Exploring the Relationship Between Continuously Monitored Vital Signs, Clinical Deterioration, and Clinical Actions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Data
2.2. Clinical Actions as an Outcome
2.3. Vital Sign Monitoring Data and Alarming Minutes
2.4. Defining Endpoints, Periods, and Analysis
3. Results
3.1. Patient and Data Characteristics
3.2. Step 1: Correlation of Clinical Actions and Outcomes
3.3. Step 2: Correlation of Clinical Actions and Vital Signs
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number of Occurrences | |
---|---|
Total | 2749 |
REGISTERED SYMPTOMS | 485 |
Abnormal heart rhythm | 28 |
Abnormal blood pressure reading | 2 |
Abnormality of breathing | 110 |
Hypoxia | 15 |
Abnormalities of bowl moments | 12 |
Abnormalities of urination | 64 |
Somnolence/coma | 11 |
Bacteriemia | 6 |
Fever | 201 |
Extreme abnormalities of blood chemistry | 20 |
Extreme abnormalities of kidney function | 1 |
Extreme abnormalities of liver function | 5 |
Abnormality of blood glucose | 10 |
DIAGNOSTICS | 693 |
Imaging | 378 |
X-thorax | 144 |
CT-scan | 162 |
Ultrasound | 43 |
Other imaging | 29 |
Invasive diagnostics | 58 |
Lumbar punction | 16 |
Colonoscopy, endoscopy of gastroscopy | 18 |
Cardiac angiography | 4 |
Bronchoscopy | 5 |
Biopsy | 15 |
Electrocardiogram | 49 |
Pathology and microbiology | 136 |
Urgent laboratory inquiries | 65 |
Other diagnostics | 7 |
MEDICATIONS: STARTED OR CHANGED | 1152 |
Analgesia | 197 |
Antiarrhythmic | 32 |
Antibiotics | 297 |
Antihypertensive | 32 |
Antithrombotic | 10 |
Diuretics | 134 |
Oxygen therapy or respiratory medications | 59 |
Blood products | 37 |
Infusion fluids | 138 |
Glucose | 39 |
Electrolytes | 18 |
Steroids | 32 |
Others | 127 |
PHYSICAL INTERVENTIONS | 240 |
Rapid Response Team activation | 59 |
Punction or drainage | 81 |
Small surgical intervention | 20 |
Endoscopic probe placement | 39 |
Bronchial toilet | 6 |
Advanced urinary interventions | 9 |
Central venous catheter placement | 18 |
Other advanced medical interventions | 8 |
CONSULTATIONS | 179 |
Anesthesiology, pain, and palliative care | 13 |
Cardiology | 43 |
Surgery | 11 |
Neurology | 13 |
Pulmonology | 25 |
Internal medicine | 22 |
Urology | 16 |
Gastroenterology | 11 |
Other | 25 |
References
- Cardona-Morrell, M.; Prgomet, M.; Turner, R.M.; Nicholson, M.; Hillman, K. Effectiveness of continuous or intermittent vital signs monitoring in preventing adverse events on general wards: A systematic review and meta-analysis. Int. J. Clin. Pract. 2016, 70, 806–824. [Google Scholar] [CrossRef] [PubMed]
- Eddahchouri, Y.; Koeneman, M.; Plokker, M.; Brouwer, E.; van de Belt, T.H.; van Goor, H.; Bredie, S.J. Low compliance to a vital sign safety protocol on general hospital wards: A retrospective cohort study. Int. J. Nurs. Stud. 2021, 115, 103849. [Google Scholar] [CrossRef] [PubMed]
- Peelen, R.V.; Eddahchouri, Y.; Koeneman, M.; van de Belt, T.H.; van Goor, H.; Bredie, S.J. Algorithms for Prediction of Clinical Deterioration on the General Wards: A Scoping Review. J. Hosp. Med. 2021, 16, 612–619. [Google Scholar] [CrossRef]
- Khanna, A.K.; Hoppe, P.; Saugel, B. Automated continuous noninvasive ward monitoring: Future directions and challenges. Crit. Care 2019, 23, 194. [Google Scholar] [CrossRef] [PubMed]
