Phenotypic Characterization of Patients with Polycystic Ovary Syndrome in a Population from the Ecuadorian Andes: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Data Collection and Participants
2.4. Inclusion and Exclusion Criteria
- Irregular cycles or ovulatory dysfunction:
- -
- Oligo-amenorrhea: cycles < 21 days > 35 days;
- -
- Less than eight menstrual cycles in a year;
- -
- Amenorrhea > 90 days with pregnancy previously ruled.
- Clinical and/or biochemical hyperandrogenism:
- -
- Clinical data: hirsutism, androgenetic alopecia, acne (dichotomously as presence or absence);
- -
- Biochemical data: elevation of calculated total and free testosterone and/or other androgens (A4, DHEAS).
- Polycystic ovarian morphology (at least in one of the two ovaries):
- -
- Antral follicular count ≥ 20, counting all follicles from 2 to 9 mm in each ovary in absence of follicular cyst or corpus luteum;
- -
- Ovarian volume > 10 mL.
2.5. Variables
- -
- Phenotypic: Four clinical phenotypes of the disease have been identified, each with clinical implications regarding severity. Phenotype A is called “classical” or complete and consists of three criteria: hyperandrogenism, oligo-ovulation, and polycystic ovarian morphology. Phenotype B, also called “classic”, has hyperandrogenism and oligo-ovulation. Both phenotypes A and B have a more severe clinical and metabolic impact. Phenotype C is called “ovulatory”, characterized by hyperandrogenism and polycystic ovarian morphology, and phenotype D, “non-hyperandrogenic”, is composed of oligo-ovulation and polycystic ovarian morphology and is less severe [3].
- -
- Sociodemographic: Age (years of age); ethnic origin (indigenous, Afro-Ecuadorian/Afro-descendant/black/mulatto/montubio/mestizo/white/other); marital status (single, married, widowed, divorced, free union); origin (urban/rural); educational level (none/early education/general primary education/high school/high school/higher education); and socioeconomic level were evaluated using the INEC survey.
- -
- -
- Metabolic: Laboratory tests were considered extracted by a blood sample from each participant collected in vacutainer vacuum tubes without anticoagulant after fasting for 12 h taken from the antecubital vein and analyzed the same day in the hospital’s ISO 9001-certified laboratory: total cholesterol (mg/dL) ≥ 200 was abnormal; triglycerides (mg/dL) ≥ 150 was abnormal; HDL (mg/dL) ≥ 60 was abnormal; LDL (mg/dL) ≥ 160 was abnormal (based on Adult Treatment Panel III guidelines); ALT (IU/L) ≥ 33 was abnormal; AST (IU/L) ≥ 32 was abnormal; total bilirubin (mg/dL) ≥ 1.3 was abnormal; direct bilirubin (mg/dL) ≥ 0.30 was abnormal; indirect (mg/dL) ≥ 0.80 was abnormal; uric acid (mg/dL) ≥ 5.8 was abnormal; glucose (mg/dL) ≥ 126 was abnormal; HOMA-IR homeostasis assessment model ≥ 2.8 was abnormal; glycosylated hemoglobin HbA1C ≥ 6.5% was abnormal; insulin (mg/dL) ≥ 25.1 was abnormal [22].
- -
- Reproductive: Dehydroepiandrosterone (DHEAS) (µg/dL) ≥ 430 was abnormal; total testosterone (ng/mL) ≥ 0.482 was abnormal; free testosterone %, 17-OH progesterone(ng/mL) ≥ 1.4 was abnormal; androstenedione A4 (ng/mL) ≥ 3.9 was abnormal; free androgen index was calculated using the formula testosterone (nmol)/SHBG (nmol) × 100, considering ≥ 10% abnormal (13); anti-Müllerian hormone ≥ 2.5 was abnormal; sex cell-binding globulin SHBG (nmol/L) < 18 or ≥114.1 was abnormal; luteinizing hormone (LH) (mIU/L) ≥ 11.7 was abnormal; follicle stimulating hormone (FSH) (mIU/L) ≥ 12.5 was abnormal. Laboratory tests had to be at the follicular stage (3rd to 5th) day of menstruation in patients with amenorrhea at any period of the menstrual cycle and ultrasound after menstruation.
