Retrospective Analysis of R-COMP Therapy in Patients with Diffuse Large B-Cell Lymphoma (DLBCL): Assessing the Impact of Sample Selection Bias
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Recommendations for Future Research
- Alternative statistical methods: Explore the use of alternative statistical tests that may be better suited to handling non-continuous or skewed data distributions, such as non-parametric methods or machine learning approaches for data imputation and comparison.
- Incorporation of artificial intelligence (AI): AI-driven techniques could be employed to analyze large datasets, helping to identify and mitigate biases, particularly in cases of missing data or unmeasured confounders. These methods could also generate synthetic cohorts to supplement traditional retrospective studies.
- Longitudinal studies and data quality: Future studies should aim for improved data quality, particularly in terms of completeness and consistency of variables, such as clinical outcomes and patient demographics. Longitudinal designs may also help to track outcomes over extended periods, providing more detailed insights into long-term effects.
- Multicenter and international studies: Expanding the scope of studies to include multicenter and international collaborations could enhance the generalizability of findings and provide a broader perspective on treatment efficacy across diverse patient populations.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Onida, F.; Gras, L.; Ge, J.; Koster, L.; Hamladji, R.M.; Byrne, J.; Avenoso, D.; Aljurf, M.; Robin, M.; Halaburda, K.; et al. Mismatched related donor allogeneic haematopoietic cell transplantation compared to other donor types for Ph+ chronic myeloid leukaemia: A retrospective analysis from the Chronic Malignancies Working Party of the EBMT. Br. J. Haematol. 2024, 204, 2365–2377. [Google Scholar] [CrossRef] [PubMed]
- Sever, M.; Drozd-Sokolowska, J.; Gras, L.; Koster, L.; Folber, F.; Mielke, S.; Fenk, R.; Basak, G.; Apperley, J.; Byrne, J.; et al. Satisfactory outcomes following a second autologous hematopoietic cell transplantation for multiple myeloma in poor stem cell mobilizers: A retrospective study on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Boyiadzis, M.; Zhang, M.J.; Chen, K.; Abdel-Azim, H.; Abid, M.B.; Aljurf, M.; Bacher, U.; Badar, T.; Badawy, S.M.; Battiwalla, M.; et al. Impact of pre-transplant induction and consolidation cycles on AML allogeneic transplant outcomes: A CIBMTR analysis in 3113 AML patients. Leukemia 2023, 37, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Krocker, J.; Jehn, C.; Michniewicz, K.; Lehenbauer-Dehm, S.; Eggemann, H.; Heilmann, V.; Kümmel, S.; Schulz, C.; Dieing, A.; et al. Primary chemotherapy with gemcitabine as prolonged infusion, non-pegylated liposomal doxorubicin and docetaxel in patients with early breast cancer: Final results of a phase II trial. Ann. Oncol. 2005, 16, 1624–1631. [Google Scholar] [CrossRef]
- Lotrionte, M.; Palazzoni, G.; Abbate, A.; De Marco, E.; Mezzaroma, E.; Di Persio, S.; Frati, G.; Loperfido, F.; Biondi-Zoccai, G. Cardiotoxicity of a non-pegylated liposomal doxorubicin-based regimen versus an epirubicin-based regimen for breast cancer: The LITE (Liposomal doxorubicin-Investigational chemotherapy-Tissue Doppler imaging Evaluation) randomized pilot study. Int. J. Cardiol. 2012, 167, 1055–1057. [Google Scholar] [CrossRef] [PubMed]
- McKelvey, E.M.; Gottlieb, J.A.; Wilson, H.E.; Haut, A.; Talley, R.W.; Stephens, R.; Lane, M.; Gamble, J.F.; Jones, S.E.; Grozea, P.N.; et al. Hydroxyldaunomycin (Adriamycin) combination chemotherapy in malignant lymphoma. Cancer 1976, 38, 1484–1493. [Google Scholar] [CrossRef]
- Gilladoga, A.C.; Manuel, C.; Tan, C.T.; Wollner, N.; Sternberg, S.S.; Murphy, M.L. The cardiotoxicity of adriamycin and daunomycin in children. Cancer 1976, 37, 1070–1078. [Google Scholar] [CrossRef]
- Chlebowski, R.T. Adriamycin (doxorubicin) cardiotoxicity: A review. West. J. Med. 1979, 131, 364. [Google Scholar] [PubMed]
- Camilli, M.; Cipolla, C.M.; Dent, S.; Minotti, G.; Cardinale, D.M. Anthracycline Cardiotoxicity in Adult Cancer patients: JACC: CardioOncology State-of-the-art review. Cardio Oncol. 2024, 6, 655–677. [Google Scholar]
- Schettini, F.; Giuliano, M.; Lambertini, M.; Bartsch, R.; Pinato, D.J.; Onesti, C.E.; Harbeck, N.; Lüftner, D.; Rottey, S.; Van Dam, P.A.; et al. Anthracyclines strike back: Rediscovering non-pegylated liposomal doxorubicin in current therapeutic scenarios of breast cancer. Cancers 2021, 13, 4421. [Google Scholar] [CrossRef] [PubMed]
