Ed.; Scoliosis Research Society: Chicago, IL, USA, 1984; pp. 127–138. [Google Scholar]
- Urban, J.P.; Maroudas, A. Swelling of the intervertebral disc in vitro. Conn. Tiss. Res. 1981, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Dangerfield, P.; Roberts, N.; Walker, J.; Betal, D.; Edwards, R.H.T. Investigation of the diurnal variation in the water content of the intervertebral disc using MRI and its implications for scoliosis. In The Three Dimensional Analysis of Spinal Deformities; D’Amico, M., Merolli, A., Santambrogio, G.C., Eds.; IOS Press: Amsterdam, The Netherlands, 1995; pp. 447–451. [Google Scholar]
- De Puky, P. The Physiological oscillation of the length of the body. Acta Orthop. Scand. 1935, 6, 338–347. [Google Scholar] [CrossRef]
- Czaprowski, D.; Tyrakowski, M.; Bloda, J.; Waś, J.; Dembińska, A.; Ewertowska, P.; Kotwicki, T. Diurnal variation of body height in children with idiopathic scoliosis. J. Back Musculoskelet. Rehabil. 2019, 32, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Gao, W.; Chen, C.; Wang, Q.; Lin, S.; Xu, C.; Huang, D.; Su, P. What is the Difference in Morphologic Features of the Thoracic Pedicle Between Patients with Adolescent Idiopathic Scoliosis and Healthy Subjects? A CT-based Case-control Study. Clin. Orthop. Relat. Res. 2017, 475, 2765–2774. [Google Scholar] [CrossRef]
- Hu, X.; Siemionow, K.B.; Lieberman, I.H. Thoracic and lumbar vertebrae morphology in Lenke type 1 female adolescent idiopathic scoliosis patients. Int. J. Spine Surg. 2014, 8, 30. [Google Scholar] [CrossRef]
- Sakti, Y.M.; Lanodiyu, Z.A.; Ichsantyaridha, M.; Wijanarko, S.; Filza, M.R.; Taufan, T.; Susanto, D.B.; Tampubolon, Y.O.; Baskara, A.A.N.N.; Nurshal, A.A.; et al. Pedicle morphometry analysis of main thoracic apex adolescent idiopathic scoliosis. BMC Surg. 2023, 23, 34. [Google Scholar] [CrossRef]
- Grivas, T.B. The Diurnal Variation “accordion”-like Phenomenon of Wedged Intervertebral Discs: A Progression Factor in Idiopathic Scoliosis. Ann. Pediatr. Child. Health 2021, 9, 1241. [Google Scholar]
- Grivas, T.B. Thorax and Idiopathic Scoliosis. Int. J. Adv. Res. 2023, 11, 1252–1290. [Google Scholar] [CrossRef]
- Bisgard, J.D. Thoracogenic scoliosis: Influence of thoracic disease and thoracic operation on the spine. Arch. Surg. 1934, 29, 417–445. [Google Scholar] [CrossRef]
- Grivas, T.B.; Jevtic, N.; Ljubojevic, D.; Pjanic, S.; Golic, F.; Vasiliadis, E. Segmental Rib Index and Spinal Deformity: Scoliogenic Implications. Healthcare 2023, 11, 3004. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, M.; Heliovaara, M.; Tallroth, K.; Poussa, M. Trunk asymmetry and scoliosis. Anthropometric measurements in prepubertal school children. Acta Paediatr. Scand. 1989, 78, 747–753. [Google Scholar] [CrossRef]
- Nissinen, M.; Heliovaara, M.; Seltsamo, J.; Poussa, M. Trunk Asymmetry, Posture, Growth, and Risk of Scoliosis. A Three-Year Follow-Up of Finnish Prepubertal School Children. Spine 1993, 18, 8–13. [Google Scholar] [CrossRef]
- Willner, S. Development of trunk asymmetries and structural scoliosis in prepubertal school children in Malmo: Follow up study of children 10-14 years of age. J. Pediatr. Orthop. 1984, 4, 452–455. [Google Scholar] [CrossRef]
- Willner, S. Moiré topography-A method for school screening of scoliosis. Arch. Orthrop. Traumat. Surg. 1979, 95, 181–185. [Google Scholar] [CrossRef]
- Willner, S. The efficiency of a combined clinical- moiré technique in school screening of scoliosis. In Moir Fringe Topography; Gustav Fischer: Stuttgart, Germany; New York, NY, USA, 1983; pp. 175–179. [Google Scholar]