- -
- Ultrasound: The ultrasound was performed by a radiologist of the Hospital UTPL—Santa Inés between the second and third days of the menstrual cycle to determine the number of antral follicles and volume. To be considered with polycystic ovarian morphology (positive), women of the sample had to have ≥20 follicles in one or both ovaries, measuring between 2 and 9 mm, and a total ovarian volume ≥ 10 cc. If a simple cyst, complex cyst, dominant follicle > 10 mm, or corpus luteum was detected, the ultrasound should be repeated in the next cycle.
2.6. Statistical Analysis
2.7. Ethical Aspects
3. Results
3.1. Sociodemographic Characteristics of the Participants
3.2. Clinical Features Associated with the Different PCOS Phenotypes
3.3. Metabolic Profile of the Participants
3.4. Reproductive Profile of the Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charifson, M.A.; Trumble, B.C. Evolutionary Origins of Polycystic Ovary Syndrome: An Environmental Mismatch Disorder. Evol. Med. Public Health 2019, 2019, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Robin, G.; Peigne, M.; Dumont, A.; Plouvier, P.; Rolland, A.-L.; Catteau-Jonard, S.; Dewailly, D. Síndrome de Ovarios Poliquísticos. EMC-Ginecol.-Obstet. 2020, 56, 1–18. [Google Scholar] [CrossRef]
- Ortiz-Flores, A.E.; Luque-Ramírez, M.; Escobar-Morreale, H.F. Polycystic Ovary Syndrome in Adult Women. Med. Clin. 2019, 152, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Kintziger, K.; Li, R.; Laven, J.; Morin-Papunen, L.; Merkin, S.S.; Teede, H.; Yildiz, B.O. Recommendations for Epidemiologic and Phenotypic Research in Polycystic Ovary Syndrome: An Androgen Excess and PCOS Society Resource. Hum. Reprod. 2019, 34, 2254–2265. [Google Scholar] [CrossRef] [PubMed]
- Dietz de Loos, A.L.P.; Jiskoot, G.; Timman, R.; Beerthuizen, A.; Busschbach, J.J.V.; Laven, J.S.E. Improvements in PCOS Characteristics and Phenotype Severity during a Randomized Controlled Lifestyle Intervention. Reprod. Biomed. Online 2021, 43, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Dapas, M.; Dunaif, A. The Contribution of Rare Genetic Variants to the Pathogenesis of Polycystic Ovary Syndrome. Curr. Opin. Endocr. Metab. Res. 2020, 12, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Vanhauwaert, P.S. Síndrome de Ovario Poliquístico e Infertilidad Polycystic Ovary Syndrome and Infertility. Rev. Clín. Las Condes. 2021, 32, 166–172. [Google Scholar] [CrossRef]
- Siddiqui, S.; Mateen, S.; Ahmad, R.; Moin, S. A Brief Insight into the Etiology, Genetics, and Immunology of Polycystic Ovarian Syndrome (PCOS). J. Assist. Reprod. Genet. 2022, 39, 2439–2473. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, G.; Kandaraki, E.A.; Garidou, A.; Koutsaki, M.; Papalou, O.; Diamanti-Kandarakis, E.; Peppa, M. Tailoring Treatment for PCOS Phenotypes. Expert Rev. Endocrinol. Metab. 2021, 16, 9–18. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Al-Kaabi, L.S.; Al-Abdulla, N.M.; Al-Kuwari, M.S.; Al-Mulla, A.A.; Al-Shamari, R.S.; Alhusban, A.K.; AlNajjar, A.A.; Doi, S.A.R. Clinical Phenotypes of PCOS: A Cross-Sectional Study. Reprod. Sci. 2023, 30, 3261–3272. [Google Scholar] [CrossRef]
- Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, Prevalence, and Phenotypes of Polycystic Ovary Syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Bozdag, G.; Mumusoglu, S.; Zengin, D.; Karabulut, E.; Yildiz, B.O. The Prevalence and Phenotypic Features of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Hum. Reprod. 2016, 31, 2841–2855. [Google Scholar] [CrossRef] [PubMed]
- Squicciarini, V.; Riquelme, R.; Wilsterman, K.; Bentley, G.E.; Lara, H.E. Role of RFRP-3 in the development of cold stress-induced polycystic ovary phenotype in rats. J. Endocrinol. 2018, 239, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Marchesan, L.B.; Ramos, R.B.; Spritzer, P.M. Metabolic Features of Women With Polycystic Ovary Syndrome in Latin America: A Systematic Review. Front. Endocrinol. 2021, 12, 759835. [Google Scholar] [CrossRef] [PubMed]
- Dapas, M.; Lin, F.T.J.; Nadkarni, G.N.; Sisk, R.; Legro, R.S.; Urbanek, M.; Geoffrey Hayes, M.; Dunaif, A. Distinct Subtypes of Polycystic Ovary Syndrome with Novel Genetic Associations: An Unsupervised, Phenotypic Clustering Analysis. PLoS Med. 2020, 17, e1003132. [Google Scholar] [CrossRef]
- Puttabyatappa, M.; Cardoso, R.C.; Padmanabhan, V. Effect of Maternal PCOS and PCOS-like Phenotype on the Offspring’s Health. Mol. Cell. Endocrinol. 2016, 435, 29–39. [Google Scholar] [CrossRef]
- Jiménez, M.; Iturrieta, V.; Aguilera, G.; Cárcamo, G.; Galvez, L.; Valdés, P. Características Clínicas y Metabólicas de Síndrome de Ovario Poliquístico En La Ciudad de Temuco. Rev. Chil. Endocrinol. Diabetes 2014, 7, 85–88. [Google Scholar]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; Andersen, M.; Azziz, R.; et al. Recommendations from the International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef]
- Teede, H.J.; Tay, C.T.; Laven, J.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Fertil. Steril. 2023, 120, 767–793. [Google Scholar] [CrossRef]
- Rodrigo Carvajal, G.; Cristian Herrera, G.; Arnaldo Porcile, J. Espectro Fenotípico Del Síndrome de Ovario Poliquístico. Rev. Chil. Obstet. Ginecol. 2010, 75, 124–132. [Google Scholar] [CrossRef]
- Bajares, D.M.; Pizzi, R. Tratamiento basado en el fenotipo. Rev. Obstet. Ginecol. Venez. 2016, 76, S93–S96. [Google Scholar]
- Morgante, G.; Darino, I.; Spanò, A.; Luisi, S.; Luddi, A.; Piomboni, P.; Governini, L.; De Leo, V. PCOS Physiopathology and Vitamin D Deficiency: Biological Insights and Perspectives for Treatment. J. Clin. Med. 2022, 11, 4509. [Google Scholar] [CrossRef] [PubMed]
- Instituto Ecuatoriano de Estadísticas y Censos del Ecuador. Encuesta de Estratificación Del Nivel Socioeconómico NSE. 2011. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Sociales/Encuesta_Estratificacion_Nivel_Socioeconomico/111220_NSE_Presentacion.pdf (accessed on 15 March 2023).
- INEC. Censo Población y Vivienda 2010. Fasciculo Provincial Loja. Ecuad. Cifras 2010, 1, 1–8. [Google Scholar]
- Carmona-Ruiz, I.O.; Saucedo-de la Llata, E.; Moraga-Sánchez, M.R.; Romeu-Sarrió, A. Síndrome de Ovario Poliquístico: ¿Ha Aumentado Su Prevalencia? Ginecol. Obstet. Mex. 2015, 83, 750–759. [Google Scholar] [PubMed]
