Role of IL-6, IL-10 and TNFα Gene Variants in Preterm Birth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Blood Sampling and Analysis
2.3. Statistical Analysis
3. Results
3.1. Statistical Analysis of Demographic Characteristics of Cases and Controls
3.2. Statistical Analysis of Genotype and Allele Distribution of Three SNPs of Genes IL-10, IL-6 and TNFα in Various Inheritance Models between Cases and Controls
3.3. Statistical Analysis of Linkage Disequilibrium (LD) and Haplotypes Analysis of Three SNPs of Genes IL-10, IL-6 and TNFα
3.4. Prediction of Probability for PTB by Bivariate and Multivariate Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. Born Too Soon: The Global Action Report on Preterm Birth. 2014. Available online: https://iris.who.int/bitstream/handle/10665/44864/9789241503433_eng.pdf?sequence=1 (accessed on 8 March 2024).
- Quinn, J.A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm Birth: Case Definition & Guidelines for Data Collection, Analysis, and Presentation of Immunisation Safety Data. Vaccine 2016, 34, 6046–6056. [Google Scholar] [CrossRef]
- Ohuma, E.O.; Moller, A.-B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, Regional, and Global Estimates of Preterm Birth in 2020, with Trends from 2010: A Systematic Analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Ðelmiš, J.; Juras, J.; Rodin, U. Perinatalni Mortalitet u Republici Hrvatskoj u 2015. Godini. Gynaecol. Perinatol. 2016, 24 (Suppl. 1), 3–18. [Google Scholar]
- Wen, S.W.; Smith, G.; Yang, Q.; Walker, M. Epidemiology of Preterm Birth and Neonatal Outcome. Semin. Fetal Neonatal Med. 2004, 9, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Swaggart, K.A.; Pavlicev, M.; Muglia, L.J. Genomics of Preterm Birth. Cold Spring Harb. Perspect. Med. 2015, 5, a023127. [Google Scholar] [CrossRef] [PubMed]
- York, T.P.; Eaves, L.J.; Lichtenstein, P.; Neale, M.C.; Svensson, A.; Latendresse, S.; Långström, N.; Strauss, J.F. Fetal and Maternal Genes’ Influence on Gestational Age in a Quantitative Genetic Analysis of 244,000 Swedish Births. Am. J. Epidemiol. 2013, 178, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Boyd, H.A.; Poulsen, G.; Wohlfahrt, J.; Murray, J.C.; Feenstra, B.; Melbye, M. Maternal Contributions to Preterm Delivery. Am. J. Epidemiol. 2009, 170, 1358. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.K.; Rinaldi, S.F.; Norman, J.E.; Stock, S.J. Preterm Birth: Inflammation, Fetal Injury and Treatment Strategies. J. Reprod. Immunol. 2017, 119, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, S.F.; Hutchinson, J.L.; Rossi, A.G.; Norman, J.E. Anti-Inflammatory Mediators as Physiological and Pharmacological Regulators of Parturition. Expert. Rev. Clin. Immunol. 2011, 7, 675–696. [Google Scholar] [CrossRef]
- Seematter, G.; Binnert, C.; Martin, J.L.; Tappy, L. Relationship between Stress, Inflammation and Metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 169–173. [Google Scholar] [CrossRef]
- Osman, I.; Young, A.; Ledingham, M.A.; Thomson, A.J.; Jordan, F.; Greer, I.A.; Norman, J.E. Leukocyte Density and Pro-inflammatory Cytokine Expression in Human Fetal Membranes, Decidua, Cervix and Myometrium before and during Labour at Term. Mol. Hum. Reprod. 2003, 9, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Barata, H.; Thompson, M.; Zielinska, W.; Han, Y.S.; Mantilla, C.B.; Prakash, Y.S.; Feitoza, S.; Sieck, G.; Chini, E.N. The Role of Cyclic-ADP-Ribose-Signaling Pathway in Oxytocin-Induced Ca2+ Transients in Human Myometrium Cells. Endocrinology 2004, 145, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Törnblom, S.A.; Klimaviciute, A.; Byström, B.; Chromek, M.; Brauner, A.; Ekman-Ordeberg, G. Non-Infected Preterm Parturition Is Related to Increased Concentrations of IL-6, IL-8 and MCP-1 in Human Cervix. Reprod. Biol. Endocrinol. 2005, 3, 39. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.; Hwang, J. Progesterone Interactions with the Cervix: Translational Implications for Term and Preterm Birth. Infect. Dis. Obstet. Gynecol. 2011, 2011, 13. [Google Scholar] [CrossRef]