- Grivas, T.B.; Burwell, R.G.; Kechagias, V.; Mazioti, C.; Fountas, A.; Kolovou, D.; Christodoulou, E. Idiopathic and normal lateral lumbar curves: Muscle effects interpreted by 12th rib length asymmetry with pathomechanic implications for lumbar idiopathic scoliosis. Scoliosis Spinal Disord. 2016, 11 (Suppl. 2), 35. [Google Scholar] [CrossRef]
- Grivas, T.B.; Vasiliadis, E.; Vynichakis, G.; Chandrinos, M.; Athanasopoulos, K.; Christodoulides, P. Why Is There Always a Remnant Rib Hump Deformity after Spinal Operations in Idiopathic Scoliosis: Aetiological Implications and Recognition of the Proper Rib Level for Costoplasty. Children 2023, 10, 1697. [Google Scholar] [CrossRef] [PubMed]
- Grivas, T.B.; Burwell, R.G.; Purdue, M.; Webb, J.K.; Moulton, A. Segmental patterns of rib-vertebra angles in chest radiographs of children: Changes related to rib level, age, sex, side and significance for scoliosis. Clin. Anat. 1992, 5, 272–288. [Google Scholar] [CrossRef]
- Grivas, T.B.; Burwell, R.G.; Purdue, M.; Webb, J.K. A segmental analysis of thoracic shape in chest radiographs of children. Changes related to spinal level age sex side and significance for scoliosis. J. Anat. 1991, 178, 21–38. [Google Scholar] [PubMed]
- Grivas, T.B.; Samelis, P.; Chadziargiropoulos, T.; Polyzois, B. Study of the rib cage deformity in children with 10 degrees-20 degrees of Cobb angle late onset idiopathic scoliosis, using rib-vertebra angles--aetiologic implications. Stud. Health Technol. Inform. 2002, 91, 20–24. [Google Scholar] [PubMed]
- Grivas, T.B.; Burwell, G.R.; Vasiliadis, E.S.; Webb, J.K. Scoliosis. A segmental radiological study of the spine and rib—Cage in children with progressive infantile idiopathic scoliosis. Scoliosis 2006, 1, 17. [Google Scholar] [CrossRef] [PubMed]
- Grivas, T.B.; Burwell, R.G.; Purdue, M.; Webb, J.K.; Moulton, A. The rib-cage deformity in infantile idiopathic scoliosis-the funnel-shaped upper chest in relation to specific rotation as a prognostic factor. An evaluation of thoracic shape in progressive scoliosis and control children during growth. In Surface Topography and Spinal Deformity VI; Alberty, A., Drerup, B., Hierholzer, E., Eds.; Gustav Fischer Verlag: Jena, Germany; New York, NY, USA, 1992; pp. 93–109. [Google Scholar]
- Grivas, T.B.; Burwell, R.G.; Webb, J.K. The funnel-shaped upper chest of progressive infantile idiopathic scoliosis (IIS): Significance for rib growth patterns, rib dysplasia and aetiology of the spinal deformity. Clin. Anat. 1991, 4, 73. [Google Scholar] [CrossRef]
- Sevastik, J.A.; Aaro, S.; Normelli, H. Scoliosis. Experimental and clinical studies. Clin. Orthop. Relat. Res. 1984, 191, 27–34. [Google Scholar] [CrossRef]
- Normelli, H.; Sevastik, J.; Wallberg, H. The thermal emission from the skin and the vascularity of the breasts in normal and scoliotic girls. Spine 1986, 11, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Sevastik, J.A.; Aaro, S.; Lindholm, S.T.; Dalhborn, M. Experimental scoliosis in growing rabbits by operations on the rib cage. Clin. Orthop. 1987, 136, 282–286. [Google Scholar]
- Agadir, M.; Sevastik, B.; Sevastik, J.A.; Persson, A.; Isberg, B. Induction of scoliosis in the growing rabbit by unilateral rib-growth stimulation. Spine 1988, 13, 1065–1069. [Google Scholar] [CrossRef]
- Normelli, H.; Sevastik, J.A.; Ljung, G.; Jönsson-Söderström, A.M. The symmetry of the breasts in normal and scoliotic girls. Spine 1986, 11, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Sevastik, J.; Agadir, M.; Sevastik, B. Effects of rib elongation on the spine: I. Distortion of the vertebral alignment in the rabbit. Spine 1990, 15, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Sevastik, J.; Agadir, M.; Sevastik, B. Effects of rib elongation on the spine: II. Correction of scoliosis in the rabbit. Spine 1990, 15, 826–829. [Google Scholar] [CrossRef] [PubMed]