- Eddahchouri, Y.; Peelen, R.V.; Koeneman, M.; Touw, H.R.W.; van Goor, H.; Bredie, S.J.H. Effect of continuous wireless vital sign monitoring on unplanned ICU admissions and rapid response team calls: A before-and-after study. Br. J. Anaesth. 2022, 128, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Rowland, B.A.; Motamedi, V.; Michard, F.; Saha, A.K.; Khanna, A.K. Impact of continuous and wireless monitoring of vital signs on clinical outcomes: A propensity-matched observational study of surgical ward patients. Br. J. Anaesth. 2024, 132, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Peelen, R.V.; Eddahchouri, Y.; Koeneman, M.; Melis, R.; van Goor, H.; Bredie, S.J.H. Comparing Continuous with Periodic Vital Sign Scoring for Clinical Deterioration Using a Patient Data Model. J. Med. Syst. 2023, 47, 60. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Einav, S.; Pearse, R.; Jaber, S.; Kranke, P.; Overdyk, F.J.; Whitaker, D.K.; Gordo, F.; Dahan, A.; Hoeft, A. Improving detection of patient deterioration in the general hospital ward environment. Eur. J. Anaesthesiol. 2018, 35, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Breteler, M.J.; KleinJan, E.; Numan, L.; Ruurda, J.P.; Van Hillegersberg, R.; Leenen, L.P.; Hermans, M.; Kalkman, C.J.; Blokhuis, T.J. Are current wireless monitoring systems capable of detecting adverse events in high-risk surgical patients? A descriptive study. Injury 2020, 51 (Suppl. S2), S97–S105. [Google Scholar] [CrossRef] [PubMed]
- Leenen, J.P.L.; Rasing, H.J.M.; van Dijk, J.D.; Kalkman, C.J.; Schoonhoven, L.; Patijn, G.A. Feasibility of wireless continuous monitoring of vital signs without using alarms on a general surgical ward: A mixed methods study. PLoS ONE 2022, 17, e0265435. [Google Scholar] [CrossRef]
- Reardon, P.M.; Seely, A.J.; Fernando, S.M.; Didcote, S.; Strachan, I.; Baudino, J.L.; Kyeremanteng, K. Can Early Warning Systems Enhance Detection of High Risk Patients by Rapid Response Teams? J. Intensive Care Med. 2021, 36, 542–549. [Google Scholar] [CrossRef] [PubMed]
- van Rossum, M.C.; Vlaskamp, L.B.; Posthuma, L.M.; Visscher, M.J.; Breteler, M.J.; Hermens, H.J.; Kalkman, C.J.; Preckel, B. Adaptive threshold-based alarm strategies for continuous vital signs monitoring. J. Clin. Monit. Comput. 2022, 36, 407–417. [Google Scholar] [CrossRef]
- van Ede, E.S.; Scheerhoorn, J.; Schonck, F.M.; van der Stam, J.A.; Buise, M.P.; Nienhuijs, S.W.; Bouwman, R.A. Lessons Learned from Telemonitoring in an Outpatient Bariatric Surgery Pathway-Secondary Outcomes of a Patient Preference Clinical Trial. Obes. Surg. 2023, 33, 2725–2733. [Google Scholar] [CrossRef]
- Telias, I.; Wilcox, M.E. Sleep and Circadian Rhythm in Critical Illness. Crit. Care 2019, 23, 82. [Google Scholar] [CrossRef]
- Mestrom, E.H.; van der Stam, J.A.; Nienhuijs, S.W.; de Hingh, I.H.; Boer, A.K.; van Riel, N.A.; Scharnhorst, V.; Bouwman, R.A. Postoperative circadian patterns in wearable sensor measured heart rate: A prospective observational study. J. Clin. Monit. Comput. 2024, 38, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Du, L.; Li, J.; Li, R.; Jin, X.; Ren, J.; Gao, Y.; Wang, X. Association between circadian variation of heart rate and mortality among critically ill patients: A retrospective cohort study. BMC Anesthesiol. 2022, 22, 45. [Google Scholar] [CrossRef]
- van Goor, H.M.R.; van Loon, K.; Breteler, M.J.M.; Kalkman, C.J.; Kaasjager, K.A.H. Circadian patterns of heart rate, respiratory rate and skin temperature in hospitalized COVID-19 patients. PLoS ONE 2022, 17, e0268065. [Google Scholar] [CrossRef]
- Neunhäuserer, D.; Reich, B.; Mayr, B.; Kaiser, B.; Lamprecht, B.; Niederseer, D.; Ermolao, A.; Studnicka, M.; Niebauer, J. Impact of exercise training and supplemental oxygen on submaximal exercise performance in patients with COPD. Scand. J. Med. Sci. Sports 2021, 31, 710–719. [Google Scholar] [CrossRef]
- Churpek, M.M.; Adhikari, R.; Edelson, D.P. The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation 2016, 102, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Escobar, G.J.; Liu, V.X.; Schuler, A.; Lawson, B.; Greene, J.D.; Kipnis, P. Automated Identification of Adults at Risk for In-Hospital Clinical Deterioration. N. Engl. J. Med. 2020, 383, 1951–1960. [Google Scholar] [CrossRef]
