Treatment of Acute Kidney Injury: A Review of Current Approaches and Emerging Innovations
Abstract
:1. Introduction
2. Blood Pressure Targets in AKI
2.1. What Is the Appropriate Blood Pressure in AKI?
Study | Type of Study | Population | Findings |
---|---|---|---|
Finnish Acute Kidney Injury (FINNAKI), 2013 [9] | Prospective observational | 423 patients with severe sepsis | Time-adjusted MAP below 73 mmHg predicted AKI |
Sepsis and Mean Arterial Pressure (SEPSISPAM), 2014 [13] | RCT | 776 patients with septic shock | Patients with chronic hypertension with target MAP of 80–85 mmHg had less AKI risk compared to 65–70 mmHg |
Optimal blood pressure decreases acute kidney injury after gastrointestinal surgery in elderly hypertensive patients, 2017 [16] | Prospective randomized | 678 patients with chronic hypertension undergoing major gastrointestinal surgery | Patients with target MAP of 80–95 mmHg had less AKI compared to 65–79 or 96–110 mmHg |
FEDORA, 2018 [4] | RCT | 450 patients undergoing major elective surgery | Maintaining a MAP above 65 mmHg reduced AKI risk |
Optimal systolic blood pressure in noncritically ill patients with acute kidney injury, 2019 [15] | Retrospective cohort | 1612 hospitalized, noncritically ill patients with AKI | Patients with SBP * 110–129 mmHg had less severe AKI or 90-day mortality compared to ≤110 or ≥130 mmHg |
Substudy of Blood Pressure and Oxygenation Targets After OHCA (BOX), 2023 [10] | RCT substudy | 789 comatose patients who had OHCA with presumed cardiac cause and sustained ROSC | Patients with target MAP of 63 mmHg had increased risk of stage 1 AKI compared to 77 mmHg |
2.2. How Can We Achieve Blood Pressure Targets?
2.2.1. Fluids
Fluid Dosing
Volume Assessment
Choice of Fluid
2.2.2. Vasopressors
3. Kidney Replacement Therapy
3.1. Indications for Dialysis
3.2. Timing of Dialysis Initiation
Study | Population | Earlier Group | Later Group | Findings | Main Limitations |
---|---|---|---|---|---|
Effect of Early vs. Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients with Acute Kidney Injury (ELAIN), 2016 [82] | 231 critically ill patients with KDIGO stage 2 AKI and NGAL > 150 ng/mL | Within 8 h of diagnosis of stage 2 AKI | Within 12 h of developing stage 3 AKI or no initiation | Early KRT initiation was associated with reduced mortality over 90 days, more recovery of renal function, shorter duration of KRT, and hospital stay | One center; almost entirely surgical patients |
Artificial Kidney Initiation in Kidney Injury (AKIKI), 2016 [83] | 620 critically ill patients with KDIGO stage 3 AKI | Immediately after randomization | If severe hyperkalemia, metabolic acidosis, pulmonary edema, BUN > 112 mg/dL, oliguria for >72 h | Early versus late KRT initiation did not affect mortality, but delayed initiation led to fewer patients on KRT, more KRT-free days, and fewer side effects | Only included patients with stage 3 AKI |
Initiation of Dialysis Early Versus Delayed in the Intensive Care Unit (IDEAL-ICU), 2018 [85] | 477 patients with early-stage septic shock and RIFLE failure-stage AKI | Within 12 h after documentation of failure-stage AKI | Delay of 48 h after failure-stage AKI if renal recovery had not occurred | Early versus late KRT initiation did not affect overall mortality at 90 days | Used RIFLE criteria; 48 h relatively short time to allow for renal recovery |
Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI), 2020 [86] | 3019 critically ill patients with KDIGO stage 2 or 3 AKI | Within 12 h of developing stage 2–3 AKI (“accelerated”) | If conventional indications developed or AKI persisted for >72 h (“standard”) | Accelerated versus standard KRT initiation did not affect overall mortality at 90 days, but more patients in accelerated group were still on KRT at 90 days and they had more adverse events | Allowed clinicians broad discretion regarding when to initiate KRT in standard group |
AKIKI 2, 2021 [87] | 278 critically ill patients with KDIGO stage 3 AKI who had oliguria for >72 h or BUN > 112 mg/dL | At time of randomization (“delayed”) | If mandatory indication (noticeable hyperkalemia, metabolic acidosis, or pulmonary edema) developed or BUN reached 140 mg/dL (“more-delayed”) | Longer postponing of KRT initiation did not confer additional benefit and was associated with potential harm, including higher risk of death at 60 days | Used BUN levels as KRT initiation; somewhat different comparison as both groups were somewhat delayed |
4. Medication Considerations
