The Impact of Music Perception on Quantitative Sensory Testing (QST)
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Study Design
2.3. QST Measure
2.4. Data Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beck, S.L. The therapeutic use of music for cancer related pain. Oncol. Nurs. Forum 1991, 18, 1327–1337. [Google Scholar]
- Mitchell, L.A.; Mcdonald, R.A.R.; Knussen, C.; Serpell, M.G. A survey investigation of the effects of music listening on chronic pain. Psychol. Music 2007, 35, 37–57. [Google Scholar] [CrossRef]
- Guétin, S.; Giniès, P.; Siou, D.K.; Picot, M.C.; Pommié, C.; Guldner, E.; Gosp, A.M.; Ostyn, K.; Coudeyre, E.; Touchon, J. The effects of music intervention in the management of chronic pain: A single-blind, randomized, controlled trial. Clin. J. Pain 2012, 28, 329–337. [Google Scholar] [CrossRef]
- Blood, A.J.; Zatorre, R.J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. USA 2001, 98, 11818–11823. [Google Scholar] [CrossRef]
- Boso, M.; Politi, P.; Barale, F.; Enzo, E. Neurophysiology and neurobiology of the musical experience. Funct. Neurol. 2006, 21, 187–191. [Google Scholar]
- Wiech, K.; Ploner, M.; Tracey, I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 2008, 12, 306–313. [Google Scholar] [CrossRef]
- Johnsen, E.L.; Tranel, D.; Lutgendorf, S.; Adolphs, R. A neuroanatomical dissociation for emotion induced by music. Int. J. Psychophysiol. 2009, 72, 24–33. [Google Scholar] [CrossRef]
- Bernatzky, G.; Presch, M.; Anderson, M.; Panksepp, J. Emotional foundations of music as a non-pharmacological pain management tool in modern medicine. Neurosci. Biobehav. Rev. 2011, 35, 1989–1999. [Google Scholar] [CrossRef]
- Panksepp, J.; Bernatzky, G. Emotional sounds and the brain: The neuro-affective foundations of musical appreciation. Behav. Process. 2002, 60, 133–155. [Google Scholar] [CrossRef]
- Spintge, R. The neurophysiology of emotion and its therapeutic application to music therapy and music medicine. In Applications of Music in Medicine; Maranto, C.D., Ed.; Nat Ass Music Therapy: Washington, DC, USA, 1991; pp. 59–72. [Google Scholar]
- Panksepp, J. The neurochemistry of behavior. Annu. Rev. Psychol. 1986, 37, 77–107. [Google Scholar] [CrossRef]
- Standley, J.M. Music research in medical/dental treatment: Meta-analysis and clinical applications. J. Music Ther. 1986, 23, 56–122. [Google Scholar] [CrossRef]
- Evans, D. The effectiveness of music as an intervention for hospital patients: A systematic review. J. Adv. Nurs. 2002, 37, 8–18. [Google Scholar] [CrossRef]
- Iwanaga, M.; Kobayashi, A.; Kawasaki, C. Heart rate variability with repetitive exposure to music. Biol. Psychol. 2005, 70, 61–66. [Google Scholar] [CrossRef]
- Argstatter, H.; Hillecke, T.K.; Bradt, J.; Dileo, C. Der Stand der Wirksamkeitsforschung—Ein systematisches Review musiktherapeutischer Metaanalysen. Verhal. Verhal. 2007, 28, 39–61. [Google Scholar]
- Chan, A.W.; MacFarlane, I.A.; Bowsher, D.; Campbell, J.A. Weighted needle pinprick sensory thresholds: A simple test of sensory function in diabetic peripheral neuropathy. J. Neurol. Neurosurg. Psychiatry 1992, 55, 56–59. [Google Scholar] [CrossRef]
- Zaslansky, R.; Yarnitsky, D. Clinical applications of quantitative sensory testing (QST). J. Neurol. Sci. 1998, 153, 215–238. [Google Scholar] [CrossRef]