- Agadir, M.; Sevastik, B.; Reinholt, F.P.; Perbeck, L.; Sevastik, J. Vascular Changes in the Chest Wall After Unilateral Resection of the Intercostal Nerves in the Growing Rabbit. J. Orthop. Res. 1990, 8, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Sevastik, B.; Xiong, B.; Lundberg, A.; Sevastik, J.A. In vitro opto-electronic analysis of 3-D segmental vertebral movements during gradual rib lengthening in the pig. Acta Orthop. Belg. 1995, 61, 218–225. [Google Scholar]
- Gréalou, L.; Aubin, C.E.; Sevastik, J.A.; Labelle, H. Simulations of rib cage surgery for the management of scoliotic deformities. Stud. Health Technol. Inform. 2002, 88, 345–349. [Google Scholar] [PubMed]
- Normelli, H.; Sevastik, J.; Ljung, G.; Aaro, S.; Jönsson-Söderström, A.M. Anthropometric data relating to normal and scoliotic Scandinavian girls. Spine 1985, 10, 123–126. [Google Scholar] [CrossRef]
- Sevastik, J.A. Right convex thoracic female adolescent scoliosis in the light of the thoracospinal concept. Stud. Health Technol. Inform. 2006, 123, 552–558. [Google Scholar]
- Xiong, B.; Sevastik, J.A. A physiological approach to surgical treatment of progressive early idiopathic scoliosis. Eur. Spine J. 1998, 7, 505–508. [Google Scholar] [CrossRef]
- Grivas, T.B.; Vynichakis, G.; Chandrinos, M.; Mazioti, C.; Papagianni, D.; Mamzeri, A.; Mihas, C. Morphology, Development and Deformation of the Spine in Mild and Moderate Scoliosis: Are Changes in the Spine Primary or Secondary? J. Clin. Med. 2021, 10, 5901. [Google Scholar] [CrossRef]
- Marie-Hardy, L.; Courtin, T.; Pascal-Moussellard, H.; Zakine, S.; Brice, A. The Whole-Exome Sequencing of a Cohort of 19 Families with Adolescent Idiopathic Scoliosis (AIS): Candidate Pathways. Genes 2023, 14, 2094. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.K.L.; Law, K.K.P.; Kwan, K.Y.H.; Cheung, J.P.Y.; Cheung, K.M.C. Proprioception-related gene mutations in relation to the aetiopathogenesis of idiopathic scoliosis: A scoping review. J. Orthop. Res. 2023, 41, 2694–2702. [Google Scholar] [CrossRef] [PubMed]
- AlMekkawi, A.K.; Caruso, J.P.; El Ahmadieh, T.Y.; Palmisciano, P.; Aljardali, M.W.; Derian, A.G.; Al Tamimi, M.; Bagley, C.A.; Aoun, S.G. Single Nucleotide Polymorphisms and Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis of the Literature. Spine 2023, 48, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Nada, D.; Julien, C.; Papillon-Cavanagh, S.; Majewski, J.; Elbakry, M.; Elremaly, W.; Samuels, M.E.; Moreau, A. Identification of FAT3 as a new candidate gene for adolescent idiopathic scoliosis. Sci. Rep. 2022, 12, 12298. [Google Scholar] [CrossRef]
- De Salvatore, S.; Ruzzini, L.; Longo, U.G.; Marino, M.; Greco, A.; Piergentili, I.; Costici, P.F.; Denaro, V. Exploring the association between specific genes and the onset of idiopathic scoliosis: A systematic review. BMC Med. Genom. 2022, 15, 115. [Google Scholar] [CrossRef] [PubMed]
- Ru, L.; Zheng, H.; Lian, W.; Zhao, S.; Fan, Q. Knowledge mapping of idiopathic scoliosis genes and research hotspots (2002–2022): A bibliometric analysis. Front. Pediatr. 2023, 11, 1177983. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Yeung, H.Y.; Chu, W.C.W.; Tang, N.L.S.; Lee, K.M.; Qiu, Y.; Burwell, R.G.; Cheng, J.C.Y. Top Theories for the Etiopathogenesis of Adolescent Idiopathic Scoliosis. J. Pediatr. Orthop. J. Pediatr. Orthop. 2011, 31, S14–S27. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, L.; Wang, X.; Yan, Z.; Yang, X.; Lin, M.; Liu, S.; Zuo, Y.; Niu, Y.; Zhao, S.; et al. Whole-Genome Methylation Analysis of Phenotype Discordant Monozygotic Twins Reveals Novel Epigenetic Perturbation Contributing to the Pathogenesis of Adolescent Idiopathic Scoliosis. Front. Bioeng. Biotechnol. 2019, 7, 364. [Google Scholar] [CrossRef] [PubMed]