4.1. Factors Affecting Drug Dosing in AKI
4.2. Antimicrobial Dosing
5. Discussion
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- KDIGO Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1. [Google Scholar]
- Wen, Y.; Parikh, C.R. Current concepts and advances in biomarkers of acute kidney injury. Crit. Rev. Clin. Lab. Sci. 2021, 58, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.; Pappas, S.C.; Curry, M.P.; Reddy, K.R.; Rubin, R.A.; Porayko, M.K.; Gonzalez, S.A.; Mumtaz, K.; Lim, N.; Simonetto, D.A.; et al. Terlipressin plus Albumin for the Treatment of Type 1 Hepatorenal Syndrome. N. Engl. J. Med. 2021, 384, 818–828. [Google Scholar] [CrossRef]
- Calvo-Vecino, J.M.; Ripollés-Melchor, J.; Mythen, M.G.; Casans-Francés, R.; Balik, A.; Artacho, J.P.; Martínez-Hurtado, E.; Serrano Romero, A.; Fernández Pérez, C.; Asuero de Lis, S.; et al. Effect of goal-directed haemodynamic therapy on postoperative complications in low–moderate risk surgical patients: A multicentre randomised controlled trial (FEDORA trial). Br. J. Anaesth. 2018, 120, 734–744. [Google Scholar] [CrossRef]
- Wang, A.Y.; Bellomo, R. Renal replacement therapy in the ICU: Intermittent hemodialysis, sustained low-efficiency dialysis or continuous renal replacement therapy? Curr. Opin. Crit. Care 2018, 24, 437–442. [Google Scholar] [CrossRef] [PubMed]
- The SPRINT Research Group. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J. Med. 2015, 373, 2103–2116. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, J.G. Normotensive Ischemic Acute Renal Failure. N. Engl. J. Med. 2007, 357, 797–805. [Google Scholar] [CrossRef]
- Poukkanen, M.; Wilkman, E.; Vaara, S.T.; Pettilä, V.; Kaukonen, K.M.; Korhonen, A.M.; Uusaro, A.; Hovilehto, S.; Inkinen, O.; Laru-Sompa, R.; et al. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: Data from the prospective observational FINNAKI study. Crit. Care 2013, 17, R295. [Google Scholar] [CrossRef]
- Rasmussen, S.B.; Jeppesen, K.K.; Kjaergaard, J.; Hassager, C.; Schmidt, H.; Mølstrøm, S.; Beske, R.P.; Grand, J.; Ravn, H.B.; Winther-Jensen, M.; et al. Blood Pressure and Oxygen Targets on Kidney Injury After Cardiac Arrest. Circulation 2023, 148, 1860–1869. [Google Scholar] [CrossRef]
- Grand, J.; Meyer, A.S.; Kjaergaard, J.; Wiberg, S.; Thomsen, J.H.; Frydland, M.; Ostrowski, S.R.; Johansson, P.I.; Hassager, C. A randomised double-blind pilot trial comparing a mean arterial pressure target of 65 mm Hg versus 72 mm Hg after out-of-hospital cardiac arrest. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, S100–S109. [Google Scholar] [CrossRef] [PubMed]
- Post, E.H.; Vincent, J.L. Renal autoregulation and blood pressure management in circulatory shock. Crit. Care 2018, 22, 81. [Google Scholar] [CrossRef] [PubMed]
- Asfar, P.; Meziani, F.; Hamel, J.-F.; Grelon, F.; Megarbane, B.; Anguel, N.; Mira, J.-P.; Dequin, P.-F.; Gergaud, S.; Weiss, N.; et al. High versus Low Blood-Pressure Target in Patients with Septic Shock. N. Engl. J. Med. 2014, 370, 1583–1593. [Google Scholar] [CrossRef] [PubMed]
- Futier, E.; Lefrant, J.Y.; Guinot, P.G.; Godet, T.; Lorne, E.; Cuvillon, P.; Bertran, S.; Leone, M.; Pastene, B.; Piriou, V.; et al. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery: A Randomized Clinical Trial. JAMA 2017, 318, 1346–1357. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Chin, H.J.; Na, K.Y.; Chae, D.W.; Kim, S. Optimal systolic blood pressure in noncritically ill patients with acute kidney injury: A retrospective cohort study. Kidney Res. Clin. Pract. 2019, 38, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jiang, Z.; Ying, J.; Han, Y.; Chen, Z. Optimal blood pressure decreases acute kidney injury after gastrointestinal surgery in elderly hypertensive patients: A randomized study: Optimal blood pressure reduces acute kidney injury. J. Clin. Anesth. 2017, 43, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Azau, A.; Markowicz, P.; Corbeau, J.; Cottineau, C.; Moreau, X.; Baufreton, C.; Beydon, L. Increasing mean arterial pressure during cardiac surgery does not reduce the rate of postoperative acute kidney injury. Perfusion 2014, 29, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.N.T.; Kusirisin, P.; Kaewdoungtien, P.; Phannajit, J.; Srisawat, N. Higher blood pressure versus normotension targets to prevent acute kidney injury: A systematic review and meta-regression of randomized controlled trials. Crit. Care 2022, 26, 364. [Google Scholar] [CrossRef] [PubMed]
