The Association of Desert Dust with the Risk of Acute Coronary Syndrome in Subjects of a Younger Age
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Air Quality and Meteorological Variables
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Patients with ACS under 55 Years of Age
3.3. Patients with ACS over 55 Years of Age
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benito Lozano, M.; Rodríguez, S. La imperiosa necesidad de programar la asistencia a urgencias, atendiendo al cambio climático y las crisis de calidad del aire. Rev. Esp. Urg. Emerg. 2023, 2, 194–1977. [Google Scholar]
- Rodríguez, S.; Cuevas, E.; Prospero, J.M.; Alastuey, X.; Querol, J.; López-Solano, M.; García, I.; Alonso-Pérez, S. Modulation of Saharan dust export by the North African dipole. Atmos. Chem. Phys. 2015, 15, 7471–7486. [Google Scholar]
- Dominguez-Rodriguez, A.; Rodríguez, S.; Baez-Ferrer, N.; Abreu-Gonzalez, P.; Abreu-Gonzalez, J.; Avanzas, P.; Carnero, M.; Moris, C.; López-Darias, J.; Hernández-Vaquero, D. Impact of Saharan dust exposure on airway inflammation in patients with ischemic heart disease. Transl. Res. 2020, 224, 16–25. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, A.; Báez-Ferrer, N.; Abreu-González, P.; Rodríguez, S.; Díaz, R.; Avanzas, P.; Hernández-Vaquero, D. Impact of Desert Dust Events on the Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.D.; Gong, R.; Xu, J.S.; Zhang, S.Y.; Wu, Y.Q. Clinical Characteristics and Outcomes of Chinese Patients with Premature Acute Coronary Syndrome. Int. Heart J. 2023, 64, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rodríguez, A.; Rodríguez, S.; Baez-Ferrer, N.; Avanzas, P.; Abreu-González, P.; Silva, J.; Morís, C.; Hernández-Vaquero, D. Impact of Saharan dust on the incidence of acute coronary syndrome. Rev. Esp. Cardiol. 2021, 74, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.; Haustein, K.; Janjic, Z.; Jorba, O.; Huneeus, N.; Baldasano, J.M.; Black, T.; Basart, S.; Nickovic, S.; Miller, R.L.; et al. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model—Part 1: Model description, annual simulations and evaluation. Atmos. Chem. Phys. 2011, 11, 13001–13027. [Google Scholar] [CrossRef]
- Lu, Y.; Zeger, S.L. On the equivalence of case-crossover and time series methods in environmental epidemiology. Biostatistics 2007, 8, 337–344. [Google Scholar] [CrossRef]
- Armstrong, B.G.; Gasparrini, A.; Tobias, A. Conditional Poisson models: A flexible alternative to conditional logistic case cross-over analysis. BMC Med. Res. Methodol. 2014, 14, 122. [Google Scholar] [CrossRef]
- Bhaskaran, K.; Gasparrini, A.; Hajat, S.; Smeeth, L.; Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 2013, 42, 1187–1195. [Google Scholar] [CrossRef]
- Bañeras, J.; Iglesies-Grau, J.; Téllez-Plaza, M.; Arrarte, V.; Báez-Ferrer, N.; Benito, B.; Campuzano Ruiz, R.; Cecconi, A.; Domínguez-Rodríguez, A.; Rodríguez-Sinovas, A.; et al. Environment and cardiovascular health: Causes, consequences and opportunities in prevention and treatment. Rev. Esp. Cardiol. 2022, 75, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Hahad, O.; Sørensen, M.; Lelieveld, J.; Duerr, G.D.; Nieuwenhuijsen, M.; Daiber, A. Environmental risk factors and cardiovascular diseases: A comprehensive expert review. Cardiovasc. Res. 2022, 118, 2880–2902. [Google Scholar] [CrossRef] [PubMed]