- Belfer, I.; Buzas, B.; Hipp, H.; Dean, M.; Evans, C.; Lorincz, I.; Max, M.B.; Goldman, D. Haplotype Structure of Inflammatory Cytokines Genes (IL1B, IL6 and TNF/LTA) in US Caucasians and African Americans. Genes Immun. 2004, 5, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Zare-Bidaki, M.; Sadrinia, S.; Erfani, S.; Afkar, E.; Ghanbarzade, N. Antimicrobial Properties of Amniotic and Chorionic Membranes: A Comparative Study of Two Human Fetal Sacs. J. Reprod. Infertil. 2017, 18, 218. [Google Scholar]
- Keelan, J.A. Pharmacological Inhibition of Inflammatory Pathways for the Prevention of Preterm Birth. J. Reprod. Immunol. 2011, 88, 176–184. [Google Scholar] [CrossRef]
- Romero, R.; Espinoza, J.; Gonçalves, L.F.; Kusanovic, J.P.; Friel, L.; Hassan, S. The Role of Inflammation and Infection in Preterm Birth. Semin. Reprod. Med. 2007, 25, 21–39. [Google Scholar] [CrossRef]
- Velez, D.R.; Fortunato, S.J.; Williams, S.M.; Menon, R. Interleukin-6 (IL-6) and Receptor (IL6-R) Gene Haplotypes Associate with Amniotic Fluid Protein Concentrations in Preterm Birth. Hum. Mol. Genet. 2008, 17, 1619–1630. [Google Scholar] [CrossRef]
- Menon, R.; Fortunato, S.J.; Edwards, D.R.V.; Williams, S.M. Association of Genetic Variants, Ethnicity, and Preterm Birth with Amniotic Fluid Cytokine Concentrations. Ann. Hum. Genet. 2010, 74, 165–183. [Google Scholar] [CrossRef]
- Velez, D.R.; Fortunato, S.; Thorsen, P.; Lombardi, S.J.; Williams, S.M.; Menon, R. Spontaneous Preterm Birth in African Americans Is Associated with Infection and Inflammatory Response Gene Variants. Am. J. Obstet. Gynecol. 2009, 200, 209-e1. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Velez, D.R.; Simhan, H.; Ryckman, K.; Jiang, L.; Thorsen, P.; Vogel, I.; Jacobsson, B.; Merialdi, M.; Williams, S.M.; et al. Multilocus Interactions at Maternal Tumor Necrosis Factor-α, Tumor Necrosis Factor Receptors, Interleukin-6, and Interleukin-6 Receptor Genes Predict Spontaneous Preterm Labor in European-American Women. Am. J. Obstet. Gynecol. 2006, 194, 1616–1624. [Google Scholar] [CrossRef]
- Harper, M.; Lilly Zheng, S.; Thom, E.; Klebanoff, M.A.; Thorp, J.; Sorokin, Y.; Varner, M.W.; Iams, J.D.; Dinsmoor, M.; Mercer, B.M.; et al. Cytokine Gene Polymorphisms and Length of Gestation. Obstet. Gynecol. 2011, 117, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Lyubomirskaya, E.S.; Kamyshnyi, A.M.; Krut, Y.Y.; Smiianov, V.A.; Fedoniuk, L.Y.; Romanyuk, L.B.; Kravets, N.Y.; Mochulska, O.M. Snps and Transcriptional Activity of Genes of Innate and Adaptive Immunity at the Maternal-Fetal Interface in Woman with Preterm Labour, Associated with Preterm Premature Rupture of Membranes. IRZSMU 2020, 73, 25–30. [Google Scholar] [CrossRef]
- Pandey, M.; Awasthi, S.; Singh, U.; Mahdi, A.A. Association of IL-10 Gene Polymorphism (−819C > T, −592C > A and −1082G > A) with Preterm Birth. Indian. J. Pediatr. 2018, 85, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Nuk, M.; Orendi, K.; Rosenberger, S.; Griesbacher, A.; Holzapfel-Bauer, M.; Resch, B.; Lang, U.; Pertl, B. Genetic Variations in Fetal and Maternal Tumor Necrosis Factor-α and Interleukin 10: Is There an Association with Preterm Birth or Periventricular Leucomalacia? J. Perinatol. 2011, 32, 27–32. [Google Scholar] [CrossRef]
- Stonek, F.; Metzenbauer, M.; Hafner, E.; Philipp, K.; Tempfer, C. Interleukin 6–174 G/C Promoter Polymorphism and Pregnancy Complications: Results of a Prospective Cohort Study in 1626 Pregnant Women. Am. J. Reprod. Immunol. 2008, 59, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Amory, J.H.; Adams, K.M.; Lin, M.T.; Hansen, J.A.; Eschenbach, D.A.; Hitti, J. Adverse Outcomes after Preterm Labor Are Associated with Tumor Necrosis Factor-α Polymorphism −863, but Not −308, in Mother-Infant Pairs. Am. J. Obstet. Gynecol. 2004, 191, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Lee, N.R.; Kim, H.J.; Kang, Y.D.; Kim, J.S.; Park, J.W.; Jin, H.J. Association between the IL-6, IL-10 and TNFα Gene Polymorphisms and Preterm-Birth in Korean Women. Genes Genom. 2020, 42, 743–750. [Google Scholar] [CrossRef]