- Skagen, C.; Einstein, M.; Lucey, M.R.; Said, A. Combination Treatment with Octreotide, Midodrine, and Albumin Improves Survival in Patients with Type 1 and Type 2 Hepatorenal Syndrome. J. Clin. Gastroenterol. 2009, 43, 680–685. [Google Scholar] [CrossRef]
- Velez, J.C.Q.; Nietert, P.J. Therapeutic Response to Vasoconstrictors in Hepatorenal Syndrome Parallels Increase in Mean Arterial Pressure: A Pooled Analysis of Clinical Trials. Am. J. Kidney Dis. 2011, 58, 928–938. [Google Scholar] [CrossRef]
- Koyner, J.L.; Garg, A.X.; Thiessen-Philbrook, H.; Coca, S.G.; Cantley, L.G.; Peixoto, A.; Passik, C.S.; Hong, K.; Parikh, C.R. Adjudication of etiology of acute kidney injury: Experience from the TRIBE-AKI multi-center study. BMC Nephrol. 2014, 15, 105. [Google Scholar] [CrossRef] [PubMed]
- Lameire, N.H.; De Vriese, A.S.; Vanholder, R. Prevention and nondialytic treatment of acute renal failure. Curr. Opin. Crit. Care 2003, 9, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Guarino, M.; Perna, B.; Cesaro, A.E.; Maritati, M.; Spampinato, M.D.; Contini, C.; De Giorgio, R. 2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department. J. Clin. Med. 2023, 12, 3188. [Google Scholar] [CrossRef] [PubMed]
- Prowle, J.R.; Echeverri, J.E.; Ligabo, E.V.; Ronco, C.; Bellomo, R. Fluid balance and acute kidney injury. Nat. Rev. Nephrol. 2010, 6, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Skytte Larsson, J.; Bragadottir, G.; Krumbholz, V.; Redfors, B.; Sellgren, J.; Ricksten, S.E. Effects of acute plasma volume expansion on renal perfusion, filtration, and oxygenation after cardiac surgery: A randomized study on crystalloid vs colloid. Br. J. Anaesth. 2015, 115, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Liu, K.; Kashani, K. Fluid Management in Acute Kidney Injury. Chest 2019, 156, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Meyhoff, T.S.; Hjortrup, P.B.; Wetterslev, J.; Sivapalan, P.; Laake, J.H.; Cronhjort, M.; Jakob, S.M.; Cecconi, M.; Nalos, M.; Ostermann, M.; et al. Restriction of Intravenous Fluid in ICU Patients with Septic Shock. N. Engl. J. Med. 2022, 386, 2459–2470. [Google Scholar] [CrossRef]
- Meyhoff, T.S.; Møller, M.H.; Hjortrup, P.B.; Cronhjort, M.; Perner, A.; Wetterslev, J. Lower vs. Higher Fluid Volumes During Initial Management of Sepsis: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Chest 2020, 157, 1478–1496. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of Two Fluid-Management Strategies in Acute Lung Injury. N. Engl. J. Med. 2006, 354, 2564–2575. [Google Scholar] [CrossRef]
- Kashani, K.; Omer, T.; Shaw, A.D. The Intensivist’s Perspective of Shock, Volume Management, and Hemodynamic Monitoring. Clin. J. Am. Soc. Nephrol. 2022, 17, 706–716. [Google Scholar] [CrossRef]
- McGee, S.; Abernethy, W.B., III; Simel, D.L. Is This Patient Hypovolemic? JAMA 1999, 281, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Thibodeau, J.T.; Drazner, M.H. The Role of the Clinical Examination in Patients with Heart Failure. JACC Heart Fail. 2018, 6, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Jacquet-Lagrèze, M.; Pernollet, A.; Kattan, E.; Ait-Oufella, H.; Chesnel, D.; Ruste, M.; Schweizer, R.; Allaouchiche, B.; Hernandez, G.; Fellahi, J.-L. Prognostic value of capillary refill time in adult patients: A systematic review with meta-analysis. Crit. Care 2023, 27, 473. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Postelnicu, R.; Mukherjee, V. Lactate: Where Are We Now? Crit. Care Clin. 2020, 36, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Monnet, X.; Marik, P.; Teboul, J.-L. Passive leg raising for predicting fluid responsiveness: A systematic review and meta-analysis. Intensive Care Med. 2016, 42, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
- La Via, L.; Vasile, F.; Perna, F.; Zawadka, M. Prediction of fluid responsiveness in critical care: Current evidence and future perspective. Trends Anaesth. Crit. Care 2024, 54, 101316. [Google Scholar] [CrossRef]
- Beaubien-Souligny, W.; Rola, P.; Haycock, K.; Bouchard, J.; Lamarche, Y.; Spiegel, R.; Denault, A.Y. Quantifying systemic congestion with Point-of-Care ultrasound: Development of the venous excess ultrasound grading system. Ultrasound J. 2020, 12, 16. [Google Scholar] [CrossRef]
- Hernandez, G.A.; Lemor, A.; Blumer, V.; Rueda, C.A.; Zalawadiya, S.; Stevenson, L.W.; Lindenfeld, J. Trends in Utilization and Outcomes of Pulmonary Artery Catheterization in Heart Failure with and without Cardiogenic Shock. J. Card. Fail. 2019, 25, 364–371. [Google Scholar] [CrossRef]
