Validation of the Novel Web-Based Application HUMTELEMED for a Comprehensive Assessment of Cardiovascular Risk Based on the 2021 European Society of Cardiology Guidelines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Individual CVR Stratification
2.3. Development of the Web App “www.humtelemed.it“
2.3.1. Frontend
2.3.2. Backend
2.4. Blood Pressure Measurement
2.5. Clinical and Laboratory Parameters
2.6. Statistical Analysis
3. Results
Agreement between Conventional CVR Assessment and www.humtelemed.it
4. Discussion
Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SCORE2 Working Group; ESC Cardiovascular Risk Collaboration. SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [Google Scholar] [CrossRef] [PubMed]
- SCORE2-OP Working Group; ESC Cardiovascular Risk Collaboration. SCORE2-OP risk prediction algorithms: Estimating incident cardiovascular event risk in older persons in four geographical risk regions. Eur. Heart J. 2021, 42, 2455–2467. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.; Steyn, N.; Rossouw, H.M.; Pillay, T.S. Best practice for LDL-cholesterol: When and how to calculate. J. Clin. Pathol. 2023, 76, 145–152. [Google Scholar] [CrossRef]
- Spannella, F.; Giulietti, F.; Fedecostante, M.; Ricci, M.; Balietti, P.; Cocci, G.; Landi, L.; Bonfigli, A.R.; Boemi, M.; Espinosa, E.; et al. Interarm blood pressure differences predict target organ damage in type 2 diabetes. J. Clin. Hypertens. 2017, 19, 472–478. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Brandts, J.; Bray, S.; Villa, G.; Catapano, A.L.; Poulter, N.R.; Vallejo-Vaz, A.J.; Ray, K.K. Optimal implementation of the 2019 ESC/EAS dyslipidaemia guidelines in patients with and without atherosclerotic cardiovascular disease across Europe: A simulation based on the DA VINCI study. Lancet Reg. Health Eur. 2023, 31, 100665. [Google Scholar] [CrossRef]
- van Trier, T.J.; Snaterse, M.; Hageman, S.H.J.; ter Hoeve, N.; Sunamura, M.; van Charante, E.P.M.; Galenkamp, H.; Deckers, J.W.; Martens, F.M.A.C.; Visseren, F.L.J.; et al. Unexploited potential of risk factor treatment in patients with atherosclerotic cardiovascular disease. Eur. J. Prev. Cardiol. 2023, 30, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Landolfo, M.; Allevi, M.; Spannella, F.; Giulietti, F.; Gezzi, A.; Sarzani, R. Cardiovascular Risk Assessment and Control in Outpatients Evaluated by 24-hour Ambulatory Blood Pressure and Different LDL-C Equations. High Blood Press. Cardiovasc. Prev. 2023, 30, 551–560. [Google Scholar] [CrossRef]
- Masana, L.; Plana, N.; Andreychuk, N.; Ibarretxe, D. Lipid lowering combination therapy: From prevention to atherosclerosis plaque treatment. Pharmacol. Res. 2023, 190, 106738. [Google Scholar] [CrossRef]
- Makhmudova, U.; Samadifar, B.; Maloku, A.; Haxhikadrija, P.; Geiling, J.-A.; Römer, R.; Lauer, B.; Möbius-Winkler, S.; Otto, S.; Schulze, P.C.; et al. Intensive lipid-lowering therapy for early achievement of guideline-recommended LDL-cholesterol levels in patients with ST-elevation myocardial infarction (“Jena auf Ziel”). Clin. Res. Cardiol. 2023, 112, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Laffin, L.J.; Rodman, D.; Luther, J.M.; Vaidya, A.; Weir, M.R.; Rajicic, N.; Slingsby, B.T.; Nissen, S.E.; Beasley, R.; Budoff, M.; et al. Aldosterone Synthase Inhibition with Lorundrostat for Uncontrolled Hypertension: The Target-HTN Randomized Clinical Trial. JAMA 2023, 330, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Sarzani, R.; Spannella, F.; Di Pentima, C.; Giulietti, F.; Landolfo, M.; Allevi, M. Molecular Therapies in Cardiovascular Diseases: Small Interfering RNA in Atherosclerosis, Heart Failure, and Hypertension. Int. J. Mol. Sci. 2024, 25, 328. [Google Scholar] [CrossRef] [PubMed]