- Kojima, S.; Michikawa, T.; Ueda, K.; Ueda, K.; Sakamoto, T.; Matsui, K.; Kojima, T.; Tsujita, K.; Ogawa, H.; Nitta, H.; et al. Asian dust exposure triggers acute myocardial infarction. Eur. Heart J. 2017, 38, 3202–3208. [Google Scholar] [CrossRef] [PubMed]
- Vodonos, A.; Friger, M.; Katra, I.; Krasnov, H.; Zahger, D.; Schwartz, J.; Novack, V. Individual Effect Modifiers of Dust Exposure Effect on Cardiovascular Morbidity. PLoS ONE 2015, 10, e0137714. [Google Scholar] [CrossRef] [PubMed]
- de Longueville, F.; Ozer, P.; Doumbia, S.; Henry, S. Desert dust impacts on human health: An alarming worldwide reality and a need for studies in West Africa. Int. J. Biometeorol. 2013, 57, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bañeras, J.; Ferreira-González, I.; Marsal, J.R.; Barrabés, J.A.; Ribera, A.; Lidón, R.M.; Domingo, E.; Martí, G.; García-Dorado, D. Short-term exposure to air pollutants increases the risk of ST elevation myocardial infarction and of infarct-related ventricular arrhythmias and mortality. Int. J. Cardiol. 2018, 250, 35–42. [Google Scholar] [CrossRef]
- Robertson, S.; Miller, M.R. Ambient air pollution and thrombosis. Part Fibre Toxicol. 2018, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Jiang, Y.; Hu, J.; Chen, H.; Li, H.; Meng, X.; Ji, J.; Gao, Y.; Wang, W.; Liu, C.; et al. Hourly Air Pollutants and Acute Coronary Syndrome Onset in 1.29 Million Patients. Circulation 2022, 145, 1749–1760. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, S.; Kumar, M.; Singh, L.; Bolan, N.S.; Saha, M. Microplastics as an emerging source of particulate air pollution: A critical review. J. Hazard Mater. 2021, 418, 126245. [Google Scholar] [CrossRef]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- Zeger, S.L.; Thomas, D.; Dominici, F.; Samet, J.M.; Schwartz, J.; Dockery, D.; Cohen, A. Exposure measurement error in time-series studies of air pollution: Concepts and consequences. Environ. Health Perspect. 2000, 108, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rodríguez, A.; Avanzas, P.; Báez-Ferrer, N.; Abreu-González, P.; Rodríguez, S.; Matos-Castro, S.; Hernández-Vaquero, D. Rationale and Design of the Impact of Air Pollution due to DESERT Dust in Patients with HEART Failure (DESERT HEART). J. Clin. Med. 2023, 12, 4990. [Google Scholar] [CrossRef] [PubMed]
Variable | Under 55 Years N = 686 | Over 55 Years N = 1730 | p-Value |
---|---|---|---|
Age (years) | 48.9 ± 5 | 69.9 ± 9 | <0.001 |
Women | 131 (19.1%) | 518 (29.9%) | <0.001 |
Arterial hypertension | 285 (41.6%) | 1257 (72.7%) | <0.001 |
Dyslipidemia | 333 (48.6%) | 1067 (61.7%) | <0.001 |
Diabetes | 129 (18.8%) | 754 (43.6%) | <0.001 |
Asthma | 24 (3.5%) | 58 (3.4%) | 0.9 |
Chronic obstructive pulmonary disease | 10 (1.5%) | 122 (7.1%) | <0.001 |
Chronic kidney disease | 12 (1.8%) | 243 (14.1%) | <0.001 |
Previously known coronary disease | 108 (15.8%) | 566 (32.7%) | <0.001 |
Supraventricular arrhythmia | 3 (0.4%) | 146 (8.4%) | <0.001 |
Acute myocardial infarction | 438 (63.9%) | 912 (52.8%) | <0.001 |
Left ventricular dysfunction | 124 (18.1%) | 439 (25.4%) | <0.001 |
Killip class | <0.001 | ||
I | 648 (94.5%) | 1423 (82.3%) | |
II | 12 (1.8%) | 146 (8.5%) | |
III | 2 (0.3%) | 46 (2.7%) | |
IV | 24 (3.5%) | 113 (6.5%) | |
Coronary artery lesions | <0.001 | ||
No lesions | 43 (6.4%) | 135 (8.4%) | |
Single-vessel disease | 409 (60.5%) | 639 (39.7%) | |
Two-vessel disease | 158 (23.4%) | 442 (27.5%) | |
Three-vessel disease | 66 (9.8%) | 394 (24.5%) | |