- Liang, M.; Wang, X.; Li, J.; Yang, F.; Fang, Z.; Wang, L.; Hu, Y.; Chen, D. Association of Combined Maternal-Fetal TNF-α Gene G308A Genotypes with Preterm Delivery: A Gene-Gene Interaction Study. J. Biomed. Biotechnol. 2010, 2010, 396184. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Verdi, H.; Taneri, A.; Yazici, A.C.; Ecevit, A.N.; Karakaş, N.M.; Tarcan, A.; Haberal, A.; Ozbek, N.; Atac, F.B. Maternal–Fetal Proinflammatory Cytokine Gene Polymorphism and Preterm Birth. DNA Cell Biol. 2012, 31, 92–97. [Google Scholar] [CrossRef]
- Sayaril, N.A.; Bhat, R.S.; Warsy, A.S.; Babay, Z.A.; Addar, M.H.; Shaik, J.; Al-Marry, B.; Al-Daihan, S. Polymorphisms in Proinflammatory Cytokine Genes, Effect on Gene Expression and Association with Preterm Delivery in Saudi Females. Cell Mol. Biol. 2018, 64, 55–60. [Google Scholar] [CrossRef]
- Andalas, M.; Hakimi, M.; Nurdiati, D.S.; Astuti, I.; Imran, I.; Harapan, H. Association of -308G/A TNF-α Gene Polymorphism and Spontaneous Preterm Birth in Acehnese Ethnic Group, Indonesia: This Polymorphism Is Not Associated with Preterm Birth. Egypt. J. Med. Hum. Genet. 2016, 17, 33–40. [Google Scholar] [CrossRef]
- Bitner, A.; Kalinka, J. IL-1β, IL-6 Promoter, TNF-α Promoter, and IL-1RA Gene Polymorphisms and the Risk of Preterm Delivery Due to Preterm Premature Rupture of Membranes in a Population of Polish Women. Arch. Med. Sci. 2010, 6, 552–557. [Google Scholar] [CrossRef]
- Jones, N.M.; Holzman, C.; Mph, D.; Friderici, K.H.; Jernigan, K.; Chung, H.; Wirth, J.; Fisher, R.; Jones, N. Interplay of Cytokine Polymorphisms and Bacterial Vaginosis in the Etiology of Preterm Delivery. J. Reprod. Immunol. 2010, 87, 82–89. [Google Scholar] [CrossRef]
- Jafarzadeh, L.; Danesh, A.; Sadeghi, M.; Heybati, F.; Hashemzadeh, M. Analysis of Relationship between Tumor Necrosis Factor Alpha Gene (G308A Polymorphism) with Preterm Labor. Int. J. Prev. Med. 2013, 4, 896. [Google Scholar]
- Mattar, R.; De Souza, E.; Daher, S. Preterm Delivery and Cytokine Gene Polymorphisms. J. Reprod. Med. 2006, 51, 317–320. [Google Scholar]
- Ramos, B.R.d.A.; Mendes, N.D.; Tanikawa, A.A.; Amador, M.A.T.; dos Santos, N.P.C.; dos Santos, S.E.B.; Castelli, E.C.; Witkin, S.S.; da Silva, M.G. Ancestry Informative Markers and Selected Single Nucleotide Polymorphisms in Immunoregulatory Genes on Preterm Labor and Preterm Premature Rupture of Membranes: A Case Control Study. BMC Pregnancy Childbirth 2016, 16, 30. [Google Scholar] [CrossRef]
- GeneCards Human Gene Database. Available online: https://www.genecards.org/ (accessed on 9 March 2024).
- Macones, G.A.; Parry, S.; Elkousy, M.; Clothier, B.; Ural, S.H.; Strauss, J.F. A Polymorphism in the Promoter Region of TNF and Bacterial Vaginosis: Preliminary Evidence of Gene-Environment Interaction in the Etiology of Spontaneous Preterm Birth. Am. J. Obstet. Gynecol. 2004, 190, 1504–1508. [Google Scholar] [CrossRef]
- Moura, E.; Mattar, R.; de Souza, E.; Torloni, M.R.; Gonçalves-Primo, A.; Daher, S. Inflammatory Cytokine Gene Polymorphisms and Spontaneous Preterm Birth. J. Reprod. Immunol. 2009, 80, 115–121. [Google Scholar] [CrossRef]
- Mobini, M.; Mortazavi, M.; Nadi, S.; Zare-Bidaki, M.; Pourtalebi, S.; Kazemi Arababadi, M.; Arababadi, K.M. Significant Roles Played by Interleukin-10 in Outcome of Pregnancy. Iran. J. Basic. Med. Sci. 2016, 19, 119–124. [Google Scholar] [PubMed]