- Wynne-Davies, R. Familial (idiopathic) scoliosis. A family survey. J. Bone Jt. Surg. Br. 1968, 50, 24–30. [Google Scholar] [CrossRef]
- Smyrnis, T.; Antoniou, D.; Valavanis, J.; Zachariou, C. Idiopathic scoliosis: Characteristics and epidemiology. Orthopedics 1987, 10, 921–926. [Google Scholar] [CrossRef]
- Kesling, K.L.; Reinker, K.A. Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine 1997, 22, 2009–2014, discussion 2015. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Minami, S.; Kitahara, H.; Otsuka, Y.; Nakata, Y.; Takaso, M.; Moriya, H. Idiopathic scoliosis in twins studied by DNA fingerprinting: The incidence and type of scoliosis. J. Bone Jt. Surg. Br. 1998, 80, 212–217. [Google Scholar] [CrossRef]
- Van Rhijn, L.W.; Jansen, E.J.; Plasmans, C.M.; Veraart, B.E. Curve characteristics in monozygotic twins with adolescent idiopathic scoliosis: 3 new twin pairs and a review of the literature. Acta Orthop. Scand. 2001, 72, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Fraga, M.F.; Ballestar, E.; Paz, M.F.; Ropero, S.; Setien, F.; Ballestar, M.L.; Heine-Suñer, D.; Cigudosa, J.C.; Urioste, M.; Benitez, J.; et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 2005, 102, 10604–10609. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.M. Epigenetic drift in aging identical twins. Proc. Natl. Acad. Sci. USA 2005, 102, 10413–10414. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.O.; Thomsen, K.; Kyvik, K.O. Adolescent idiopathic scoliosis in twins: A population-based survey. Spine 2007, 32, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Hermus, J.P.; van Rhijn, L.W.; van Ooij, A. Non-genetic expression of adolescent idiopathic scoliosis: A case report and review of the literature. Eur. Spine J. 2007, 16 (Suppl. 3), 338–341. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.H. Genetics of familial idiopathic scoliosis. Clin. Orthop. Relat. Res. 2007, 462, 6–10. [Google Scholar] [CrossRef]
- Kaspiris, A.; Grivas, T.B.; Weiss, H.R. Congenital scoliosis in monozygotic twins: Case report and review of possible factors contributing to its development. Scoliosis 2008, 3, 17. [Google Scholar] [CrossRef]
- Sales de Gauzy, J.; Ballouhey, Q.; Arnaud, C.; Grandjean, H.; Accadbled, F. Concordance for curve type in familial idiopathic scoliosis: A survey of one hundred families. Spine 2010, 35, 1602–1606. [Google Scholar] [CrossRef]
- Wong, C.C.; Caspi, A.; Williams, B.; Craig, I.W.; Houts, R.; Ambler, A.; Moffitt, T.E.; Mill, J. A longitudinal study of epigenetic variation in twins. Epigenetics 2010, 5, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Grauers, A.; Rahman, I.; Gerdhem, P. Heritability of scoliosis in the SwedishTwin Registry. Stud. Health Technol. Inform. 2010, 158, 194. [Google Scholar]
- Day, J.J.; Sweatt, J.D. Epigenetic mechanisms in cognition. Neuron 2011, 70, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Golding, J. Observations on idiopathic scoliosis: Aetiology and natural history in Jamaica—A food and growth connection. Cajanus 1991, 24, 31–38. [Google Scholar]
- Worthington, V.; Shambaugh, P. Nutrition as an environmental factor in the etiology of idiopathic scoliosis. J. Manip. Physiol. Ther. 1993, 16, 169–173. [Google Scholar]