- Kelly, C.R.; Rabbani, L.E. Pulmonary-Artery Catheterization. N. Engl. J. Med. 2013, 369, e35. [Google Scholar] [CrossRef]
- Marik, P.E.; Baram, M.; Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008, 134, 172–178. [Google Scholar] [CrossRef]
- Squara, P. Central venous oxygenation: When physiology explains apparent discrepancies. Crit. Care 2014, 18, 579. [Google Scholar] [CrossRef] [PubMed]
- Perner, A.; Prowle, J.; Joannidis, M.; Young, P.; Hjortrup, P.B.; Pettilä, V. Fluid management in acute kidney injury. Intensive Care Med. 2017, 43, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Khandelwal, P. Are all colloids same? How to select the right colloid? Indian J. Anaesth. 2009, 53, 592–607. [Google Scholar] [PubMed]
- Tinawi, M. New Trends in the Utilization of Intravenous Fluids. Cureus 2021, 13, e14619. [Google Scholar] [CrossRef] [PubMed]
- Noritomi, D.T.; Pereira, A.J.; Bugano, D.D.; Rehder, P.S.; Silva, E. Impact of Plasma-Lyte pH 7.4 on acid-base status and hemodynamics in a model of controlled hemorrhagic shock. Clinics 2011, 66, 1969–1974. [Google Scholar] [CrossRef] [PubMed]
- Self, W.H.; Semler, M.W.; Wanderer, J.P.; Ehrenfeld, J.M.; Byrne, D.W.; Wang, L.; Atchison, L.; Felbinger, M.; Jones, I.D.; Russ, S.; et al. Saline versus balanced crystalloids for intravenous fluid therapy in the emergency department: Study protocol for a cluster-randomized, multiple-crossover trial. Trials 2017, 18, 178. [Google Scholar] [CrossRef]
- Saikia, P.; Choudhury, D.; Bora, B.B. Role of acidic pH of intravenous fluids in subsequent development of metabolic acidosis- may not be what it seems. Indian J. Crit. Care Med. 2014, 18, 484–485. [Google Scholar] [CrossRef]
- Frazee, E.N.; Leedahl, D.D.; Kashani, K.B. Key Controversies in Colloid and Crystalloid Fluid Utilization. Hosp. Pharm. 2015, 50, 446–453. [Google Scholar] [CrossRef] [PubMed]
- The SAFE Study Investigators. A Comparison of Albumin and Saline for Fluid Resuscitation in the Intensive Care Unit. N. Engl. J. Med. 2004, 350, 2247–2256. [Google Scholar] [CrossRef]
- Caironi, P.; Tognoni, G.; Masson, S.; Fumagalli, R.; Pesenti, A.; Romero, M.; Fanizza, C.; Caspani, L.; Faenza, S.; Grasselli, G. Albumin replacement in patients with severe sepsis or septic shock. N. Engl. J. Med. 2014, 370, 1412–1421. [Google Scholar] [CrossRef]
- Rochwerg, B.; Alhazzani, W.; Gibson, A.; Ribic, C.M.; Sindi, A.; Heels-Ansdell, D.; Thabane, L.; Fox-Robichaud, A.; Mbuagbaw, L.; Szczeklik, W.; et al. Fluid type and the use of renal replacement therapy in sepsis: A systematic review and network meta-analysis. Intensive Care Med. 2015, 41, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Perner, A.; Haase, N.; Guttormsen, A.B.; Tenhunen, J.; Klemenzson, G.; Åneman, A.; Madsen, K.R.; Møller, M.H.; Elkjær, J.M.; Poulsen, L.M.; et al. Hydroxyethyl Starch 130/0.42 versus Ringer’s Acetate in Severe Sepsis. N. Engl. J. Med. 2012, 367, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Kuca, T.; Butler, M.B.; Erdogan, M.; Green, R.S. A comparison of balanced and unbalanced crystalloid solutions in surgery patient outcomes. Anaesth. Crit. Care Pain Med. 2017, 36, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Semler, M.W.; Self, W.H.; Wanderer, J.P.; Ehrenfeld, J.M.; Wang, L.; Byrne, D.W.; Stollings, J.L.; Kumar, A.B.; Hughes, C.G.; Hernandez, A.; et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N. Engl. J. Med. 2018, 378, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Self, W.H.; Semler, M.W.; Wanderer, J.P.; Wang, L.; Byrne, D.W.; Collins, S.P.; Slovis, C.M.; Lindsell, C.J.; Ehrenfeld, J.M.; Siew, E.D.; et al. Balanced Crystalloids versus Saline in Noncritically Ill Adults. N. Engl. J. Med. 2018, 378, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, C.S. Regulation of renal blood flow by plasma chloride. J. Clin. Investig. 1983, 71, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.A. Modern quantitative acid-base chemistry. Can. J. Physiol. Pharmacol. 1983, 61, 1444–1461. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.H.; Cox, E.F.; Francis, S.T.; Lobo, D.N. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann. Surg. 2012, 256, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Arora, G. Fluid Management in Septic Shock. In Rational Use of Intravenous Fluids in Critically Ill Patients; Malbrain, M.L.N.G., Wong, A., Nasa, P., Ghosh, S., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 295–314. [Google Scholar]