- Turner, D.M.; Williams, D.M.; Sankaran, D.; Lazarus, M.; Sinnott, P.J.; Hutchinson, I.V. An Investigation of Polymorphism in The Interleukin-10 Gene Promoter. Eur. J. Immunogenet. 1997, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Luppi, P.; Tse, H.; Lain, K.Y.; Markovic, N.; Piganelli, J.D.; DeLoia, J.A. Preeclampsia Activates Circulating Immune Cells with Engagement of the NF-ΚB Pathway. Am. J. Reprode Immunol. 2006, 56, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Blondel, B.; Morin, I.; Platt, R.W.; Kramer, M.S.; Usher, R.; Bréart, G. Algorithms for Combining Menstrual and Ultrasound Estimates of Gestational Age: Consequences for Rates of Preterm and Postterm Birth. BJOG 2002, 109, 718–720. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Liu, J.B.; Liu, X.; Qian, L.X. Association of Interleukin 10 Rs1800896 Polymorphism with Susceptibility to Breast Cancer: A Meta-Analysis. J. Int. Med. Res. 2020, 48, 0300060520904863. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Sun, J.; Chen, Y. Preterm Birth and Single Nucleotide Polymorphisms in Cytokine Genes. Transl. Pediatr. 2014, 3, 12034–12134. [Google Scholar] [CrossRef]
- Jie, P.; Wei-yue, Z. Relationship among TNF-Alpha Gene Promoter -308 Site Polymorphism, the Levels of Maternal Serum TNF-Alpha, and the MRNA Expression Placental TNF-Alpha in Preterm Labor. J. Sichuan Univ. 2009, 40, 77–80. [Google Scholar]
- Drews-Piasecka, E.; Seremak-Mrozikiewicz, A.; Barlik, M.; Kurzawińska, G.; Wolski, H.; Woyciechowska, A.; Czerny, B.; Drews, K. The Significance of TNF-α Gene Polymorphisms in Preterm Delivery. Ginekol. Pol. 2014, 85, 428–434. [Google Scholar] [CrossRef]
- Chen, D.; Hu, Y.; Wu, B.; Chen, L.; Fang, Z.; Yang, F.; Wang, L. Tumor Necrosis Factor-Alpha Gene G308A Polymorphism Is Associated with the Risk of Preterm Delivery. J. Peking. Univ. Health Sci. 2003, 35, 377–381. [Google Scholar]
- Wagner, J.; Štibi, S.; Selak, N.; Alvir, I.; Mamić, I.; Marcelić, L.; Šušnjar, L.; Puljiz, M.; Heffer, M.; Danolić, D. Interleukin 10 Rs1800896 and Interleukin 1B Rs16944 Polymorphisms and the Risk of Cervical Cancer. Wien. Med. Wochenschr. 2023, 173, 57–61. [Google Scholar] [CrossRef]
- Khorrami, S.; Zamani, H.; Hasanzadeh, M.; Mehramiz, M.; Soleimani, A.; Zare Marzouni, H.; Ferns, G.A.; Esmaeili, H.; Avan, A. Association of a Genetic Variant in Interleukin-10 Gene with Increased Risk and Inflammation Associated with Cervical Cancer. Gene 2022, 807, 145933. [Google Scholar] [CrossRef]
- Culjak, M.; Perkovic, M.N.; Uzun, S.; Strac, D.S.; Erjavec, G.N.; Leko, M.B.; Simic, G.; Tudor, L.; Konjevod, M.; Kozumplik, O.; et al. The Association between TNF-Alpha, IL-1 Alpha and IL-10 with Alzheimer’s Disease. Curr. Alzheimer Res. 2020, 17, 972–984. [Google Scholar] [CrossRef]
- Cao, X.L.; Zhou, X.Y.; Xu, N.X.; Chen, S.C.; Xu, C.M. Association of IL-4 and IL-10 Polymorphisms with Preterm Birth Susceptibility: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13, 917838. [Google Scholar]
- Shao, M.; Xie, H.; Yang, H.; Xu, W.; Chen, Y.; Gao, X.; Guan, S.; Xu, S.; Shuai, Z.; Pan, F. Association of Interleukin-6 Promoter Polymorphism with Rheumatoid Arthritis: A Meta-Analysis with Trial Sequential Analysis. Clin. Rheumatol. 2022, 41, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Kaanane, H.; Senhaji, N.; Berradi, H.; Benchakroun, N.; Benider, A.; Karkouri, M.; El Attar, H.; Flores, O.; Khyatti, M.; Nadifi, S. The Influence of Interleukin-6, Interleukin-8, Interleukin-10, Interleukin-17, TNF-A, MIF, STAT3 on Lung Cancer Risk in Moroccan Population. Cytokine 2022, 151, 155806. [Google Scholar] [CrossRef]
- Santos, M.P.; Pereira, J.N.; Delabio, R.W.; Smith, M.A.C.; Payão, S.L.M.; Carneiro, L.C.; Barbosa, M.S.; Rasmussen, L.T. Increased Expression of Interleukin-6 Gene in Gastritis and Gastric Cancer. Braz. J. Med. Biol. Res. 2021, 54, e10687. [Google Scholar] [CrossRef]
- Hou, Z.F.; Yuan, Z.H.; Chang, K.; Cao, Y.H.; Guan, F.X.; Gao, Y. NLRP3 Rs1539019 Is Significantly Associated with Chronic Obstructive Pulmonary Disease in a Chinese Han Population: A Case-Control Study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5821–5828. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, Y.; Wang, Y.; Hu, J.; Di, W.; Liu, S.; Zeng, X.; Yu, G.; Wang, Y.; Wang, Z. The IL-6 Rs1800795 and Rs1800796 Polymorphisms Are Associated with Coronary Artery Disease Risk. J. Cell Mol. Med. 2020, 24, 6191–6207. [Google Scholar] [CrossRef]