Troponin I peak (ng/mL) | 26.6 ± 29.7 | 21.2 ± 27.7 | <0.001 |
Percutaneous transluminal coronary angioplasty treatment | 552 (80.5%) | 1090 (63.1%) | <0.001 |
Surgical treatment | 33 (4.8%) | 137 (7.9%) | 0.01 |
In-hospital mortality | 9 (1.3%) | 120 (6.9%) | <0.001 |
One-year mortality among the survivors | 3 (0.4%) | 15 (0.9%) | 0.43 |
Day | No ACS/Day N = 1246 | 1 ACS/Day N = 481 | 2 ACS/Day N = 83 | 3 ACS/Day N = 13 | p-Value |
---|---|---|---|---|---|
Day of admission PM10 (μg/m3) | 21.5 ± 23.4 | 21.5 ± 22.2 | 20.6 ± 18.7 | 14.3 ± 7.8 | 0.71 |
1 Day before PM10 (μg/m3) | 21.3 ± 21.2 | 21.4 ± 25.8 | 24 ± 28.1 | 16.2 ± 10.7 | 0.62 |
2 Days before PM10 (μg/m3) | 20.8 ± 19.2 | 22.6 ± 29.3 | 24.4 ± 29.2 | 16.6 ± 11.3 | 0.24 |
3 Days before PM10 (μg/m3) | 21.3 ± 21.6 | 21.7 ± 26.9 | 20.4 ± 13.2 | 17.2 ± 13.4 | 0.87 |
4 Days before PM10 (μg/m3) | 21.7 ± 24.2 | 20.6 ± 20.3 | 19.8 ± 12.9 | 20.8 ± 14.4 | 0.75 |
5 Days before PM10 (μg/m3) | 21.6 ± 23.8 | 20.8 ± 21.2 | 20.6 ± 16.1 | 19.2 ± 15 | 0.89 |
Atmospheric Variable | IRR (95% CI) |
---|---|
PM10 (μg/m3) | 1.1 (95% CI 0.8–1.52) |
PM2.5–10 (μg/m3) | 0.84 (95% CI 0.55–1.29) |
PM2.5 (μg/m3) | 1.01 (95% CI 0.82–1.24) |
SO2 (μg/m3) | 1.01 (95% CI 0.91–1.1) |
NO2 (μg/m3) | 1.03 (95% CI 0.98–1.1) |
O3 (μg/m3) | 1 (95% CI 0.99–1.01) |
Temperature (°C) | 1 (95% CI 0.89–1.1) |
Humidity (%) | 1 (95% CI 0.99–1) |
Day | No ACS/Day N = 723 | 1 ACS/Day N = 646 | 2 ACS/Day N = 321 | 3 or More ACS/Day N = 134 | p-Value |
---|---|---|---|---|---|
Day of admission PM10 (μg/m3) | 22.1 ± 25.9 | 20.4 ± 19.3 | 22.2 ± 24.2 | 20.4 ± 15.5 | 0.84 |
1 Day before PM10 (μg/m3) | 22.5 ± 25.8 | 21.1 ± 22.7 | 20.9 ± 14.7 | 18.1 ± 21.12 | 0.64 |
2 Days before PM10 (μg/m3) | 22 ± 22.8 | 20.8 ± 22.4 | 21.4 ± 23.9 | 21.8 ± 23.4 | 0.89 |
3 Days before PM10 (μg/m3) | 21.9 ± 22.4 | 20.5 ± 21.6 | 22 ± 26.4 | 20.7 ± 23.1 | 0.85 |
4 Days before PM10 (μg/m3) | 21.1 ± 20.9 | 21.3 ± 22.4 | 22 ± 26.8 | 21.1 ± 25.7 | 0.99 |
5 Days before PM10 (μg/m3) | 21.4 ± 24.4 | 20.5 ± 19.5 | 22.2 ± 24.9 | 23.9 ± 25.9 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Rodríguez, A.; Baéz-Ferrer, N.; Avanzas, P.; Rodríguez, S.; Abreu-González, P.; Trujillo-Martin, E.; Burillo-Putze, G.; Hernández-Vaquero, D. The Association of Desert Dust with the Risk of Acute Coronary Syndrome in Subjects of a Younger Age. J. Clin. Med. 2024, 13, 2392. https://doi.org/10.3390/jcm13082392
Domínguez-Rodríguez A, Baéz-Ferrer N, Avanzas P, Rodríguez S, Abreu-González P, Trujillo-Martin E, Burillo-Putze G, Hernández-Vaquero D. The Association of Desert Dust with the Risk of Acute Coronary Syndrome in Subjects of a Younger Age. Journal of Clinical Medicine. 2024; 13(8):2392. https://doi.org/10.3390/jcm13082392
Chicago/Turabian StyleDomínguez-Rodríguez, Alberto, Néstor Baéz-Ferrer, Pablo Avanzas, Sergio Rodríguez, Pedro Abreu-González, Elisa Trujillo-Martin, Guillermo Burillo-Putze, and Daniel Hernández-Vaquero. 2024. "The Association of Desert Dust with the Risk of Acute Coronary Syndrome in Subjects of a Younger Age" Journal of Clinical Medicine 13, no. 8: 2392. https://doi.org/10.3390/jcm13082392
APA StyleDomínguez-Rodríguez, A., Baéz-Ferrer, N., Avanzas, P., Rodríguez, S., Abreu-González, P., Trujillo-Martin, E., Burillo-Putze, G., & Hernández-Vaquero, D. (2024). The Association of Desert Dust with the Risk of Acute Coronary Syndrome in Subjects of a Younger Age. Journal of Clinical Medicine, 13(8), 2392. https://doi.org/10.3390/jcm13082392