- Shankar, A.; Gurumurthy, G.; Sridharan, L.; Gupta, D.; Nicholson, W.J.; Jaber, W.A.; Vallabhajosyula, S. A Clinical Update on Vasoactive Medication in the Management of Cardiogenic Shock. Clin. Med. Insights Cardiol. 2022, 16, 11795468221075064. [Google Scholar] [CrossRef]
- Bellomo, R.; Wan, L.; May, C. Vasoactive drugs and acute kidney injury. Crit. Care Med. 2008, 36, S179–S186. [Google Scholar] [CrossRef]
- Russell, J.A.; Walley, K.R.; Singer, J.; Gordon, A.C.; Hébert, P.C.; Cooper, D.J.; Holmes, C.L.; Mehta, S.; Granton, J.T.; Storms, M.M.; et al. Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock. N. Engl. J. Med. 2008, 358, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.C.; Russell, J.A.; Walley, K.R.; Singer, J.; Ayers, D.; Storms, M.M.; Holmes, C.L.; Hébert, P.C.; Cooper, D.J.; Mehta, S.; et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010, 36, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.C.; Mason, A.J.; Thirunavukkarasu, N.; Perkins, G.D.; Cecconi, M.; Cepkova, M.; Pogson, D.G.; Aya, H.D.; Anjum, A.; Frazier, G.J.; et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients with Septic Shock: The VANISH Randomized Clinical Trial. JAMA 2016, 316, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, L.A.; Vincent, J.L.; Barbosa Gomes Galas, F.R.; Rhodes, A.; Landoni, G.; Osawa, E.A.; Melo, R.R.; Sundin, M.R.; Grande, S.M.; Gaiotto, F.A.; et al. Vasopressin versus Norepinephrine in Patients with Vasoplegic Shock after Cardiac Surgery: The VANCS Randomized Controlled Trial. Anesthesiology 2017, 126, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Morelli, A.; Ertmer, C.; Rehberg, S.; Lange, M.; Orecchioni, A.; Cecchini, V.; Bachetoni, A.; D’Alessandro, M.; Van Aken, H.; Pietropaoli, P.; et al. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): A randomized, controlled pilot study. Crit. Care 2009, 13, R130. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.M.; Chittock, D.R.; Russell, J.A.; Walley, K.R. Beneficial Effects of Short-term Vasopressin Infusion during Severe Septic Shock. Anesthesiology 2002, 96, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Tsuneyoshi, I.; Yamada, H.; Kakihana, Y.; Nakamura, M.; Nakano, Y.; Boyle, W.A., 3rd. Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit. Care Med. 2001, 29, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Bomzon, L.; Rosendorff, C.; Scriven, D.R.; Farr, J. The effect of noradrenaline, adrenergic blocking agents, and tyramine on the intrarenal distribution of blood flow in the baboon. Cardiovasc. Res. 1975, 9, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.M.; Trizna, W.; Kinter, L.B. Renal microvascular effects of vasopressin and vasopressin antagonists. Am. J. Physiol. 1989, 256, F274–F278. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Sheng, Y.; Feng, X.; Wu, J. The effects and safety of vasopressin receptor agonists in patients with septic shock: A meta-analysis and trial sequential analysis. Crit. Care 2019, 23, 91. [Google Scholar] [CrossRef]
- Annane, D.; Vignon, P.; Renault, A.; Bollaert, P.-E.; Charpentier, C.; Martin, C.; Troché, G.; Ricard, J.-D.; Nitenberg, G.; Papazian, L.; et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: A randomised trial. Lancet 2007, 370, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Legrand, M.; Kothari, R.; Fong, N.; Palaniappa, N.; Boldt, D.; Chen, L.-L.; Kurien, P.; Gabel, E.; Sturgess-DaPrato, J.; Harhay, M.O.; et al. Norepinephrine versus phenylephrine for treating hypotension during general anaesthesia in adult patients undergoing major noncardiac surgery: A multicentre, open-label, cluster-randomised, crossover, feasibility, and pilot trial. Br. J. Anaesth. 2023, 130, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; English, S.W.; Wang, X.S.; Ham, K.; Tumlin, J.; Szerlip, H.; Busse, L.W.; Altaweel, L.; Albertson, T.E.; Mackey, C.; et al. Angiotensin II for the Treatment of Vasodilatory Shock. N. Engl. J. Med. 2017, 377, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Tumlin, J.A.; Murugan, R.; Deane, A.M.; Ostermann, M.; Busse, L.W.; Ham, K.R.; Kashani, K.; Szerlip, H.M.; Prowle, J.R.; Bihorac, A.; et al. Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit. Care Med. 2018, 46, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Prowle, J.R.; Chua, H.-R.; Bagshaw, S.M.; Bellomo, R. Clinical review: Volume of fluid resuscitation and the incidence of acute kidney injury—A systematic review. Crit. Care 2012, 16, 230. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.P.; Balk, R.A. Systemic Steroids in Severe Sepsis and Septic Shock. Am. J. Respir. Crit. Care Med. 2012, 185, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, S.M.; Cruz, D.N.; Gibney, R.T.; Ronco, C. A proposed algorithm for initiation of renal replacement therapy in adult critically ill patients. Crit. Care 2009, 13, 317. [Google Scholar] [CrossRef]