- Malkki, M.; Petersdorf, E.W. Genotyping of Single Nucleotide Polymorphisms by 5′ Nuclease Allelic Discrimination. In Immunogenetics. Methods in Molecular Biology, 1st ed.; Christiansen, F., Tait, B., Eds.; Humana Press: Totowa, NJ, USA, 2012; Volume 882, pp. 173–182. [Google Scholar] [CrossRef]
- Applied Biosystem. Applied Biosystems 7500/7500 Fast Real-Time PCR System; Genotyping Experiments Getting Started Guide; Applied Biosystem: Foster City, CA, USA, 2010. [Google Scholar]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A Web Tool for the Analysis of Association Studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; He, Z.; Tang, W.; Li, T.; Zeng, Z.; He, L.; Shi, Y. A Partition-Ligation-Combination-Subdivision Em Algorithm for Haplotype Inference with Multiallelic Markers: Update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 2009, 19, 519–523. [Google Scholar] [CrossRef]
- Shi, Y.Y.; He, L. SHEsis, a Powerful Software Platform for Analyses of Linkage Disequilibrium, Haplotype Construction, and Genetic Association at Polymorphism Loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Sugita, N.; Kobayashi, T.; Kikuchi, A.; Shimada, Y.; Hirano, E.; Sasahara, J.; Tanaka, K.; Yoshie, H. Immunoregulatory Gene Polymorphisms in Japanese Women with Preterm Births and Periodontitis. J. Reprod. Immunol. 2012, 93, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Belousova, V.S.; Svitich, O.A.; Timokhina, E.V.; Strizhakov, A.N.; Bogomazova, I.M. Polymorphism of the IL-1β, TNF, IL-1RA and IL-4 Cytokine Genes Significantly Increases the Risk of Preterm Birth. Biochemistry 2019, 84, 1040–1046. [Google Scholar] [CrossRef]
- So, T.; Ito, A.; Sato, T.; Mori, Y.; Hirakawa, S. Tumor Necrosis Factor-α Stimulates the Biosynthesis of Matrix Metalloproteinases and Plasminogen Activator in Cultured Human Chorionic Cells. Biol. Reprod. 1992, 46, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Jeong, P.; Kim, E.J.; Kim, E.G.; Byun, S.S.; Kim, C.S.; Kim, W.J. Association of Bladder Tumors and GA Genotype of -308 Nucleotide in Tumor Necrosis Factor-Alpha Promoter with Greater Tumor Necrosis Factor-Alpha Expression. Urology 2004, 64, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Sata, F.; Toya, S.; Yamada, H.; Suzuki, K.; Saijo, Y.; Yamazaki, A.; Minakami, H.; Kishi, R. Proinflammatory Cytokine Polymorphisms and the Risk of Preterm Birth and Low Birthweight in a Japanese Population. Mol. Hum. Reprod. 2009, 15, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Manuck, T.A. Racial and Ethnic Differences in Preterm Birth: A Complex, Multifactorial Problem. Semin. Perinatol. 2017, 41, 511–518. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA-J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
SNP | Location | Gene Region | Base Change | Citation | Related Phenotype |
---|---|---|---|---|---|
TNFα (rs1800629) | Chr 6:31575254 (GRCh38.p14) | Promoter region | G/A | Velez et al. [20] Yilmaz et al. [32] Jones et al. [36] Han et al. [30] Jie et al. [49] Drew.Piasecka et al. [50] Zhu et al. [48] Chen et al. [51] | Recurrent pregnancy loss Premature birth |
IL-10 (rs1800896) | chr 1:206773552 (GRCh38.p14) | Promoter region | T/C | Wagner et al. [52] Khorrami et al. [53] Čuljak et al. [54] Zhu et al. [47] Pandey et al. [26] Menon et al. [21] Lyubomirskaya et al. [25] Cao et al. [55] | Cervical cancer Alzheimer’s disease Breast cancer Preterm birth |
IL-6 (rs1800796) | Chr7: 22726627 (GRCh38.p14) | Promoter region | G/A | Shao et al. [56] Kaanene et al. [57] Santos et al. [58] Hou et al. [59] Luai et al. [60] Han et al. [30] Lyubomirskaya et al. [25] | Rheumatoid arthritis Lung cancer Gastritis and gastric cancer Chronic obstructive pulmonary disease Coronary artery disease Preterm birth |
Term Birth (n = 200) | PTB (n = 199) | Total (n = 399) | p | |
---|---|---|---|---|
Mother’s age (years) [Median (IQR)] | 30 (26–34) | 31 (27–35) | 0.20 ‡ | |
