Effect of Annoying Sounds on Postural Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Measurement Protocol
2.2. Hearing Hyperacusis Questionnaire (HQ)
2.3. Assessed Linear and Nonlinear Parameters
2.4. Statistical Analysis
3. Results
3.1. Gender Differences
3.2. Effects of Disabling Visual Control and Both Disabling Visual Control and Annoying Sound on Postural Control
3.3. The Spearman Correlation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- de Carvalho, G.M. Up-to-Date in Auditory Neuropathy Spectrum Disorder—Clinical, Diagnostic and Therapeutic Features. In Hearing Loss: Etiology, Management and Societal Implications; Nova Publishers, Inc.: Hauppauge, NY, USA, 2017; pp. 153–164. [Google Scholar]
- Siedlecka, B.; Sobera, M.; Sikora, A.; Drzewowska, I. The influence of sounds on posture control. Acta Bioeng. Biomech. 2015, 17, 96–102. [Google Scholar]
- Mainenti, M.R.; De Oliveira, L.F.; De Melo Tavares De Lima, M.A.; Nadal, J. Stabilometric signal analysis in tests with sound stimuli. Exp. Brain Res. 2007, 181, 229–236. [Google Scholar] [CrossRef]
- Halmagyi, G.M.; Curthoys, I.S.; Colebatch, J.G.; Aw, S.T. Vestibular responses to sound. Ann. N. Y. Acad. Sci. 2005, 1039, 54–67. [Google Scholar] [CrossRef]
- Sánchez López de Nava, A.; Lasrado, S. Physiology, Ear. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Agaeva, M.Y.; Altman, Y.A. Effect of a Sound Stimulus on Postural Reactions. Hum. Physiol. 2005, 31, 511–514. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, K.; Lockhart, T.; Kim, S. Effects of Sound on Postural Stability during Quiet Standing. J. NeuroEngineering Rehabil. 2011, 8, 67. [Google Scholar] [CrossRef]
- Alessandrini, M.; Lanciani, R.; Bruno, E.; Napolitano, B.; Di Girolamo, S. Posturography frequency analysis of sound-evoked body sway in normal subjects. Eur. Arch. Oto-Rhino-Laryngol. 2006, 263, 248–252. [Google Scholar] [CrossRef]
- Kapoula, Z.; Yang, Q.; Le, T.-T.; Vernet, M.; Berbey, N.; Orssaud, C.; Londero, A.; Bonfils, P. Medio-Lateral Postural Instability in Subjects with Tinnitus. Front. Neurol. 2011, 2, 35. [Google Scholar] [CrossRef]
- Kędziorek, J.; Błażkiewicz, M. Nonlinear Measures to Evaluate Upright Postural Stability: A Systematic Review. Entropy 2020, 22, 1357. [Google Scholar] [CrossRef] [PubMed]
- AMTI Balance Clinic Users Manual Version 11; AMTI: Pasig, Philippines, 2001.
- Stergiou, N. Nonlinear Analysis for Human Movement Variability; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–388. [Google Scholar]
- Khalfa, S.; Dubal, S.; Veuillet, E.; Perez-Diaz, F.; Jouvent, R.; Collet, L. Psychometric normalization of a hyperacusis questionnaire. ORL J. Oto-Rhino-Laryngol. Its Relat. Spec. 2002, 64, 436–442. [Google Scholar] [CrossRef]
- Aazh, H.; Moore, B.C.J. Factors related to uncomfortable loudness levels for patients seen in a tinnitus and hyperacusis clinic. Int. J. Audiol. 2017, 56, 793–800. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Razjouyan, J.; Shahriar, G.; Fallah, A.; Khayat, O.; Ghergherehchi, M.; Afarideh, H.; Moghaddasi, M. A neuro-fuzzy based model for accurate estimation of the Lyapunov exponents of an unknown dynamical system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2012, 22, 1250043. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, S.; Ma, D.; Liu, B.; Lin, H.; Li, S. Meteorological Factors Affecting Pan Evaporation in the Haihe River Basin and China. Water 2019, 11, 317. [Google Scholar] [CrossRef]