- Tavares, A.; Rêgo Barros, R.C. The Prevalence of Metabolic Syndrome in the Different Phenotypes of Polycystic Ovarian Syndrome. Rev. Bras. Ginecol. Obstet. 2019, 41, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ladrón De Guevara, A.; Fux-Otta, C.; Crisosto, N.; Szafryk De Mereshian, P.; Echiburú, B.; Iraci, G.; Perez-Bravo, F.; Sir-Petermann, T. Metabolic Profile of the Different Phenotypes of Polycystic Ovary Syndrome in Two Latin American Populations. Fertil. Steril. 2014, 101, 1732–1739. [Google Scholar] [CrossRef] [PubMed]
- Daan, N.M.P.; Louwers, Y.V.; Koster, M.P.H.; Eijkemans, M.J.C.; De Rijke, Y.B.; Lentjes, E.W.G.; Fauser, B.C.J.M.; Laven, J.S.E. Cardiovascular and Metabolic Profiles amongst Different Polycystic Ovary Syndrome Phenotypes: Who Is Really at Risk? Fertil. Steril. 2014, 102, 1444–1451.e3. [Google Scholar] [CrossRef]
- Yang, R.; Li, Q.; Zhou, Z.; Qian, W.; Zhang, J.; Wu, Z.; Jin, L.; Wu, X.; Zhang, C.; Zheng, B.; et al. Changes in the Prevalence of Polycystic Ovary Syndrome in China over the Past Decade. Lancet Reg. Health-West. Pacific 2022, 25, 100494. [Google Scholar] [CrossRef]
- Singh, P.; Barbieri, J.S.; James, W.D.; Thiboutot, D. Letter to the Editor from Singh et al: “Female Adult Acne and Androgen Excess: A Report from the Multidisciplinary Androgen Excess and PCOS Committee”. J. Endocr. Soc. 2022, 6, bvac156. [Google Scholar] [CrossRef]
- Krentowska, A.; Łebkowska, A.; Jacewicz-Święcka, M.; Hryniewicka, J.; Leśniewska, M.; Adamska, A.; Kowalska, I. Metabolic Syndrome and the Risk of Cardiovascular Complications in Young Patients with Different Phenotypes of Polycystic Ovary Syndrome. Endocrine 2021, 72, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Krentowska, A.; Kowalska, I. Metabolic Syndrome and Its Components in Different Phenotypes of Polycystic Ovary Syndrome. Diabetes Metab. Res. Rev. 2022, 38, e3464. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, L.; Aquino, E.M.L. Polycystic Ovary Syndrome in Salvador, Brazil: A Prevalence Study in Primary Healthcare. Reprod. Biol. Endocrinol. 2012, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Goldenberg, N. Characteristics of Obesity in Polycystic Ovary Syndrome: Etiology, Treatment, and Genetics. Metabolism 2019, 92, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.S.; Alalaf, S.K.; Al-Tawil, N.G.; Al-Shawaf, T. A Case-Control Observational Study of Insulin Resistance and Metabolic Syndrome among the Four Phenotypes of Polycystic Ovary Syndrome Based on Rotterdam Criteria Female Fertility. Reprod. Health 2015, 12, 7. [Google Scholar] [CrossRef]
- Butt, M.S.; Saleem, J.; Aiman, S.; Zakar, R.; Sadique, I.; Fischer, F. Serum Anti-Müllerian Hormone as a Predictor of Polycystic Ovarian Syndrome among Women of Reproductive Age. BMC Womens Health 2022, 22, 199. [Google Scholar] [CrossRef]
Biodemographic Variables | Total (n = 92) | Phenotypes A + B (n = 69) | Phenotypes C + D (n = 23) | p-Value |
---|---|---|---|---|
Age in years (mean ± SD) | 22 ± 3.4 | 22.6 ± 3.8 | 23.6 ± 5.4 | 0.168 |
Ethnic origin (nº and %) | ||||
Mestiza | 90 (97.8) | 67 (98.5) | 23 (95.8) | 0.456 |
White | 2 (2.2) | 1 (1.5) | 1 (4.2) | |