- Naderi, S.H.; Bestwick, J.P.; Wald, D.S. Adherence to drugs that prevent cardiovascular disease: Meta-analysis on 376,162 patients. Am. J. Med. 2012, 125, 882–887.e881. [Google Scholar] [CrossRef] [PubMed]
- Lewinski, A.A.; Jazowski, S.A.; Goldstein, K.M.; Whitney, C.; Bosworth, H.B.; Zullig, L.L. Intensifying approaches to address clinical inertia among cardiovascular disease risk factors: A narrative review. Patient Educ. Couns. 2022, 105, 3381–3388. [Google Scholar] [CrossRef]
- Liew, S.M.; Lee, W.K.; Khoo, E.M.; Ismail, I.Z.; Ambigapathy, S.; Omar, M.; Suleiman, S.Z.; Saaban, J.; Zaidi, N.F.M.; Yusoff, H. Can doctors and patients correctly estimate cardiovascular risk? A cross-sectional study in primary care. BMJ Open 2018, 8, e017711. [Google Scholar] [CrossRef]
- Tuzzio, L.; O‘Meara, E.S.; Holden, E.; Parchman, M.L.; Ralston, J.D.; Powell, J.A.; Baldwin, L.-M. Barriers to Implementing Cardiovascular Risk Calculation in Primary Care: Alignment with the Consolidated Framework for Implementation Research. Am. J. Prev. Med. 2021, 60, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Haq, I.; Bilitou, A.; Manu, M.C.; Burden, A.; Aguiar, C.; Arca, M.; Connolly, D.L.; Eriksson, M.; Ferrières, J.; et al. Treatment gaps in the implementation of LDL cholesterol control among high- and very high-risk patients in Europe between 2020 and 2021: The multinational observational SANTORINI study. Lancet Reg. Health Eur. 2023, 29, 100624. [Google Scholar] [CrossRef]
- Morieri, M.L.; Lamacchia, O.; Manzato, E.; Giaccari, A.; Avogaro, A. Physicians’ misperceived cardiovascular risk and therapeutic inertia as determinants of low LDL-cholesterol targets achievement in diabetes. Cardiovasc. Diabetol. 2022, 21, 57. [Google Scholar] [CrossRef]
- Rossello, X.; Dorresteijn, J.A.; Janssen, A.; Lambrinou, E.; Scherrenberg, M.; Bonnefoy-Cudraz, E.; Cobain, M.; Piepoli, M.F.; Visseren, F.L.; Dendale, P.; et al. Risk prediction tools in cardiovascular disease prevention: A report from the ESC Prevention of CVD Programme led by the European Association of Preventive Cardiology (EAPC) in collaboration with the Acute Cardiovascular Care Association (ACCA) and the Association of Cardiovascular Nursing and Allied Professions (ACNAP). Eur. J. Prev. Cardiol. 2019, 26, 1534–1544. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; A Ajjan, R.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; Kaptoge, S.; Hageman, S.H.J.; Sang, Y.; Ballew, S.H.; E Grams, M.; Surapaneni, A.; Sun, L.; Arnlov, J.; Bozic, M.; et al. Including measures of chronic kidney disease to improve cardiovascular risk prediction by SCORE2 and SCORE2-OP. Eur. J. Prev. Cardiol. 2023, 30, 8–16. [Google Scholar] [CrossRef] [PubMed]
Cardiovascular Risk | |
---|---|
Low–Moderate |
|
High |
|
Very High |
|
All Participants (n = 1306) | Low–Moderate (n = 243) | High (n = 480) | Very High (n = 583) | p * | |
---|---|---|---|---|---|
Age (years) | 60.3 ± 12.0 | 50.3 ± 7.4 | 56.0 ± 9.3 | 67.9 ± 10.5 | <0.001 |
Sex (males) | 51.4% | 23.0% | 56.3% | 59.2% | <0.001 |
BMI (Kg/m2) | 28.3 ± 11.5 | 27.0 ± 5.0 | 28.3 ± 14.7 | 28.7 ± 10.2 | 0.238 |
WC (cm) | 99.1 ± 11.3 | 92.3 ± 10.8 | 98.6 ± 10.7 | 101.5 ± 11.1 | <0.001 |
Obesity (BMI ≥30 Kg/m2) | 32.2% | 26.5% | 33.2% | 33.3% | 0.197 |
DM | 12.6% | 2.9% | 3.1% | 24.8% | <0.001 |