BMI (kg/m2) [Median (IQR)] | 27.4 (24.5–30.6) | 26.7 (24.2–30.1) | 0.35 ‡ | |
Underweight [n (%)] | 2 (1) | 0 | 2 (0.5) | 0.15 † |
Normal weight [n (%)] | 54 (27) | 66 (33) | 120 (30.1) | |
Overweight [n (%)] | 144 (72) | 133 (67) | 277 (69.4) | |
Coffee consumption [n (%)] | 167 (83.5) | 155 (77.9) | 322 (80.7) | 0.17 * |
Smoking habit [n (%)] | 52 (25.9) | 63 (31.5) | 115 (28.7) | 0.21 * |
Pregnancy complications [n (%)] | 104 (51.7) | 150 (75.4) | 254 (63.7) | <0.001 * |
Uroinfection [n (%)] | 18 (9) | 27 (13.5) | 45 (11.2) | 0.15 * |
Positive cervical swabs [n (%)] | 44 (21.9) | 35 (17.5) | 79 (19.7) | 0.27 * |
Vaginal bleeding during pregnancy [n (%)] | 14 (7) | 45 (22.6) | 59 (14.8) | <0.001 * |
PPROM [n (%)] | 47 (23.4) | 118 (59.6) | 165 (41.4) | <0.001 * |
Number of previous births [Median (IQR)] | 2 (1–2) | 1 (1–2) | 0.27 ‡ | |
PB in family anamnesis [n (%)] | 0 | 33 (16.5) | 33 (8.2) | <0.001 * |
Number of previous PB (n = 32) [Median (IQR)] | 1 (n = 1) | 1 (min 1–max 3) | - | |
Gestational age [Median (IQR)] | 39 + 4 (39–40 + 3) | 34 + 6 (32–36) | <0.001 ‡ | |
Mode of delivery [n (%)] | ||||
Vaginal birth | 195 (98) | 142 (71) | 337 (84) | <0.001 * |
Cesarean section | 5 (2) | 57 (29) | 62 (16) | |
Premature birth [n (%)] | ||||
Extremely early PB | - | 16 (8) | - | - |
Early PB | - | 32 (16) | - | - |
Late PB | - | 151 (76) | - | - |
Birth weight of infants [g] | 3450 (3123–3800) | 2430 (1816–2780) | <0.001 ‡ | |
Infant gender | ||||
Male | 100 (50) | 117 (59) | 217 (54) | 0.07 * |
Female | 100 (50) | 81 (41) | 181 (46) |
SNP/Inheritance Models | Genotype [n (%)] | OR (95% CI) | p * | ||
---|---|---|---|---|---|
Term Birth (n = 200) | PTB (n = 199) | ||||
a TNFα (rs1800629) | G/G | 154 (77) | 149 (74.9) | 1 | 0.22 |
A/G | 44 (22) | 43 (21.6) | 1.01 (0.63–1.63) | ||
A/A | 2 (1) | 7 (3.5) | 3.62 (0.74–17.7) | ||
Alleles | G | 352 (88) | 341 (86) | 0.82 (0.54–1.23) | 0.3 |
A | 48 (12) | 57 (14) | |||
Dominant inheritance model | G/G | 154 (77) | 149 (74.9) | 1 | 0.62 |
A/G–A/A | 46 (23) | 50 (25.1) | 1.12 (0.71–1.78) | ||
Recessive inheritance model | G/G–A/G | 198 (99) | 192 (96.5) | 1 | 0.08 |
A/A | 2 (1) | 7 (3.5) | 3.61 (0.74–17.59) | ||
Superdominant inheritance model | G/G–A/A | 156 (78) | 156 (78.4) | 1 | 0.92 |
A/G | 44 (22) | 43 (21.6) | 0.98 (0.61–1.57) | ||
b IL-10 (rs1800896) | A/A | 68 (34) | 62 (31) | 1 | 0.05 |
A/G | 88 (44) | 109 (55) | 1.36 (0.87–2.12) | ||
G/G | 44 (22) | 28 (14) | 0.70 (0.39–1.25) | ||
Alleles | A | 224 (56) | 233 (59) | 1.11 (0.84–1.47) | 0.47 |
G | 176 (44) | 165 (41) | |||
Dominant inheritance model | A/A | 68 (34) | 62 (31.2) | 1 | 0.54 |
A/G–G/G | 132 (66) | 137 (68.8) | 1.14 (0.75–1.73) | ||
Recessive inheritance model | A/A–A/G | 156 (78) | 171 (85.9) | 1 | 0.04 |
G/G | 44 (22) | 28 (14.1) | 0.58 (0.34–0.98) | ||
Superdominant inheritance model | A/A–G/G | 112 (56) | 90 (45.2) | 1 | 0.03 |
A/G | 88 (44) | 109 (54.8) | 1.54 (1.04–2.29) | ||
c IL-6 (rs1800796) | G/G | 176 (88) | 176 (88.4) | 1 | 0.99 |
C/G | 23 (11.5) | 22 (11.1) | 0.96 (0.51–1.78) | ||
C/C | 1 (0.5) | 1 (0.5) | 1.00 (0.06–16.11) | ||
Alleles | G | 375 (94) | 374 (94) | 1.04 (0.58–1.85) | 0.90 |
C | 25 (6) | 24 (6) | |||
Dominant inheritance model | G/G | 176 (88) | 176 (88.4) | 1 | 0.89 |
C/G–C/C | 24 (12) | 23 (11.6) | 0.96 (0.52–1.76) | ||
Recessive inheritance model | G/G–C/G | 199 (99.5) | 198 (99.5) | 1 | >0.99 |
C/C | 1 (0.5) | 1 (0.5) | 1.01 (0.06–16.18) | ||
Superdominant inheritance model | G/G–C/C | 177 (88.5) | 177 (88.9) | 1 | 0.89 |
C/G | 23 (11.5) | 22 (11.1) | 0.96 (0.51–1.78) |
SNP | Genotype [n (%)] | p * | |||
---|---|---|---|---|---|
Extremely Early PTB (n = 16) | Early PTB (n = 32) | Late PTB (n = 151) | |||
TNFα (rs1800629) | A/A | 0 | 0 | 7 (5) | 0.91 |
A/G | 3 (19) | 7 (22) | 33 (22) | ||
G/G | 13 (81) | 25 (78) | 111 (73) | ||
IL-10 (rs1800896) | A/A | 5 (31) | 12 (38) | 45 (30) | 0.10 |
A/G | 6 (38) | 19 (59) | 84 (56) | ||
G/G | 5 (31) | 1 (3) | 22 (14) | ||
IL-6 (rs1800796) | C/C | 0 | 0 | 1 (1) | 0.89 |