- Gibney, N.; Hoste, E.; Burdmann, E.A.; Bunchman, T.; Kher, V.; Viswanathan, R.; Mehta, R.L.; Ronco, C. Timing of Initiation and Discontinuation of Renal Replacement Therapy in AKI: Unanswered Key Questions. Clin. J. Am. Soc. Nephrol. 2008, 3, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Nash, D.M.; Przech, S.; Wald, R.; O’Reilly, D. Systematic review and meta-analysis of renal replacement therapy modalities for acute kidney injury in the intensive care unit. J. Crit. Care 2017, 41, 138–144. [Google Scholar] [CrossRef]
- Olivero, J.J. Continuous Venous-Venous-Hemodialysis versus Intermittent-Hemodialysis in Critically Ill Patients. Methodist Debakey Cardiovasc. J. 2018, 14, 153–155. [Google Scholar] [CrossRef]
- Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of Early vs. Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients with Acute Kidney Injury: The ELAIN Randomized Clinical Trial. JAMA 2016, 315, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Gaudry, S.; Hajage, D.; Schortgen, F.; Martin-Lefevre, L.; Pons, B.; Boulet, E.; Boyer, A.; Chevrel, G.; Lerolle, N.; Carpentier, D.; et al. Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit. N. Engl. J. Med. 2016, 375, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Dreyfuss, D.; Hajage, D.; Gaudry, S. Why ELAIN and AKIKI Should Not Be Compared: Resolving Discordant Studies. Am. J. Kidney Dis. 2017, 69, 864. [Google Scholar] [CrossRef] [PubMed]
- Barbar, S.D.; Clere-Jehl, R.; Bourredjem, A.; Hernu, R.; Montini, F.; Bruyère, R.; Lebert, C.; Bohé, J.; Badie, J.; Eraldi, J.-P.; et al. Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis. N. Engl. J. Med. 2018, 379, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- The STARRT-AKI Investigators. Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. N. Engl. J. Med. 2020, 383, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Gaudry, S.; Hajage, D.; Martin-Lefevre, L.; Lebbah, S.; Louis, G.; Moschietto, S.; Titeca-Beauport, D.; Combe, B.; Pons, B.; de Prost, N.; et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): A multicentre, open-label, randomised, controlled trial. Lancet 2021, 397, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Jamale, T.E.; Hase, N.K.; Kulkarni, M.; Pradeep, K.J.; Keskar, V.; Jawale, S.; Mahajan, D. Earlier-start versus usual-start dialysis in patients with community-acquired acute kidney injury: A randomized controlled trial. Am. J. Kidney Dis. 2013, 62, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Xiao, J.; Cheng, Y.; Li, Q.; Li, W.; He, T.; Li, S.; Gao, D.; Shen, F. The Efficacy and Safety of Early Renal Replacement Therapy in Critically Ill Patients with Acute Kidney Injury: A Meta-Analysis with Trial Sequential Analysis of Randomized Controlled Trials. Front. Med. 2022, 9, 820624. [Google Scholar] [CrossRef] [PubMed]
- Saran, S.; Rao, N.S.; Azim, A. Drug Dosing in Critically Ill Patients with Acute Kidney Injury and on Renal Replacement Therapy. Indian J. Crit. Care Med. 2020, 24, S129–S134. [Google Scholar] [CrossRef]
- Inker, L.A.; Titan, S. Measurement and Estimation of GFR for Use in Clinical Practice: Core Curriculum 2021. Am. J. Kidney Dis. 2021, 78, 736–749. [Google Scholar] [CrossRef]
- Adingwupu, O.M.; Barbosa, E.R.; Palevsky, P.M.; Vassalotti, J.A.; Levey, A.S.; Inker, L.A. Cystatin C as a GFR Estimation Marker in Acute and Chronic Illness: A Systematic Review. Kidney Med. 2023, 5, 100727. [Google Scholar] [CrossRef] [PubMed]
- Schotola, H.; Toischer, K.; Popov, A.F.; Renner, A.; Schmitto, J.D.; Gummert, J.; Quintel, M.; Bauer, M.; Maier, L.S.; Sossalla, S. Mild metabolic acidosis impairs the β-adrenergic response in isolated human failing myocardium. Crit. Care 2012, 16, R153. [Google Scholar] [CrossRef] [PubMed]