- Enwonwu, C.O.; Sanders, C. Nutrition: Impact on oral and systemic health. Compend. Contin. Educ. Dent. 2001, 22, 12–18. [Google Scholar] [PubMed]
- Kaati, G.; Bygren, L.O.; Pembrey, M.; Sjöström, M. Transgenerational response to nutrition, early life circumstances and longevity. Eur. J. Hum. Genet. 2007, 15, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Van den Veyver, I.B. Genetic effects of methylation diets. Annu. Rev. Nutr. 2002, 22, 255–282. [Google Scholar] [CrossRef]
- Burwell, R. G: Aetiology of idiopathic scoliosis: Current concepts. Pediatr. Rehabil. 2003, 6, 137–170. [Google Scholar] [CrossRef]
- Burwell, R.G.; Dangerfield, P.H. Hypotheses on the pathogenesis of adolescent idiopathic scoliosis (AIS): A neurodevelopmental concept involving neuronal lipid peroidation and possible prevention by diet. In International Research Society of Spinal Deformities Symposium; Sawatzky, B.J., Ed.; University of British Columbia: Vancouver, BC, Canada, 2004; pp. 34–38. [Google Scholar]
- Bjornsson, H.T.; Fallin, M.D.; Feinberg, A.P. An integrated epigenetic and genetic approach to common human disease. Trends Genet. 2004, 20, 350–358. [Google Scholar] [CrossRef]
- Feinberg, A.P. Phenotypic plasticity and the epigenetics of human disease. Nature 2007, 447, 433–440. [Google Scholar] [CrossRef]
- Feinberg, A.P. Epigenetics at the epicenter of modern medicine. JAMA 2008, 299, 1345–1350. [Google Scholar] [CrossRef]
- Greene, N.D.; Stanier, P.; Moore, G.E. The emerging role of epigenetic mechanisms in the etiology of neural tube defects. Epigenetics 2011, 6, 875–883. [Google Scholar] [CrossRef]
- Ford, D.; Ions, L.J.; Alatawi, F.; Wakeling, L.A. The potential role of epigenetic responses to diet in ageing. Proc. Nutr. Soc. 2011, 70, 374–384. [Google Scholar] [CrossRef]
- Francis, R.C. A grandmother effect. In Epigenetics, the Ultimate Mystery of Inheritance; WW Norton & Company: New York, NY, USA, 2011; Volume 1, pp. 1–8. [Google Scholar]
- Hung, V.W.Y.; Qin, L.; Cheung, C.S.K.; Lam, T.P.; Ng, B.K.W.; Tse, Y.K.; Go, X.; Lee, K.M.; Cheng, J.C.Y. Osteopenia: A new prognostic factor of curve progression in adolescent idiopathic scoliosis. J. Bone Jt. Surg. Am. 2005, 87-A, 2709–2716. [Google Scholar]
- Lam, T.P.; Hung, V.W.; Yeung, H.Y.; Tse, Y.K.; Chu, W.C.; Ng, B.K.; Lee, K.M.; Qin, L.; Cheng, J.C. Abnormal bone quality in adolescent idiopathic scoliosis: A case-control study on 635 subjects and 269 normal controls with bone densitometry and quantitative ultrasound. Spine 2011, 36, 1211–1217. [Google Scholar] [CrossRef]
- Bagnall, K.M. Ligaments and muscles in adolescent idiopathic scoliosis. In Etiology of Adolescent Idiopathic Scoliosis: Current Trends and Relevance to New Treatment Approaches, State of the Art Reviews: Spine; Burwell, R.G., Dangerfield, P.H., Lowe, T.G., Margulies, J.Y., Eds.; Hanley: Philadelphia, PA, USA, 2000; pp. 447–457. [Google Scholar]
- McMaster, M.; Lee, A.J.; Burwell, R.G. Physical activities of patients with adolescent idiopathic scoliosis (AIS) compared with a control group: Implications for etiology and possible prevention. In International Research Society of Spinal Deformities Symposium; Sawatzky, B.J., Ed.; University of British Columbia: Vancouver, BC, Canada, 2004; pp. 68–71. [Google Scholar]
- McMaster, M.; Lee, A.J.; Burwell, R.G. Physical activities of patients with adolescent idiopathic scoliosis (AIS) compared with a control group: Implications for etiology and possible prevention [abstract]. J. Bone Jt. Surg. Br. 2006, 88-B (Suppl. II), 225. [Google Scholar]