C/G | 1 (6) | 4 (13) | 17 (11) | ||
G/G | 15 (94) | 28 (88) | 133 (88) |
SNP/Inheritance Model | Genotype [n (%)] | OR (95% CI) | p * | ||
---|---|---|---|---|---|
Term Birth (n = 200) | Extremely Early PTB (n = 16) | ||||
TNFα (rs1800629) | G/G | 154 (77) | 13 (81.2) | 1 | 0.81 |
A/G | 44 (22) | 3 (18.8) | 0.81 (0.22–2.96) | ||
A/A | 2 (1) | 0 | 0 (0–NA) | ||
Allele | G | 352 (88) | 29 (91) | 1.32 (0.39–4.49) | 0.66 |
A | 48 (12) | 3 (9) | |||
Dominant model of inheritance | G/G | 154 (77) | 13 (81.2) | 1 | 0.69 |
A/G–A/A | 46 (23) | 3 (18.8) | 0.77 (0.21–2.83) | ||
Recessive model of inheritance | G/G–A/G | 198 (99) | 16 (100) | 1 | 0.58 |
A/A | 2 (1) | 0 | 0 (0–NA) | ||
Superdominant model of inheritance | G/G–A/A | 156 (78) | 13 (81.2) | 1 | 0.76 |
A/G | 44 (22) | 3 (18.8) | 0.82 (0.22–3.0) | ||
IL-10 (rs1800896) | A/A | 68 (34) | 5 (31.2) | 1 | 0.71 |
A/G | 88 (44) | 6 (37.5) | 0.93 (0.27–3.17) | ||
G/G | 44 (22) | 5 (31.2) | 1.55 (0.42–5.65) | ||
Allele | A | 224 (56) | 16 (50) | 0.79 (0.38–1.62) | 0.51 |
G | 176 (44) | 16 (50) | |||
Dominant model of inheritance | A/A | 68 (34) | 5 (312) | 1 | 0.82 |
A/G–G/G | 132 (66) | 11 (68.8) | 1.13 (0.38–3.39) | ||
Recessive model of inheritance | A/A–A/G | 156 (78) | 11 (68,8) | 1 | 0.41 |
G/G | 44 (22) | 5 (31.2) | 1.61 (0.53–4.88) | ||
Superdominant model of inheritance | A/A–G/G | 112 (56) | 10 (62.5) | 1 | 0.61 |
A/G | 88 (44) | 6 (37.5) | 0.76 (0.27–2.18) | ||
IL-6 (rs1800796) | G/G | 176 (88) | 15 (93.8) | 1 | 0.73 |
C/G | 23 (11.5) | 1 (6.2) | 0.51 (0.06–4.04) | ||
C/C | 1 (0.5) | 0 | 0 (0–NA) | ||
Allele | G | 375 (94) | 31 (97) | 2,07 (0.27–15.77) | 0.48 |
C | 25 (6) | 1 (3) | |||
Dominant model of inheritance | G/G | 176 (88) | 15 (93.8) | 1 | 0.46 |
C/G–C/C | 24 (12) | 1 (6.2) | 0.49 (0.06–3.87) | ||
Recessive model of inheritance | G/G–C/G | 199 (99.5) | 16 (100) | 1 | 0.69 |
C/C | 1 (0.5) | 0 | 0 (0–NA) | ||
Superdominant model of inheritance | G/G–C/C | 177 (88.5) | 15 (93.8) | 1 | 0.44 |
C/G | 23 (11.5) | 1 (6.2) | 0.51 (0.06–4.07) | ||
G/G | 176 (88) | 15 (93.8) | 1 |
SNP/Inheritance Models | Genotype [n (%)] | OR (95% CI) | p * | ||
---|---|---|---|---|---|
Term Birth (n = 200) | Early PTB (n = 32) | ||||
TNFα (rs1800629) | G/G | 154 (77) | 25 (78.1) | 1 | 0.74 |
A/G | 44 (22) | 7 (21.9) | 0.98 (0.40–2.42) | ||
A/A | 2 (1) | 0 | 0 (0–NA) | ||
Allele | G | 352 (88) | 57 (89) | 1.11 (0.48–2.57) | 0.81 |
A | 48 (12) | 7 (11) | |||
Dominant inheritance model | G/G | 154 (77) | 25 (78.1) | 1 | 0.89 |
A/G–A/A | 46 (23) | 7 (21.9) | 0-94 (0.38–2.31) | ||
Recessive inheritance model | G/G–A/G | 198 (99) | 32 (100) | 1 | 0.44 |
A/A | 2 (1) | 0 | 0 (0–NA) | ||
Superdominant inheritance model | G/G–A/A | 156 (78) | 25 (78.1) | 1 | 0.99 |
A/G | 44 (22) | 7 (21.9) | 0.99 (0.40–2.45) | ||
IL-10 (rs1800896) | A/A | 68 (34) | 12 (37.5) | 1 | 0.01 |
A/G | 88 (44) | 19 (59.4) | 1.22 (0.56–2.69) | ||
G/G | 44 (22) | 1 (3,1) | 0.13 (0.02–1.03) | ||
Allele | A | 224 (56) | 43 (67) | 1.61 (0.92–2.81) | 0.09 |
G | 176 (44) | 21 (33) | |||
Dominant inheritance model | A/A | 68 (34) | 12 (37.5) | 1 | 0.70 |
A/G–G/G | 132 (66) | 20 (62.5) | 0.86 (0.40–1.86) | ||
Recessive inheritance model | A/A–A/G | 156 (78) | 31 (96.9) | 1 | 0.003 |
G/G | 44 (22) | 1 (3.1) | 0.11 (0.02–0.86) | ||
Superdominant inheritance model | A/A–G/G | 112 (56) | 13 (40.6) | 1 | 0.11 |
A/G | 88 (44) | 19 (59.4) | 1.86 (0.87–3.97) | ||
IL-6 (rs1800796) | G/G | 176 (88) | 28 (87.5) | 1 | 0.85 |
C/G | 23 (11.5) | 4 (12.5) | 1.09 (0.35–3.40) | ||
C/C | 1 (0.5) | 0 | 0 (0–NA) | ||
Allele | G | 375 (94) | 60 (94) | 1.0 (0.34–2.97) | >0.99 |
C | 25 (6) | 4 (6) | |||
Dominant inheritance model | G/G | 176 (88) | 28 (87.5) | 1 | 0.94 |
C/G–C/C | 24 (12) | 4 (12.5) | 1.05 (0.34–3.25) | ||
Recessive inheritance model | G/G–C/G | 199 (99.5) | 32 (100) | 1 | 0.59 |
C/C | 1 (0.5) | 0 | 0 (0–NA) | ||
Superdominant inheritance model | G/G–C/C | 177 (88.5) | 28 (87.5) | 1 | 0.87 |
C/G | 23 (11.5) | 4 (12.5) | 1.10 (0.35–3.42) |