- Vidal, C.; Grassin-Delyle, S.; Devillier, P.; Naline, E.; Lansac, E.; Ménasché, P.; Faisy, C. Effect of severe acidosis on vasoactive effects of epinephrine and norepinephrine in human distal mammary artery. J. Thorac. Cardiovasc. Surg. 2014, 147, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Jung, H.; Li, X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. AAPS J. 2015, 17, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Gandia, P.; Decheiver, S.; Picard, M.; Guilhaumou, R.; Baklouti, S.; Concordet, D. Hypoalbuminemia and Pharmacokinetics: When the Misunderstanding of a Fundamental Concept Leads to Repeated Errors over Decades. Antibiotics 2023, 12, 515. [Google Scholar] [CrossRef] [PubMed]
- Bausch, S.; Araschmid, L.J.; Hardmeier, M.; Osthoff, M. Cefepime-Induced Neurotoxicity in the Setting of Acute Kidney Injury: A Case Series and Discussion of Preventive Measures. Cureus 2022, 14, e26392. [Google Scholar] [CrossRef] [PubMed]
- Chatellier, D.; Jourdain, M.; Mangalaboyi, J.; Ader, F.; Chopin, C.; Derambure, P.; Fourrier, F. Cefepime-induced neurotoxicity: An underestimated complication of antibiotherapy in patients with acute renal failure. Intensive Care Med. 2002, 28, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Boschung-Pasquier, L.; Atkinson, A.; Kastner, L.K.; Banholzer, S.; Haschke, M.; Buetti, N.; Furrer, D.I.; Hauser, C.; Jent, P.; Que, Y.A.; et al. Cefepime neurotoxicity: Thresholds and risk factors. A retrospective cohort study. Clin. Microbiol. Infect. 2020, 26, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Mueller, B.A. Antibiotic Dosing in Patients with Acute Kidney Injury: “Enough But Not Too Much”. J. Intensive Care Med. 2016, 31, 164–176. [Google Scholar] [CrossRef]
- Zamoner, W.; Prado, I.R.S.; Balbi, A.L.; Ponce, D. Vancomycin dosing, monitoring and toxicity: Critical review of the clinical practice. Clin. Exp. Pharmacol. Physiol. 2019, 46, 292–301. [Google Scholar] [CrossRef]
- Gonzalez, L.S., 3rd; Spencer, J.P. Aminoglycosides: A practical review. Am. Fam. Physician 1998, 58, 1811–1820. [Google Scholar] [PubMed]
- Chaijamorn, W.; Charoensareerat, T.; Srisawat, N.; Pattharachayakul, S.; Boonpeng, A. Cefepime dosing regimens in critically ill patients receiving continuous renal replacement therapy: A Monte Carlo simulation study. J. Intensive Care 2018, 6, 61. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.R.; Chaijamorn, W.; Mueller, B.A. We Underdose Antibiotics in Patients on CRRT. Semin. Dial. 2016, 29, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Wilson, F.P.; Bachhuber, M.A.; Caroff, D.; Adler, R.; Fish, D.; Berns, J. Low cefepime concentrations during high blood and dialysate flow continuous venovenous hemodialysis. Antimicrob. Agents Chemother. 2012, 56, 2178–2180. [Google Scholar] [CrossRef] [PubMed]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Love, D.C.; Davis, M.F.; Bassett, A.; Gunther, A.; Nachman, K.E. Dose imprecision and resistance: Free-choice medicated feeds in industrial food animal production in the United States. Environ. Health Perspect. 2011, 119, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.K.; Hsu, R.K.; Liu, K.D. Management of Acute Kidney Injury: Core Curriculum 2018. Am. J. Kidney Dis. 2018, 72, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Perazella, M.A. Pharmacology behind Common Drug Nephrotoxicities. Clin. J. Am. Soc. Nephrol. 2018, 13, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.M.; Power, B.M. Benefits and risks of furosemide in acute kidney injury. Anaesthesia 2010, 65, 283–293. [Google Scholar] [CrossRef]
- Hewitt, J.; Uniacke, M.; Hansi, N.K.; Venkat-Raman, G.; McCarthy, K. Sodium bicarbonate supplements for treating acute kidney injury. Cochrane Database Syst. Rev. 2012, 6, CD009204. [Google Scholar] [CrossRef]
- Jaber, S.; Paugam, C.; Futier, E.; Lefrant, J.-Y.; Lasocki, S.; Lescot, T.; Pottecher, J.; Demoule, A.; Ferrandière, M.; Asehnoune, K.; et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): A multicentre, open-label, randomised controlled, phase 3 trial. Lancet 2018, 392, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Sterns, R.H.; Rojas, M.; Bernstein, P.; Chennupati, S. Ion-exchange resins for the treatment of hyperkalemia: Are they safe and effective? J. Am. Soc. Nephrol. 2010, 21, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Leaf, D.E.; Christov, M. Dysregulated Mineral Metabolism in AKI. Semin. Nephrol. 2019, 39, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Waikar, S.S. Phosphate Balance in Continuous Venovenous Hemofiltration. Am. J. Kidney Dis. 2013, 61, 1043–1045. [Google Scholar] [CrossRef] [PubMed]
- Ghauri, S.K.; Javaeed, A.; Mustafa, K.J.; Podlasek, A.; Khan, A.S. Bicarbonate Therapy for Critically Ill Patients with Metabolic Acidosis: A Systematic Review. Cureus 2019, 11, e4297. [Google Scholar] [CrossRef] [PubMed]