- Das, A.; Kishore, J. Noise levels and annoyance among staff in a tertiary care hospital in North India: A cross-sectional study. Arch. Environ. Occup. Health 2023, 78, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, H.; Ojo, R.; Daugherty, J.; Nazarian, R.; Wazen, J. Minimally Invasive Surgery for the Treatment of Hyperacusis. Otol. Neurotol. 2016, 37, 1. [Google Scholar] [CrossRef]
- Yilmaz, S.; Taş, M.; Bulut, E.; Nurçin, E. Assessment of Reduced Tolerance to Sound (Hyperacusis) in University Students. Noise Health 2017, 19, 73–78. [Google Scholar]
- Hasson, D.; Theorell, T.; Bergquist, J.; Canlon, B. Acute stress induces hyperacusis in women with high levels of emotional exhaustion. PLoS ONE 2013, 8, e52945. [Google Scholar] [CrossRef]
- Baribeau, J. Hormonal related variability in auditory dysfunctions. Annu. Rev. CyberTherapy Telemed. 2007, 107–113. [Google Scholar]
- Savard, M.A.; Sares, A.G.; Coffey, E.B.J.; Deroche, M.L.D. Specificity of Affective Responses in Misophonia Depends on Trigger Identification. Front. Neurosci. 2022, 16, 879583. [Google Scholar] [CrossRef] [PubMed]
Group | Age [Years] | Body Weight [kg] | Body Height [cm] |
---|---|---|---|
Women (n = 17) | 22.24 ± 3.01 | 63.12 ± 13.83 | 168.94 ± 6.71 |
Men (n = 17) | 20.59 ± 1.33 | 74.65 ± 11.52 | 179.47 ± 8.47 |
All (n = 34) | 21.41 ± 2.44 | 68.89 ± 13.83 | 174.21 ± 9.23 |
Classification Values | Interpretation (Measure of Strength) |
---|---|
r = 0 | no correlation |
0 < |r| < 0.20 | very weak |
0.20 ≤ |r| < 0.40 | weak |
0.40 ≤ |r| < 0.60 | moderate |
0.60 ≤ |r| < 0.80 | strong |
0.80 ≤ |r| < 1 | very strong |
r = 1 | monotonic correlation |
Parameters | ECS W | ECS M | U Mann Whitney Test p-Value |
---|---|---|---|
CoP path length [mm] | 352.12 ± 159.9 | 285.88 ± 105.42 | - |
CoP path length AP [mm] | 277.59 ± 136.63 | 224.41 ± 92.49 | - |
CoP path length ML [mm] | 161 ± 65.62 | 131.71 ± 48.71 | - |
CoP velocity [mm/s] | 11.74 ± 5.32 | 9.54 ± 3.51 | - |
CoP velocity AP [mm/s] | 9.7 ± 5.18 | 8.22 ± 3.46 | - |
CoP velocity ML [mm/s] | 5.28 ± 3.03 | 4.68 ± 2.56 | - |
SampEn AP [-] | 0.08 ± 0.03 | 0.06 ± 0.02 | p = 0.01 |
SampEn ML [-] | 0.08 ± 0.03 | 0.08 ± 0.03 | - |
FD AP [-] | 1.25 ± 0.07 | 1.24 ± 0.07 | - |
FD ML [-] | 1.28 ± 0.08 | 1.27 ± 0.06 | - |
LyE AP [-] | 1.44 ± 0.19 | 1.38 ± 0.11 | - |
LyE ML [-] | 1.14 ± 0.27 | 1.02 ± 0.21 | - |
HQ [point] | 13 ± 8.7 | 6.71 ± 5.16 | p = 0.03 |
SE [point] | 8.47 ± 1.37 | 6.59 ± 1.84 | p < 0.001 |
HQ ALL [point] | 9.85 ± 7.73 | - | |
SE ALL [point] | 7.53 ± 1.86 | - |
Parameters | EO | EC | ECS | EO vs. EC | EO vs. ECS | EC vs. ECS |
---|---|---|---|---|---|---|
Linear | ||||||
CoP path length [mm] | 247.03 ± 65.79 | 298.68 ± 89.34 | 319 ± 137.54 | p < 0.001 | p < 0.001 | - |
CoP path length AP [mm] | 185.15 ± 47.5 | 231.35 ± 67.08 | 251 ± 118.01 | p < 0.001 | p < 0.001 | - |
CoP path length ML [mm] | 125.18 ± 42.64 | 141.15 ± 53.25 | 146.35 ± 58.92 | p = 0.03 | p = 0.02 | - |
CoP velocity [mm/s] | 8.24 ± 2.19 | 9.96 ± 2.97 | 10.64 ± 4.58 | p < 0.001 | p < 0.001 | - |
CoP velocity AP [mm/s] | 6.15 ± 1.93 | 8.47 ± 2.71 | 8.96 ± 4.41 | p < 0.001 | p < 0.001 | - |