- Rolke, R.; Baron, R.; Maier, C.; Tölle, T.R.; Treede, R.D.; Beyer, A.; Binder, A.; Birbaumer, N.; Birklein, F.; Bötefür, I.C.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Standardized protocol and reference values. Pain 2006, 123, 231–243. [Google Scholar] [CrossRef]
- Ertel, S. Standardisierung eines Eindruckdifferentials. Z. Exp. Angew. Psychol. 1965, 12, 22–58. [Google Scholar]
- Klauenberg, S.; Maier, C.; Assion, H.J.; Hoffmann, A.; Krumova, E.K.; Magerl, W.; Scherens, A.; Treede, R.D.; Juckel, G. Depression and changed pain perception: Hints for a central disinhibition mechanism. Pain 2008, 140, 332–343. [Google Scholar] [CrossRef]
- Suttrup, I.; Oberdiek, D.; Suttrup, J.; Osada, N.; Evers, S.; Marziniak, M. Loss of sensory function in patients with idiopathic hand dystonia. Mov. Disord. 2011, 26, 107–113. [Google Scholar] [CrossRef]
- Shy, M.E.; Frohman, E.M.; So, Y.T.; Arezzo, J.C.; Cornblath, D.R.; Giuliani, M.J.; Kincaid, J.C.; Ochoa, J.L.; Parry, G.J.; Weimer, L.H. Quantitative sensory testing: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2003, 60, 898–904. [Google Scholar] [CrossRef]
- Kaempf, G.; Amodei, M. The effect of music on anxiety. AORN J. 1989, 50, 112–118. [Google Scholar] [CrossRef]
- Myskja, A.; Lindbaek, M. Examples of the use of music in clinical medicine. Tidsskr. Nor. Laegeforen 2000, 120, 1186–1190. [Google Scholar] [CrossRef]
- Bradt, J.; Dileo, C. Music for stress and anxiety reduction in coronary heart disease patients. Cochrane Database Syst. Rev. 2013, 12, CD006577. [Google Scholar]
- Tang, H.Y.; Vezeau, T. The use of music intervention in healthcare research: A narrative review of the literature. J. Nurs. Res. 2010, 18, 174–190. [Google Scholar] [CrossRef]
- Burns, J.L.; Labbé, E.; Arke, B.; Capeless, K.; Cooksey, B.; Steadman, A.; Gonzales, C. The Effects of different types of music on perceived and physiological measures of stress. J. Music Ther. 2002, 39, 101–116. [Google Scholar] [CrossRef]
- Iwanaga, M.; Moroki, Y. Subjective and physiological responses to music stimuli controlled over activity and preference. J. Music Ther. 1999, 36, 26–38. [Google Scholar] [CrossRef]
- Iwanaga, M.; Tsukamoto, M. Effects of excitative and sedative music on subjective and physiological relaxation. Percept. Mot. Skills 1997, 85, 287–296. [Google Scholar] [CrossRef]
- Dainow, E. Physical effects and motor responses to music. J. Res. Music Educ. 1977, 25, 211–221. [Google Scholar] [CrossRef]
- Schön, D.; Magne, C.; Besson, M. The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology 2004, 41, 341–349. [Google Scholar] [CrossRef]
- Besson, M.; Schön, D.; Moreno, S.; Santos, A.; Magne, C. Influence of musical expertise and musical training on pitch processing in music and language. Restor. Neurol. Neurosci. 2007, 25, 399–410. [Google Scholar] [PubMed]
- Marques, C.; Moreno, S.; Castro, S.L.; Besson, M. Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. J. Cogn. Neurosci. 2007, 19, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