Origin (nº and %) | ||||
Urban | 88 (95.7) | 67 (98.5) | 21 (87.5) | 0.053 |
Rural | 4 (4.3) | 1 (1.5) | 3 (12.5) | |
Marital status (nº and %) | ||||
Single | 87 (94.6) | 64 (94.1) | 23 (95.8) | 0.835 |
Married | 4 (4.3) | 3 (4.4) | 1 (4.2) | |
Widowed | 1 (1.1) | 1 (1.5) | 0 (0.0) | |
Educational level (nº and %) | ||||
High school | 4 (4.3) | 3 (4.4) | 1 (4.2) | 0.722 |
Higher | 88 (95.7) | 65 (95.6) | 23 (95.8) | |
Socioeconomic level (nº and %) | ||||
High | 16 (23.2) | 13 (25) | 3 (17.6) | 0.904 |
Medium high | 36 (52.2) | 27 (51.9) | 9 (52.9) | |
Typical medium | 13 (18.8) | 9 (17.3) | 4 (23.5) | |
Low middle | 4 (5.8) | 3 (5.8) | 1 (5.9) |
Clinical Variables | Total (%) | Phenotypes A + B n (%) | Phenotypes C + D n (%) | OR | IC 95% |
---|---|---|---|---|---|
Oligomenorrhea * | 78 (85.7) | 66 (97.1) | 12 (52.2) | 30.3 | 5.9; 153.9 |
Hirsutism | 61 (78.2) | 45 (78.9) | 16 (76.2) | 1.2 | 0.4; 3.8 |
Acne | 74 (87.1) | 56 (88.9) | 18 (81.8) | 1.8 | 0.4; 6.8 |
Alopecía | 22 (25.3) | 14 (21.2) | 8 (38.1) | 0.4 | 0.2; 1.3 |
Acanthosis nigricans | 40 (48.2) | 31 (50.0) | 9 (42.9) | 1.3 | 0.5; 3.6 |
Polycystic ovaries ultrasound volume ≥ 10 cc | 65 (86.7) | 44 (83.0) | 21 (95.5) | 0.2 | 0.1; 1.9 |
Metabolic Variables | Total (%) | Phenotypes A + B n (%) | Phenotypes C + D n (%) | OR | IC 95% |
---|---|---|---|---|---|
BMI ≥ 25.0 | 29 (34.1) | 24 (38.1) | 5 (22.7) | 2.1 | 0.7; 6.4 |
Waist-to-height/ratio ≥ 0.49 | 45 (60.0) | 36 (63.2) | 9 (50.0) | 1.7 | 0.6; 4.9 |
Waist–hip/ratio ≥ 0.86 | 30 (40.5) | 22 (40.0) | 8 (42.1) | 0.9 | 0.3; 2.6 |
Total Cholesterol ≥ 200 mg/dL | 25 (34.2) | 19 (33.9) | 6 (35.3) | 0.9 | 0.3; 2.9 |
Triglycerides ≥ 150 mg/dL * | 21 (29.2) | 20 (36.4) | 1 (5.9) | 9.1 | 1.1; 74.2 |
LDL ≥ 160.1 mg/dL | 21 (30.0) | 16 (29.6) | 5 (31.3) | 0.9 | 0.3; 3.1 |
ALT ≥ 33 U/L | 17 (24.3) | 14 (25.9) | 3 (18.8) | 1.4 | 0.3; 5.6 |
AST ≥ 32 U/L | 11 (15.7) | 8 (14.8) | 3 (18.8) | 0.8 | 0.2; 3.3 |
Direct bilirubin ≥ 0.30 mg/dL | 6 (9.7) | 4 (8.2) | 2 (15.4) | 0.5 | 0.1; 3.0 |
Uric acid ≥ 5.8 mg/dL | 8 (10.3) | 6 (10.9) | 2 (8.7) | 1.3 | 0.2; 6.7 |
HOMA-IR ≥ 2.8 | 49 (59.0) | 37 (59.7) | 12 (57.1) | 1.1 | 0.4; 3.0 |
Insulin ≥ 25.1 uUI/mL | 13 (15.5) | 12 (19.0) | 1 (4.8) | 4.7 | 0.6–38.6 |
Blood pressure > 120/80 mm/Hg | 42 (50.0) | 32 (51.6) | 10 (45.5) | 1.3 | 0.5–3.4 |
Vitamin D < 20 ng/dL | 31 (43.7) | 25 (43.9) | 6 (42.9) | 1.1 | 0.3–3.4 |
Metabolic Variables | Normal Range | Phenotypes A + B Mean (SD) | Phenotypes C + D Mean (SD) | p-Value |
---|---|---|---|---|
Total cholesterol (mg/dL) | 50–200 | 189.9 (36.3) | 183.3 (29.1) | 0.497 |
Triglycerides (mg/dL) | 50–200 | 130.8 (69.0) | 89.7 (34.2) | 0.021 |
LDL (mg/dL) | 110.0–160.0 | 114.2 (30.1) | 115.3 (34.1) | 0.907 |
ALT (U/L) | 0.0–32.0 | 27.2 (34.6) | 24.6 (22.3) | 0.776 |
AST (U/L) | 0.0–33.0 | 27.8 (22.8) | 26.1 (32.6) | 0.813 |
Direct bilirubin (mg/dL) | 0.0–0.30 | 0.2 (0.2) | 0.2 (0.1) | 0.668 |
Uric acid (mg/dL) | 2.4–5.7 | 4.7 (0.9) | 4.3 (1.3) | 0.084 |
HOMA-IR | 2.1–2.7 | 4.2 (3.1) | 3.1 (1.9) | 0.145 |
Insulin (uUI/mL) | 2.6–25 | 17.3 (11.3) | 12.7 (7.5) | 0.093 |
Glucose (mg/dL) | 70–115 | 95.3 (11.2) | 91.9 (9.9) | 0.199 |