Hypertension | 65.5% | 59.3% | 69.2% | 65.2% | 0.029 |
Smoking | 37.1% | 2.9% | 30.6% | 56.6% | <0.001 |
CKD (eGFR < 60 mL/min/1.73 m2) | 8.0% | 0.5% | 8.3% | 25.3% | <0.001 |
LLT | 34.3% | 16.0% | 22.3% | 52.0% | <0.001 |
Antihypertensives treatment | 45.4% | 49.8% | 50.4% | 39.5% | 0.001 |
SBP (mmHg) | 132.7 ± 15.3 | 125.7 ± 12.3 | 132.4 ± 14.4 | 135.8 ± 16.1 | <0.001 |
DBP (mmHg) | 78.5 ± 10.6 | 78.4 ± 9.2 | 81.1 ± 10.6 | 76.3 ± 10.7 | <0.001 |
eGFR (ml/min/1.73 m2) | 78.5 ± 19.5 | 82.3 ± 17.8 | 81.7 ± 18.7 | 71.9 ± 21.6 | <0.001 |
TC (mg/dL) | 194.1 ± 43.2 | 198.6 ± 31.9 | 204.8 ± 39.4 | 183.5 ± 47.7 | <0.001 |
HDL-C (mg/dL) | 54.9 ± 15.2 | 59.9 ± 16.1 | 55.2 ± 15.5 | 52.7 ± 14.0 | <0.001 |
TGs (mg/dL) | 104 (78–146) | 89 (65–132) | 102 (79–144) | 110 (84–156) | <0.001 |
LDL-C (mg/dL) | 123.3 ± 34.0 | 119.4 ± 24.6 | 132.9 ± 32.4 | 113.9 ± 38.7 | <0.001 |
www.humtelemed.it | ||||
---|---|---|---|---|
Cardiovascular Risk | Low–Moderate (n = 255) | High (n = 462) | Very High (n = 589) | |
Conventional Assessment | Low–Moderate (n = 243) | 240 (98.8%) | 2 (0.8%) | 1 (0.4%) |
High (n = 480) | 15 (3.1%) | 455 (94.8%) | 10 (2.1%) | |
Very High (n = 583) | 0 (0%) | 5 (0.9%) | 578 (99.1%) |
Subgroups | Kappa Statistics (p-Value) |
---|---|
Age ≥ 65 years (n = 480) | Kappa = 0.958 (p < 0.001) |
Age < 65 years (n = 826) | Kappa = 0.951 (p < 0.001) |
Males (n = 671) | Kappa = 0.963 (p < 0.001) |
Females (n = 635) | Kappa = 0.955 (p < 0.001) |
eGFR ≥ 60 mL/min/1.73 m2 (n = 1201) | Kappa = 0.971 (p < 0.001) |
eGFR < 60 mL/min/1.73 m2 (n = 105) | Kappa = 0.736 (p < 0.001) |
Diabetes mellitus + (n = 165) | Kappa = 0.862 (p < 0.001) |
Diabetes mellitus − (n = 1141) | Kappa = 0.962 (p < 0.001) |
Primary prevention (n = 1005) | Kappa = 0.952 (p < 0.001) |
Secondary prevention (n = 301) | Kappa = 0.985 (p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landolfo, M.; Spannella, F.; Gezzi, A.; Giulietti, F.; Sabbatini, L.; Bari, I.; Alessandroni, R.; Di Agostini, A.; Turri, P.; Alborino, F.; et al. Validation of the Novel Web-Based Application HUMTELEMED for a Comprehensive Assessment of Cardiovascular Risk Based on the 2021 European Society of Cardiology Guidelines. J. Clin. Med. 2024, 13, 2295. https://doi.org/10.3390/jcm13082295
Landolfo M, Spannella F, Gezzi A, Giulietti F, Sabbatini L, Bari I, Alessandroni R, Di Agostini A, Turri P, Alborino F, et al. Validation of the Novel Web-Based Application HUMTELEMED for a Comprehensive Assessment of Cardiovascular Risk Based on the 2021 European Society of Cardiology Guidelines. Journal of Clinical Medicine. 2024; 13(8):2295. https://doi.org/10.3390/jcm13082295
Chicago/Turabian StyleLandolfo, Matteo, Francesco Spannella, Alessandro Gezzi, Federico Giulietti, Lucia Sabbatini, Isabella Bari, Romina Alessandroni, Angelica Di Agostini, Paolo Turri, Francesco Alborino, and et al. 2024. "Validation of the Novel Web-Based Application HUMTELEMED for a Comprehensive Assessment of Cardiovascular Risk Based on the 2021 European Society of Cardiology Guidelines" Journal of Clinical Medicine 13, no. 8: 2295. https://doi.org/10.3390/jcm13082295
APA StyleLandolfo, M., Spannella, F., Gezzi, A., Giulietti, F., Sabbatini, L., Bari, I., Alessandroni, R., Di Agostini, A., Turri, P., Alborino, F., Scoppolini Massini, L., & Sarzani, R. (2024). Validation of the Novel Web-Based Application HUMTELEMED for a Comprehensive Assessment of Cardiovascular Risk Based on the 2021 European Society of Cardiology Guidelines. Journal of Clinical Medicine, 13(8), 2295. https://doi.org/10.3390/jcm13082295