- Nikjeh, D.A.; Lister, J.J.; Frisch, S.A. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: Influence of music training. Ear Hear. 2009, 30, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Ruscheweyh, R.; Kreusch, A.; Albers, C.; Sommer, J.; Marziniak, M. The effect of distraction strategies on pain perception and the nociceptive flexor reflex (RIII reflex). Pain 2011, 152, 2662–2671. [Google Scholar] [CrossRef] [PubMed]
- Chai, P.R.; Gale, J.Y.; Patton, M.E.; Schwartz, E.; Jambaulikar, G.D.; Wade Taylor, S.; Edwards, R.R.; Boyer, E.W.; Schreiber, K.L. The impact of music on nociceptive processing. Pain Med. 2020, 21, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- LiKamWa, A.; Cardoso, J.; Sonke, J.; Fillingim, R.B.; Booker, S.Q. The effect of music on pain sensitivity in healthy adults. Arts Health 2022, 14, 66–84. [Google Scholar] [CrossRef]
- Lepping, R.J.; McMillan, M.L.; Chadwick, A.L.; Mansour, Z.M.; Martin, L.E.; Gustafson, K.M. Autonomic nervous system markers of music-elicited analgesia in people with fibromyalgia: A double-blind randomized pilot study. Front. Pain Res. 2022, 3, 953118. [Google Scholar] [CrossRef]
- Colebaugh, C.A.; Wilson, J.M.; Flowers, K.M.; Overstreet, D.; Wang, D.; Edwards, R.R.; Chai, P.R.; Schreiber, K.L. The impact of varied music applications on pain perception and situational pain catastrophizing. J. Pain 2023, 24, 1181–1192. [Google Scholar] [CrossRef]
- Timmerman, H.; van Boekel, R.L.M.; van de Linde, L.S.; Bronkhorst, E.M.; Vissers, K.C.P.; van der Wal, S.E.I.; Steegers, M.A.H. The effect of preferred music versus disliked music on pain thresholds in healthy volunteers. An observational study. PLoS ONE 2023, 18, e0280036. [Google Scholar] [CrossRef]
- Wilson, J.M.; Franqueiro, A.R.; Edwards, R.R.; Chai, P.R.; Schreiber, K.L. Individuals with fibromyalgia report greater pain sensitivity than healthy adults while listening to their favorite music: The contribution of negative affect. Pain Med. 2024, in press. [CrossRef]
- Blood, A.J.; Zatorre, R.J.; Bermudez, P.; Evans, A.C. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 1999, 2, 382–387. [Google Scholar] [CrossRef]
- Engel, G.L. The clinical application of the biopsychosocial model. Am. J. Psychiatry 1980, 137, 535–544. [Google Scholar]
- Roy, M.; Peretz, I.; Rainville, P. Emotional valence contributes to music-induced analgesia. Pain 2008, 134, 140–147. [Google Scholar] [CrossRef]
Baseline | After Brahms | After Penderecki | Significance | (After Break) | |
---|---|---|---|---|---|
cold detection | −1.9 +/− 2.4 | −1.4 +/− 0.7 | −1.9 +/− 0.9 | p = 0.043 a | −1.9 +/− 1.0 |
warm detection | 1.9 +/− 0.5 | 2.2 +/− 1.0 | 1.9 +/− 0.6 | ns (p = 0.538) | 2.1 +/− 0.7 |
cold pain | 19.1 +/− 8.1 | 22.2 +/− 7.2 | 21.7 +/− 7.3 | p = 0.023 b | 20.7 +/− 7.1 |
heat pain | 41.2 +/− 3.4 | 41.6 +/− 3.2 | 41.2 +/− 3.4 | ns (p = 0.377) | 41.0 +/− 2.8 |
mechanic detection | 3.3 +/− 3.0 | 2.4 +/− 2.4 c | 3.3 +/− 2.6 | ns (p = 0.165) | 3.4 +/− 2.6 |
mechanic pain | 30.3 +/− 38.2 | 33.9 +/− 39.2 | 28.1 +/− 24.5 | ns (p = 0.311) | 28.1 +/− 21.5 |
wind-up | 2.8 +/− 1.2 | 2.8 +/− 1.3 | 3.4 +/− 1.3 | p = 0.022 d | 3.0 +/− 1.7 |
vibration detection | 7.2 +/− 0.5 | 7.1 +/− 0.8 | 7.2 +/− 0.8 | ns (p = 0.408) | 7.3 +/− 0.9 |
pressure pain | 4.4 +/− 1.3 | 4.3 +/− 1.3 | 4.2 +/− 1.3 | ns (p = 0.428) | 4.3 +/− 1.1 |
After Brahms | After Penderecki | Significance | |
---|---|---|---|