SNP/Inheritance Models | Genotype [n (%)] | OR (95% CI) | p * | ||
---|---|---|---|---|---|
Term Birth (n = 200) | Late PTB (n = 151) | ||||
TNFα (rs1800629) | G/G | 154 (77) | 111 (73.5) | 1 | 0.09 |
A/G | 44 (22) | 33 (21.9) | 1.04 (0.62–1.74) | ||
A/A | 2 (1) | 7 (4.6) | 4.86 (0.99–23.82) | ||
Allele | G | 352 (88) | 255 (84) | 0.69 (0.45–1.07) | 0.09 |
A | 48 (12) | 47 (16) | |||
Dominant inheritance model | G/G | 154 (77) | 111 (73.5) | 1 | 0.45 |
A/G–A/A | 46 (23) | 40 (26.5) | 1.21 (0.74–1.97) | ||
Recessive inheritance model | G/G–A/G | 198 (99) | 144 (95.4) | 1 | 0.03 |
A/A | 2 (1) | 7 (4.6) | 4.81 (0.99–23.51) | ||
Superdominant inheritance model | G/G–A/A | 156 (78) | 118 (78.2) | 1 | 0.97 |
A/G | 44 (22) | 33 (21.9) | 0.99 (0.59–1.65) | ||
IL-10 (rs1800896) | A/A | 68 (34) | 45 (29.8) | 1 | 0.07 |
A/G | 88 (44) | 84 (55.6) | 1.44 (0.89–2.33) | ||
G/G | 44 (22) | 22 (14.6) | 0.76 (0.40–1.43) | ||
Allele | A | 224 (56) | 174 (58) | 1.07 (0.79–1.44) | 0.67 |
G | 176 (44) | 128 (42) | |||
Dominant inheritance model | A/A | 68 (34) | 45 (29.8) | 1 | 0.40 |
A/G–G/G | 132 (66) | 106 (70.2) | 1.21 (0.77–1.91) | ||
Recessive inheritance model | A/A–A/G | 156 (78) | 129 (85.4) | 1 | 0.08 |
G/G | 44 (22) | 22 (14.6) | 0.60 (0.34–1.06) | ||
Superdominant inheritance model | A/A–G/G | 112 (56) | 67 (44.4) | 1 | 0.03 |
A/G | 88 (44) | 84 (55.6) | 1.60 (1.04–2.44) | ||
IL-6 (rs1800796) | G/G | 176 (88) | 133 (88.1) | 1 | 0.98 |
C/G | 23 (11.5) | 17 (11.3) | 0.98 (0.50–1.90) | ||
C/C | 1 (0.5) | 1 (0.7) | 1.32 (0.08–21.35) | ||
Allele | G | 375 (94) | 283 (94) | 0.99 (0.54–1.84) | 0.98 |
C | 25 (6) | 19 (6) | |||
Dominant inheritance model | G/G | 176 (88) | 133 (88.1) | 1 | 0.98 |
C/G–C/C | 24 (12) | 18 (11.9) | 0.99 (0.52–1.90) | ||
Recessive inheritance model | G/G–C/G | 199 (99.5) | 150 (99.3) | 1 | 0.84 |
C/C | 1 (0.5) | 1 (0.7) | 1.33 (0.08–21.38) | ||
Superdominant inheritance model | G/G–C/C | 177 (88.5) | 134 (88.7) | 1 | 0.94 |
C/G | 23 (11.5) | 17 (11.3) | 0.98 (0.50–1.90) |
Haplotype | n (%) | OR (95%CI) | χ2 | p * | adjp † | |||
---|---|---|---|---|---|---|---|---|
PTB | Term Birth | |||||||
Mothers | χ2 = 2.41 df = 4 p = 0.66 | |||||||
rs1800629 | rs1800896 | rs1800796 | ||||||
G | G | G | 117 (29.3) | 134 (33.5) | 0.83 (0.61–1.11) | 1.56 | 0.22 | 0.42 |
G | A | G | 210 (52.7) | 199 (49.7) | 1.13 (0.85–1.49) | 0.73 | 0.21 | 0.55 |
A | G | G | 29 (7.2) | 25 (6.2) | 1.18 (0.68–2.05) | 0.34 | 0.56 | 0.64 |
A | A | G | 18 (4.5) | 17 (4.2) | 1.07 (0.54–2.10) | 0.67 | 0.41 | 0.85 |
G | G | C | 10 (2.5) | 14 (3.5) | 0.71 (0.31–1.62) | 0.04 | 0.85 | 0.85 |
ß | Wald | p | OR (95 CI%) | |
---|---|---|---|---|
* Bivariant logistic regression | ||||
TNFα (rs1800629) (A/G–A/A vs. G/G) | 0.738 | 5.47 | 0.02 | 2.09 (1.13–3.88) |
IL-10 (rs1800896) (A/G–G/G vs. A/A) | 0.105 | 0.22 | 0.64 | 1.11 (0.72–1.71) |
IL-6 (rs1800796) (C/G–C/C vs. G/G) | −0.225 | 0.46 | 0.50 | 0.80 (0.42–1.53) |
* Multivariant logistic regression | ||||
TNFα (rs1800629) (A/G–A/A vs. G/G) | 0.74 | 5.47 | 0.02 | 2.10 (1.13 to 3.88) |
Constant | −0.76 | 0.66 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadivnik, M.; Plečko, D.; Kralik, K.; Arvaj, N.; Wagner, J. Role of IL-6, IL-10 and TNFα Gene Variants in Preterm Birth. J. Clin. Med. 2024, 13, 2429. https://doi.org/10.3390/jcm13082429
Kadivnik M, Plečko D, Kralik K, Arvaj N, Wagner J. Role of IL-6, IL-10 and TNFα Gene Variants in Preterm Birth. Journal of Clinical Medicine. 2024; 13(8):2429. https://doi.org/10.3390/jcm13082429
Chicago/Turabian StyleKadivnik, Mirta, Deni Plečko, Kristina Kralik, Nena Arvaj, and Jasenka Wagner. 2024. "Role of IL-6, IL-10 and TNFα Gene Variants in Preterm Birth" Journal of Clinical Medicine 13, no. 8: 2429. https://doi.org/10.3390/jcm13082429
APA StyleKadivnik, M., Plečko, D., Kralik, K., Arvaj, N., & Wagner, J. (2024). Role of IL-6, IL-10 and TNFα Gene Variants in Preterm Birth. Journal of Clinical Medicine, 13(8), 2429. https://doi.org/10.3390/jcm13082429