- Romero-Brufau, S.; Huddleston, J.M.; Escobar, G.J.; Liebow, M. Why the C-statistic is not informative to evaluate early warning scores and what metrics to use. Crit. Care 2015, 19, 285. [Google Scholar] [CrossRef]
- Dom Dera, J. Risk Stratification: A Two-Step Process for Identifying Your Sickest Patients. Fam. Pract. Manag. 2019, 26, 21–26. [Google Scholar]
Overall Monitored Population | Highly Qualitatively Monitored Patients with a Negative Clinical Endpoint | |
---|---|---|
No. of patients | 1529 | 56 |
Medical/Surgical admissions | 1005/524 | 24/32 |
Age (years) | 60.1 ± 25.1 | 63.0 ± 23.7 |
Male sex (%) | 51.9% | 66.1% |
ASA (I/II/III/IV) | 48/695/793/23 | 0/19/36/1 |
Full code on admission | 87.0% | 85.7% |
Endpoints | ||
Discharge or planned outcome | 1283 | - |
Monitoring stopped | 178 | - |
ICU-transfer | 38 | 31 |
Unplanned Surgery | 27 | 23 |
Death | 3 | 2 |
Length of Stay (IQR) | 100.7 (53.0–176.0) | 98.0 (65.8–165.1) |
1–5 Actions (n = 496) | 6–10 Actions (n = 91) | 11–15 Actions (n = 34) | >15 Actions (n = 15) | |
---|---|---|---|---|
0 actions (n = 715) | 5.9 (2.7–12.8; p < 0.001) | 17.3 (7.7–38.7; p < 0.001) | 21.7 (8.9–53.1; p < 0.001) | 42.3 (18.3–97.7; p < 0.001) |
1–5 actions (n = 496) | - | 2.9 (1.7–4.9; p = 0.001) | 3.6 (1.9–7.0; p = 0.001) | 7.1 (4.0–12.7 p < 0.001) |
6–10 actions (n = 91) | - | - | 1.3 (0.6–2.5; p = 0.524) | 3.8 (1.3–4.5; p = 0.005) |
11–15 actions (n = 34) | - | - | - | 1.9 (0.9–4.0; p = 0.077) |
Length of Stay | Actions/h | |||
---|---|---|---|---|
Median [IQR] (h) | MWU to Previous Group | Median [IQR] (Actions/h) | MWU to Previous Group | |
0 actions (n = 707) | 73.0 [43.0–89.9] | - | 0 | - |
1–5 actions (n = 463) | 144.0 [91.0–215.0] | U = 81,742.5 Z = −14.5 p < 0.001 | 0.014 [0.009–0.023] | p < 0.001 |
6–10 actions (n = 75) | 215.0 [168.0–333.0] | U = 9444.0 Z = −6.3 p < 0.001 | 0.033 [0.022–0.043] | U = 5981.0 Z = −9.1 p < 0.001 |
11–15 actions (n = 28) | 368.0 [220.0–608.5] | U = 588.5 Z = −3.4 p = 0.001 | 0.036 [0.021–0.059] | U = 992.0 Z = −0.4 p = 0.667 |
>15 actions (n = 10) | 494.5 [348.8–856.0] | U = 100 Z = −1.326 p = 0.194 | 0.044 [0.021–0.063] | U = 120.0 Z = −0.7 p = 0.524 |
Spearman’s Rho | ||
---|---|---|
Heart rate | 0.056 | p < 0.001 * |
Respiration rate | 0.032 | p < 0.001 * |
Blood oxygen saturation | 0.003 | p = 0.718 |
Systolic blood pressure | 0.021 | p = 0.018 * |
Mean arterial blood pressure | 0.025 | p = 0.005 * |
Visensia Safety Index | ||
Averaged VSI | 0.029 | p < 0.001 * |
Alarming VSI minutes | 0.007 | p = 0.327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peelen, R.V.; Eddahchouri, Y.; Spenkelink, I.M.; van Goor, H.; Bredie, S.J.H. Exploring the Relationship Between Continuously Monitored Vital Signs, Clinical Deterioration, and Clinical Actions. J. Clin. Med. 2025, 14, 281. https://doi.org/10.3390/jcm14010281
Peelen RV, Eddahchouri Y, Spenkelink IM, van Goor H, Bredie SJH. Exploring the Relationship Between Continuously Monitored Vital Signs, Clinical Deterioration, and Clinical Actions. Journal of Clinical Medicine. 2025; 14(1):281. https://doi.org/10.3390/jcm14010281
Chicago/Turabian StylePeelen, Roel V., Yassin Eddahchouri, Ilse M. Spenkelink, Harry van Goor, and Sebastian J. H. Bredie. 2025. "Exploring the Relationship Between Continuously Monitored Vital Signs, Clinical Deterioration, and Clinical Actions" Journal of Clinical Medicine 14, no. 1: 281. https://doi.org/10.3390/jcm14010281
APA StylePeelen, R. V., Eddahchouri, Y., Spenkelink, I. M., van Goor, H., & Bredie, S. J. H. (2025). Exploring the Relationship Between Continuously Monitored Vital Signs, Clinical Deterioration, and Clinical Actions. Journal of Clinical Medicine, 14(1), 281. https://doi.org/10.3390/jcm14010281