CDT | 0.5 +/− 2.2 | 0.1 +/− 2.0 | p = 0.014 |
WDT | 0.6 +/− 1.8 | −0.01 +/− 1.1 | ns (p = 0.296) |
CPT | 0.4 +/− 0.7 | 0.3 +/− 0.7 | ns (p = 0.563) |
HPT | 0.01 +/− 0.7 | −0.1 +/− 0.6 | ns (p = 0.601) |
MDT | −0.3 +/− 0.8 | 0.02 +/− 0.6 | p = 0.018 |
MPT | 0.3 +/− 1.3 | −0.1 +/− 0.8 | ns (p = 0.433) |
WUR | 0.1 +/− 0.5 | 0.5 +/− 0.8 | p = 0.017 |
VDT | −0.1 +/− 1.1 | 0.1 +/− 1.2 | ns (p = 0.285) |
PPT | −0.1 +/− 0.3 | −0.1 +/− 0.3 | ns (p = 0.469) |
After Brahms | After Penderecki | |||
---|---|---|---|---|
Musicians | Non-Musicians | Musicians | Non-Musicians | |
cold detection | 0.3 +/− 1.0 | 0.7 +/− 3.0 (p = 0.912) | −0.1 +/− 1.4 | 0.3 +/− 2.6 (p = 0.529) |
warm detection | 0.5 +/− 1.0 | 0.7 +/− 2.4 (p = 0.796) | 0.1 +/− 1.3 | −0.1 +/− 1.1 (p = 0.853) |
cold pain | 0.4 +/− 0.5 | 0.3 +/− 0.9 (p = 1.0) | 0.4 +/− 0.6 | 0.3 +/− 0.9 (p = 0.796) |
heat pain | −0.1 +/− 0.6 | 0.1 +/− 0.8 (p = 0.684) | −0.2 +/− 0.3 | −0.1 +/− 0.7 (p = 0.971) |
mechanic detection | −0.4 +/− 0.8 | −0.2 +/− 0.9 (p = 0.684) | 0.1 +/− 0.6 | −0.1 +/− 0.6 (p = 0.739) |
mechanic pain | 0.4 +/− 0.6 | 0.2 +/− 1.8 (p = 0.280) | 0.1 +/− 0.5 | −0.2 +/− 1.0 (p = 0.631) |
wind-up | 0.2 +/− 0.5 | −0.1 +/− 0.5 (p = 0.315) | 0.4 +/− 0.8 | 0.6 +/− 0.9 (p = 0.529) |
vibration detection | −0.3 +/− 1.2 | 0.1 +/− 1.0 (p = 0.853) | −0.1 +/− 1.4 | 0.2 +/− 1.1 (p = 0.393) |
pressure pain | −0.1 +/− 0.3 | −0.1 +/− 0.3 (p = 0.739) | −0.1 +/− 0.2 | −0.1 +/− 0.4 (p = 0.971) |
Musicians | Non-Musicians | Significance | |
---|---|---|---|
(n = 10) | (n = 10) | ||
Listening to Brahms | 2.5 +/− 4.0 | 6.9 +/− 5.6 | ns (p = 0.063) |
Listening to Penderecki | −0.4 +/− 4.5 | −0.5 +/− 4.2 | ns (p = 1.0) |
After final break | 1.2 +/− 2.6 | 0.4 +/− 2.8 | ns (p = 0.631) |
After Listening to Brahms’ Music | After Listening to Penderecki’s Music | |
---|---|---|
cold detection | r = −0.067 (p = 0.780) | r = 0.265 (p = 0.258) |
warm detection | r = −0.009 (p = 0.968) | r = −0.073 (p = 0.758) |
cold pain | r = 0.418 p = 0.017 | r = −0.070 (p = 0.771) |
heat pain | r = −0.024 (p = 0.921) | r = 0.076 (p = 0.749) |
mechanic detection | r = 0.115 (p = 0.629) | r = −0.210 (p = 0.374) |
mechanic pain | r = −0.214 (p = 0.378) | r = −0.194 (p = 0.414) |
wind-up | r = 0.005 (p = 0.985) | r = −0.372 (p = 0.106) |
vibration detection | r = −0.176 (p = 0.458) | r = −0.01 (p = 0.685) |
pressure pain | r = 0.188 (p = 0.427) | r = 0.159 (p = 0.504) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evers, S.; Brameyer, H.; Pogatzki-Zahn, E. The Impact of Music Perception on Quantitative Sensory Testing (QST). J. Clin. Med. 2024, 13, 2471. https://doi.org/10.3390/jcm13092471
Evers S, Brameyer H, Pogatzki-Zahn E. The Impact of Music Perception on Quantitative Sensory Testing (QST). Journal of Clinical Medicine. 2024; 13(9):2471. https://doi.org/10.3390/jcm13092471
Chicago/Turabian StyleEvers, Stefan, Henning Brameyer, and Esther Pogatzki-Zahn. 2024. "The Impact of Music Perception on Quantitative Sensory Testing (QST)" Journal of Clinical Medicine 13, no. 9: 2471. https://doi.org/10.3390/jcm13092471
APA StyleEvers, S., Brameyer, H., & Pogatzki-Zahn, E. (2024). The Impact of Music Perception on Quantitative Sensory Testing (QST). Journal of Clinical Medicine, 13(9), 2471. https://doi.org/10.3390/jcm13092471