CoP velocity ML [mm/s] | 4 ± 1.87 | 4.82 ± 2.17 | 4.98 ± 2.78 | - | - | - |
Nonlinear | ||||||
SampEn AP [-] | 0.05 ± 0.02 | 0.06 ± 0.02 | 0.07 ± 0.02 | p = 0.04 | p < 0.001 | p = 0.01 |
SampEn ML [-] | 0.08 ± 0.03 | 0.08 ± 0.03 | 0.08 ± 0.03 | - | - | - |
FD AP [-] | 1.21 ± 0.08 | 1.24 ± 0.07 | 1.25 ± 0.07 | p = 0.02 | p = 0.005 | - |
FD ML [-] | 1.26 ± 0.07 | 1.27 ± 0.06 | 1.28 ± 0.07 | - | - | - |
LyE AP [-] | 1.32 ± 0.13 | 1.41 ± 0.15 | 1.41 ± 0.15 | p = 0.007 | p = 0.005 | - |
LyE ML [-] | 1.03 ± 0.21 | 1.06 ± 0.25 | 1.08 ± 0.24 | - | p = 0.003 | - |
Parameters | r ECS ALL | r ECS W | r ECS M |
---|---|---|---|
CoP path length [mm] | HQ: 0.21, p = 0.22 SE: 0.29, p = 0.09 | HQ: 0.27, p = 0.28 SE: 0.35, p = 0.15 | HQ: 0.01, p = 0.95 SE: 0.19, p = 0.46 |
CoP path length AP [mm] | HQ: 0.28, p = 0.10 SE: 0.33, p = 0.05 | HQ: 0.31, p = 0.21 SE: 0.34, p = 0.17 | HQ: 0.15, p = 0.54 SE: 0.26, p = 0.31 |
CoP path length ML [mm] | HQ: 0.17, p = 0.32 SE: 0.27, p = 0.12 | HQ: 0.12, p = 0.62 SE: 0.27, p = 0.28 | HQ: 0.04, p = 0.86 SE: 0.14, p = 0.57 |
CoP velocity [mm/s] | HQ: 0.21, p = 0.22 SE: 0.28, p = 0.09 | HQ: 0.27, p = 0.29 SE: 0.35, p = 0.16 | HQ: 0.03, p = 0.89 SE: 0.19, p = 0.46 |
CoP velocity AP [mm/s] | HQ: 0.27, p = 0.18 SE: 0.33, p = 0.06 | HQ: 0.26, p = 0.31 SE: 0.29, p = 0.25 | HQ: 0.27, p = 0.29 SE: 0.45 *, p = 0.06 |
CoP velocity ML [mm/s] | HQ: 0.23, p = 0.12 SE: 0.24, p = 0.17 | HQ: 0.36, p = 0.14 SE: 0.43 *, p = 0.08 | HQ: 0.07, p = 0.78 SE: 0.04, p = 0.85 |
SampEn AP [-] | HQ: 0.23, p = 0.19 SE: 0.41 *, p = 0.01 ^ | HQ: −0.08 **, p = 0.74 SE: −0.04 **, p = 0.85 | HQ: 0.22, p = 0.39 SE: 0.39, p = 0.11 |
SampEn ML [-] | HQ: −0.13 **, p = 0.44 SE: 0.01, p = 0.94 | HQ: 0, p = 1 SE: −0.03, p = 0.90 | HQ: −0.39 **, p = 0.12 SE: −0.18, p = 0.48 |
FD AP [-] | HQ: −0.07 **, p = 0.67 SE: 0.13, p = 0.46 | HQ: −0.03 **, p = 0.88 SE: 0.12, p = 0.62 | HQ: −0.19 **, p = 0.45 SE: 0.11, p = 0.66 |
FD ML [-] | HQ: −0.29 **, p = 0.09 SE: −0.08 **, p = 0.65 | HQ: −0.27 **, p = 0.29 SE: −0.06 **, p = 0.81 | HQ: −0.38 **, p = 0.12 SE: −0.16 **, p = 0.52 |
LyE AP [-] | HQ: 0.21, p = 0.22 SE: 0.19, p = 0.28 | HQ: 0.39, p = 0.12 SE: 0.46 *, p = 0.06 | HQ: 0, p = 0.97 SE: −0.15 **, p = 0.56 |
LyE ML [-] | HQ: 0.13, p = 0.44 SE: 0.18, p = 0.30 | HQ: 0.06, p = 0.81 SE: 0.22, p = 0.38 | HQ: 0.08, p = 0.76 SE: −0.03 **, p = 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błażkiewicz, M.; Gulatowska, M.; Hadamus, A.; Kędziorek, J.; Brzuszkiewicz-Kuźmicka, G. Effect of Annoying Sounds on Postural Control. J. Clin. Med. 2024, 13, 2638. https://doi.org/10.3390/jcm13092638
Błażkiewicz M, Gulatowska M, Hadamus A, Kędziorek J, Brzuszkiewicz-Kuźmicka G. Effect of Annoying Sounds on Postural Control. Journal of Clinical Medicine. 2024; 13(9):2638. https://doi.org/10.3390/jcm13092638
Chicago/Turabian StyleBłażkiewicz, Michalina, Michalina Gulatowska, Anna Hadamus, Justyna Kędziorek, and Grażyna Brzuszkiewicz-Kuźmicka. 2024. "Effect of Annoying Sounds on Postural Control" Journal of Clinical Medicine 13, no. 9: 2638. https://doi.org/10.3390/jcm13092638
APA StyleBłażkiewicz, M., Gulatowska, M., Hadamus, A., Kędziorek, J., & Brzuszkiewicz-Kuźmicka, G. (2024). Effect of Annoying Sounds on Postural Control. Journal of Clinical Medicine, 13(9), 2638. https://doi.org/10.3390/jcm13092638