- Diamantidis, C.J.; Zepel, L.; Smith, V.A.; Brookhart, M.A.; Burks, E.; Bowling, C.B.; Maciejewski, M.L.; Wang, V. Epidemiology of Community-Acquired Acute Kidney Injury Among US Veterans. Am. J. Kidney Dis. 2023, 82, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.D.; Goldstein, S.L.; Vijayan, A.; Parikh, C.R.; Kashani, K.; Okusa, M.D.; Agarwal, A.; Cerdá, J.; on behalf of the AKI!Now Initiative of the American Society of Nephrology. AKI!Now Initiative: Recommendations for Awareness, Recognition, and Management of AKI. Clin. J. Am. Soc. Nephrol. 2020, 15, 1838–1847. [Google Scholar] [CrossRef]
- Lee, P.W.; Wu, B.S.; Yang, C.Y.; Lee, O.K. Molecular Mechanisms of Mesenchymal Stem Cell-Based Therapy in Acute Kidney Injury. Int. J. Mol. Sci. 2021, 22, 11406. [Google Scholar] [CrossRef]
Fluid | NS | LR | Plasma-Lyte A | D5W | 5% Albumin | 25% Albumin | Blood |
---|---|---|---|---|---|---|---|
Composition | |||||||
Na+ (mEq/L) | 154 | 130 | 140 | 0 | 154 | 154 | 135–145 |
Cl− (mEq/L) | 154 | 109 | 98 | 0 | 154 | 154 | 94–111 |
K+ (mEq/L) | 0 | 4 | 5 | 0 | 0 | 0 | 4.5–5 |
Ca2+ (mEq/L) | 0 | 3 | 0 | 0 | 0 | 0 | 2.2–2.6 |
Mg2+ (mEq/L) | 0 | 0 | 3 | 0 | 0 | 0 | 0.8–1 |
Lactate (mEq/L) | 0 | 28 | 0 | 0 | 0 | 0 | 1–2 |
Gluconate (mEq/L) | 0 | 0 | 23 | 0 | 0 | 0 | 0 |
Acetate (mEq/L) | 0 | 0 | 27 | 0 | 0 | 0 | 0 |
Glucose (g/L) | 0 | 0 | 0 | 50 | 0 | 0 | 70–120 |
Albumin (g/L) | 0 | 0 | 0 | 0 | 50 | 250 | 0 |
Osmolarity (mOsm/L) | 308 | 275 | 294 | 278 | 308 | 308 | 275–290 |
pH | 5.4 | 6.5 | 7.4 | 4.2 | 7.4 | 7.4 | 7.4 |
Distribution (mL per 1 L infusion) | |||||||
Intracellular | 0 | 0 | 0 | 667 | 0 | 0 | 0 |
Interstitial | 750 | 750 | 750 | 250 | 100 | 100 | 0 |
Intravascular | 250 | 250 | 250 | 83 | 900 | 900 | 1000 |
“Absolute” Indications | |
Indication | Associated Characteristic(s) |
Azotemia | BUN ≥ 100 mg/dL |
Uremic complications | Encephalopathy Pericarditis Bleeding |
Hyperkalemia | K ≥ 6 mEq/L ECG abnormalities |
Hypermagnesemia | Mg ≥ 8 mEq/L Anuria Absent deep tendon reflexes |
Acidosis | Serum pH ≤ 7.15 |
Oligo-anuria | Urine output < 200 mL in 12 h Anuria |
Fluid overload | Diuretic-resistant pulmonary edema in presence of AKI |
Ingestion | Depends on ingested substance and antidotes available |
“Relative” Indications | |
In setting of AKI | Severe AKI Severely progressive AKI Severe illness Poor trajectory Poor response to resuscitation |
In absence of AKI | Acute liver failure Dysthermia Refractory septic shock Severe TLS Severe electrolyte disturbances (e.g., dysnatremia) |
Complications | Therapeutic Options |
---|---|
Azotemia | Lower protein load through diet Avoid medications that can increase BUN when feasible (e.g., corticosteroids) |
Hyponatremia | Limit water intake |
Hyperkalemia | Shifting therapies: Beta-agonists (e.g., albuterol), insulin + glucose Potassium resin exchangers: sodium zirconium cyclosilicate (Lokelma) or patiromer (Veltassa) Note: Ensure an intact colon for these therapies [113] Dialysis |
Hyperphosphatemia | Use of phosphate binders is controversial; caution in AKI patients on dialysis, especially with CKRT [114,115] Note: Binders may not be suitable for patients not eating |
Metabolic Acidosis | Consider alkali therapy; indications vary and are controversial, although a survival benefit in AKI has been described [112,116] Options include sodium bicarbonate tablets, sodium citrate/citric acid (Bicitra), IV sodium bicarbonate |
Volume overload | Diuretics Dialysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamargo, C.; Hanouneh, M.; Cervantes, C.E. Treatment of Acute Kidney Injury: A Review of Current Approaches and Emerging Innovations. J. Clin. Med. 2024, 13, 2455. https://doi.org/10.3390/jcm13092455
Tamargo C, Hanouneh M, Cervantes CE. Treatment of Acute Kidney Injury: A Review of Current Approaches and Emerging Innovations. Journal of Clinical Medicine. 2024; 13(9):2455. https://doi.org/10.3390/jcm13092455
Chicago/Turabian StyleTamargo, Christina, Mohamad Hanouneh, and C. Elena Cervantes. 2024. "Treatment of Acute Kidney Injury: A Review of Current Approaches and Emerging Innovations" Journal of Clinical Medicine 13, no. 9: 2455. https://doi.org/10.3390/jcm13092455
APA StyleTamargo, C., Hanouneh, M., & Cervantes, C. E. (2024). Treatment of Acute Kidney Injury: A Review of Current Approaches and Emerging Innovations. Journal of Clinical Medicine, 13(9), 2455. https://doi.org/10.3390/jcm13092455