- Grivas, T.B.; Vasiliadis, E.; Mouzakis, V.; Mihas, C.; Koufopoulos, G. Association between adolescent idiopathic scoliosis prevalence and age at menarche in different geographic latitudes. Scoliosis 2006, 23, 9. [Google Scholar] [CrossRef]
- Cárcamo, M.; Espinoza, P.; Rodas, M.; Urrejola, Ó.; Bettany-Saltikov, J.; Grivas, T.B. Prevalence, risk of progression and quality of life assessment in adolescents undergoing school screening for adolescent idopathic scoliosis. Andes Pediatr. 2023, 94, 78–85. [Google Scholar] [CrossRef]
- De George, F.V.; Fisher, R.L. Idiopathic scoliosis: Genetic and environmental aspects. J. Med. Genet. 1967, 4, 251–257. [Google Scholar] [CrossRef]
- James, J.I.P.; Wynne-Davies, R. Genetic factors in Orthopaedics. In Recent Advances in Orthopaedics; Apley, A.G., Ed.; Churchill: London, UK, 1969; Volume 1, pp. 1–35. [Google Scholar]
- Ryan, M.D.; Nachemson, A. Thoracic adolescent idiopathic scoliosis: Perinatal and environmental aspects in a Swedish population and their relationship to curve severity. J. Pediatr. Orthop. 1987, 7, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, B.T.; Tobi, E.W.; Lumey, L.H.; Slagboom, P.E. The epigenome: Archive of the prenatal environment. Epigenetics 2009, 4, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Grivas, T.B.; Kasartzian, A.; Mazioti, C.; Mihas, C.; Aggouris, C.; Triantafyllopoulos, G.; Dimitrakos, N.; Katsoulis, I. Study of back trunk asymmetry in children from three ethnic groups and correlation with their handedness. Scoliosis 2012, 7 (Suppl. 1), O74. [Google Scholar] [CrossRef]
- Grivas, T.B.; Mihas, C.; Mazioti, C.; Zisis, N.; Sakellaropoulou, S.; Akriotis, A.; Burwell, R.G. Maternal age at birth: Does it dictate the epigenotypic expression of the trunkal asymmetry of a child? Stud. Health Technol. Inform. 2012, 176, 36–42. [Google Scholar] [PubMed]
- McMaster, M.; Lee, A.J.; Burwell, R.G. Indoor heated swimming pools: Vulnerability of some infants to develop spinal asymmetries years later. Stud. Health Technol. Inform. 2006, 123, 151–155. [Google Scholar] [PubMed]
- Goldberg, C.J. Symmetry control. In Etiology of Adolescent Idiopathic Scoliosis: Current Trends and Relevance to New Treatment Approaches, State of the Art Reviews: Spine; Burwell, R.G., Dangerfield, P.H., Lowe, T.G., Margulies, J.Y., Eds.; Hanley: Philadelphia, PA, USA, 2000; Volume 14, pp. 327–328. [Google Scholar]
- Gluckman, P.D.; Hanson, M.A. The developmental origins of health and disease: An overview. In Developmental Mechanisms of Health and Disease; Gluckman, P., Hanson, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 1, pp. 1–5. [Google Scholar]
- Gluckman, P.D.; Hanson, M.A.; Beedle, A.S.; Buklijas, T.; Low, F.M. Epigenetics of human disease. In Epigenetics Linking Genotype and Phenotype in Development and Evolution; Hallgrimsson, B., Hall, B.K., Eds.; University of California Press: Berkeley, CA, USA, 2011; Volume 22, pp. 198–423. [Google Scholar]
- Grunstein, J.B.; Grivas, T.B. The aetiology of adolescent idiopathic scoliosis: Is sleep position the missing link? The nighttime perfect storm hypothesis. Int. J. Adv. Res. 2023, 11, 1187–1208. [Google Scholar] [CrossRef] [PubMed]
- Viroli, G.; Ruffilli, A.; Barile, F.; Manzetti, M.; Traversari, M.; Faldini, C. Pedicle Dysplasia in Proximal Thoracic Adolescent Idiopathic Scoliosis Curves: What are We Missing and What are its Possible Surgical Implications? An Observational Retrospective Study on 104 Patients. Glob. Spine J. 2024, 6, 21925682241230964. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.H. 1972. The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. J. Surg. Bone Jt. Br. 1972, 54, 230–243. [Google Scholar] [CrossRef]