HBA1C (%) | 4.8–6.0 | 5.4 (0.3) | 5.1 (0.2) | 0.001 |
Vitamin D (ng/dL) | 20–160 | 26.1 (15.3) | 26.7 (22.1) | 0.900 |
Reproductive Variables | Total (%) | Phenotypes A + B (%) | Phenotypes C + D (%) | OR | IC 95% |
---|---|---|---|---|---|
DHEAS ≥ 430 µg/dL | 6 (7.7) | 5 (8.3) | 1 (5.6) | 1.5 | 0.2–14.2 |
Total testosterone ≥ 0.482 ng/mL | 45 (48.9) | 37 (54.4) | 8 (33.3) | 2.4 | 0.9–6.3 |
17-OH progesterone ≥ 1.4 ng/mL | 37 (51.4) | 32 (57.1) | 5 (31.3) | 2.9 | 0.9–9.6 |
Androstenedione ≥ 3.9 ng/mL | 22 (29.3) | 17 (29.3) | 5 (29.4) | 1.0 | 0.3–3.2 |
LH (follicular phase) ≥ 11.7 mUI/mL | 30 (40.0) | 25 (44.6) | 5 (26.3) | 2.3 | 0.7–7.1 |
SHBG < 18 nmol/L | 14 (16.3) | 11 (17.2) | 3 (13.6) | 0.8 | 0.2–3.0 |
Free androgen index(FAI) ≥ 10% | 11 (13.9) | 10 (16.7) | 1 (5.3) | 3.6 | 0.4–30.1 |
AMH ≥ 2.5 ng/mL | 51 (91.1) | 41 (93.2) | 10 (83.3) | 3.4 | 0.2–65.8 |
Reproductive Variables | Normal Range | Phenotypes A + B Mean (SD) | Phenotypes C + D Mean (SD) | p-Value |
---|---|---|---|---|
DHEAS (µg/dL) | 35.0–430.0 | 262.9 (217.5) | 243.9 (141.9) | 0.727 |
Total testosterone (ng/mL) | 0.084–0.481 | 0.5 (0.2) | 0.4 (0.2) | 0.062 |
17-OH progesterone (ng/mL) | 0.2–1.3 | 1.7 (1.1) | 1.5 (1.3) | 0.497 |
Androstenedione (ng/mL) | 0.3–3.3 | 3.2 (1.4) | 3.1 (1.6) | 0.983 |
LH (follicular phase) (mUI/mL) | 1.1–11.6 | 12.5 (9.2) | 9.7(3.9) | 0.196 |
FSH (follicular phase) (mUI/mL) | 3.50–12.50 | 4.9 (2.2) | 5.1 (1.9) | 0.808 |
SHBG (nmol/L) | 18.0–114.0 | 73.1 (66.5) | 73.8 (81.8) | 0.970 |
Free androgen index (FAI) % | 5–10 | 3.2 (2.9) | 1.9 (1.4) | 0.070 |
AMH (ng/mL) | 1.22–11.27 | 5.9 (3.2) | 3.9 (1.5) | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, M.E.; Sánchez, R.; Otzen, T.; Bautista-Valarezo, E.; Aguiar, S.; Corrales-Gutierrez, I.; Leon-Larios, F.; Manterola, C. Phenotypic Characterization of Patients with Polycystic Ovary Syndrome in a Population from the Ecuadorian Andes: A Cross-Sectional Study. J. Clin. Med. 2024, 13, 2376. https://doi.org/10.3390/jcm13082376
Espinosa ME, Sánchez R, Otzen T, Bautista-Valarezo E, Aguiar S, Corrales-Gutierrez I, Leon-Larios F, Manterola C. Phenotypic Characterization of Patients with Polycystic Ovary Syndrome in a Population from the Ecuadorian Andes: A Cross-Sectional Study. Journal of Clinical Medicine. 2024; 13(8):2376. https://doi.org/10.3390/jcm13082376
Chicago/Turabian StyleEspinosa, María Elena, Raúl Sánchez, Tamara Otzen, Estefanía Bautista-Valarezo, Stephanie Aguiar, Isabel Corrales-Gutierrez, Fatima Leon-Larios, and Carlos Manterola. 2024. "Phenotypic Characterization of Patients with Polycystic Ovary Syndrome in a Population from the Ecuadorian Andes: A Cross-Sectional Study" Journal of Clinical Medicine 13, no. 8: 2376. https://doi.org/10.3390/jcm13082376
APA StyleEspinosa, M. E., Sánchez, R., Otzen, T., Bautista-Valarezo, E., Aguiar, S., Corrales-Gutierrez, I., Leon-Larios, F., & Manterola, C. (2024). Phenotypic Characterization of Patients with Polycystic Ovary Syndrome in a Population from the Ecuadorian Andes: A Cross-Sectional Study. Journal of Clinical Medicine, 13(8), 2376. https://doi.org/10.3390/jcm13082376