- Dansereau, J.; Stokes, I.A.F.; Moreland, M.S. Radiographic reconstruction of 3D human rib cage. In Surface Topography and Spinal Deformity; Stokes, I.A.F., Pekelsky, J.R., Moreland, M.S., Eds.; Gustav Fischer: Stuttgart, Germany, 1987; pp. 67–76. [Google Scholar]
- Knott, P.; Liu, X.C. Eliminating 2D spinal assessments and embracing 3D and 4D: Clinical application of surface topography. Stud. Health Technol. Inform. 2021, 280, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.T.; Lai, K.K.; Cheng, J.C.; Castelein, R.M.; Lam, T.P.; Zheng, Y.P. Investigation of the Phenomenon of Coronal-Sagittal Curvature Coupling on Curve Progression: An Exploratory Study using 3-D Ultrasound. Ultrasound Med. Biol. 2021, 47, 2202–2212. [Google Scholar] [CrossRef]
- Plourde, F.; Cheriet, F.; Dansereau, J. Semiautomatic detection of scoliotic rib borders from posteroanterior chest radiographs. IEEE Trans. Biomed. Eng. 2012, 59, 909–919. [Google Scholar] [CrossRef]
- Banerjee, S.; Huang, Z.; Lyu, J.; Leung, F.H.F.; Lee, T.; Yang, D.; Zheng, Y.; McAviney, J.; Ling, S.H. Automatic Assessment of Ultrasound Curvature Angle for Scoliosis Detection Using 3-D Ultrasound Volume Projection Imaging. Ultrasound Med. Biol. 2024, 50, 647–660. [Google Scholar] [CrossRef]
- Cobb, J. Outline for the study of scoliosis. Instr. Course Lect. 1948, 5, 261–275. [Google Scholar]
- Perdriolle, R.J.; Vidal, J. Etudie de la courbure scoliotique. Importance de l’extension et de la rotation vertebrale. Rev. Chirurie Orthop. 1981, 67, 25–34. [Google Scholar]
- Perdriolle, R.J.; Vidal, J. Thoracic idiopathic scoliosis curve evolution and prognosis. Spine 1985, 10, 785–791. [Google Scholar] [CrossRef]
- Perdriolle, R.J.; Vidal, J.; Bechetti, S.; Alquier, P. Torsion: The essential factor for progression in idiopathic scoliosis. In Proceedings of the Combined Meeting of Scoliosis Research Society and European Spinal Deformities Society, Amsterdam, The Netherlands, 17–22 September 1989. [Google Scholar]
- Nash, C.L., Jr.; Moe, J.H. A study of vertebral rotation. J. Bone Jt. Surg Am. 1969, 51, 223–229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grivas, T.B.; Vasiliadis, E.; Mazioti, C.; Papagianni, D.; Mamzeri, A.; Chandrinos, M.; Vynichakis, G.; Athanasopoulos, K.; Christodoulides, P.; Jevtic, N.; et al. Are the Spinal Changes in the Course of Scoliogeny Primary but Secondary? J. Clin. Med. 2024, 13, 2163. https://doi.org/10.3390/jcm13082163
Grivas TB, Vasiliadis E, Mazioti C, Papagianni D, Mamzeri A, Chandrinos M, Vynichakis G, Athanasopoulos K, Christodoulides P, Jevtic N, et al. Are the Spinal Changes in the Course of Scoliogeny Primary but Secondary? Journal of Clinical Medicine. 2024; 13(8):2163. https://doi.org/10.3390/jcm13082163
Chicago/Turabian StyleGrivas, Theodoros B., Elias Vasiliadis, Christina Mazioti, Despina Papagianni, Aristea Mamzeri, Michail Chandrinos, George Vynichakis, Konstantinos Athanasopoulos, Paschalis Christodoulides, Nikola Jevtic, and et al. 2024. "Are the Spinal Changes in the Course of Scoliogeny Primary but Secondary?" Journal of Clinical Medicine 13, no. 8: 2163. https://doi.org/10.3390/jcm13082163
APA StyleGrivas, T. B., Vasiliadis, E., Mazioti, C., Papagianni, D., Mamzeri, A., Chandrinos, M., Vynichakis, G., Athanasopoulos, K., Christodoulides, P., Jevtic, N., Pjanic, S., Ljubojevic, D., Savvidou, O., Kaspiris, A., & Grunstein, J. (2024). Are the Spinal Changes in the Course of Scoliogeny Primary but Secondary? Journal of Clinical Medicine, 13(8), 2163. https://doi.org/10.3390/jcm13082163