- Rigacci, L.; Mappa, S.; Nassi, L.; Alterini, R.; Carrai, V.; Bernardi, F.; Bosi, A. Liposome-encapsulated doxorubicin in combination with cyclophosphamide, vincristine, prednisone and rituximab in patients with lymphoma and concurrent cardiac diseases or pre-treated with anthracyclines. Hematol. Oncol. 2007, 25, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Dell’Olio, M.; Potito scalzulli, R.; Sanpaolo, G.; Nobile, M.; Saverio mantuano, F.; La Sala, A.; D’arena, G.; Miraglia, E.; Lucania, A.; Mastrullo, L.; et al. Non-pegylated liposomal doxorubicin (Myocet®) in patients with poor-risk aggressive B-cell non-Hodgkin lymphoma. Leuk. Lymphoma 2011, 52, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Rigacci, L.; Annibali, O.; Kovalchuk, S.; Bonifacio, E.; Pregnolato, F.; Angrilli, F.; Vitolo, U.; Pozzi, S.; Broggi, S.; Luminari, S.; et al. Nonpeghylated liposomal doxorubicin combination regimen (R-COMP) for the treatment of lymphoma patients with advanced age or cardiac comorbidity. Hematol. Oncol. 2020, 38, 478–486. [Google Scholar] [CrossRef]
- Merli, F.; Luminari, S.; Tucci, A.; Arcari, A.; Rigacci, L.; Hawkes, E.; Chiattone, C.S.; Cavallo, F.; Cabras, G.; Alvarez, I.; et al. Simplified geriatric assessment in older patients with diffuse large B-cell lymphoma: The prospective elderly project of the Fondazione Italiana Linfomi. J. Clin. Oncol. 2021, 39, 1214–1222. [Google Scholar] [CrossRef]
- Arcari, A.; Rigacci, L.; Tucci, A.; Puccini, B.; Usai, S.V.; Cavallo, F.; Fabbri, A.; Balzarotti, M.; Pelliccia, S.; Luminari, S.; et al. A Fondazione Italiana Linfomi cohort study of R-COMP vs R-CHOP in older patients with diffuse large B-cell lymphoma. Blood Adv. 2023, 7, 4160–4169. [Google Scholar] [CrossRef] [PubMed]
- Scholz, F.W.; Stephens, M.A. K-sample Anderson–Darling tests. J. Am. Stat. Assoc. 1987, 82, 918–924. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Scholz, F.; Zhu, A. kSamples: K-Sample Rank Tests and Their Combinations; R Package Version 1.2-10. 2023. Available online: https://CRAN.R-project.org/package=kSamples (accessed on 13 January 2025).
- Talari, K.; Goyal, M. Retrospective studies–utility and caveats. J. R. Coll. Physicians Edinb. 2020, 50, 398–402. [Google Scholar] [CrossRef] [PubMed]
- D’amico, S.; Dall’Olio, D.; Sala, C.; Dall’Olio, L.; Sauta, E.; Zampini, M.; Asti, G.; Lanino, L.; Maggioni, G.; Campagna, A.; et al. Synthetic data generation by artificial intelligence to accelerate research and precision medicine in hematology. JCO Clin. Cancer Inform. 2023, 7, e2300021. [Google Scholar] [CrossRef] [PubMed]
- Piciocchi, A.; Cipriani, M.; Messina, M.; Marconi, G.; Arena, V.; Soddu, S.; Crea, E.; Feraco, M.V.; Ferrante, M.; La Sala, E.; et al. Unlocking the potential of synthetic patients for accelerating clinical trials: Results of the first GIMEMA experience on acute myeloid leukemia patients. EJHaem 2024, 5, 353–359. [Google Scholar] [CrossRef]
- Eckardt, J.-N.; Hahn, W.; Röllig, C.; Stasik, S.; Platzbecker, U.; Müller-Tidow, C.; Serve, H.; Baldus, C.D.; Schliemann, C.; Schäfer-Eckart, K.; et al. Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence. Npj Digit. Med. 2024, 7, 76. [Google Scholar] [CrossRef] [PubMed]
Variable | Description | Format |
---|---|---|
CENTRO | Health center and data collection site | String |
DATA_NASC | Date of birth of the patient | Date: “yyyy-mm-dd” |
SESSO | Gender of the patient | Binary: 1 = male 2 = female |
ETA | Patient’s age at the time of diagnosis (in years) | Numeric |
DATA_DIAG | Diagnosis date | Date: “yyyy-mm-dd” |
STADIO | Stage of the lymphoma | Factorial: from 1 to 4 |
SINTOMI | Presence/absence of systemic symptoms | Binary: 1 = No symptoms 2 = symptoms |
IPI | International Prognostic Index | Factorial: From 0 to 3 |
MOT_USOGOMP | Reason to use R-COMP | Factorial: 1 = Age 2 = Cardiac disease 3 = Previous use of anthracycline 4 = Isotype 5 = Controlled hypertension without stroke 6 = Severe arrhythmias |
DATA_FINETP | End of therapy date | Date: “yyyy-mm-dd” |
RISPOSTA_TP | Response to therapy (R-COMP) | Factorial: 0 = Complete Remission, 1 = Partial Remission, 2 = Non-response/progression, 3 = Non-evaluable for sudden death. |
DATA_RISPTP | Date of treatment response (R-COMP) was documented | Date: “yyyy-mm-dd” |
STATO | Health status at follow-up date | Factorial: 0 = Alive 1 = Dead 2 = Lost to follow-up |
RELAPSE | Relapse | Factorial: 0 = No, 1 = Yes, 2 = Never in Remission |
DATA_REC/PROG | Relapse date for patients in complete remission (RISPOSTA_TP = 0) or progression date for patients in partial remission or non-responders (RISPOSTA_TP = 1 or 2) | Date: “yyyy-mm-dd” |
DATA_FU | Follow-up date, which corresponds to the date of death for deceased patients | Date: “yyyy-mm-dd” |
CAUSA_MORTE | Cause of death | Factorial: 0 = Alive 1 = Lymphoma 2 = Non-cardiac therapy complication 3 = Acute cardiac episode 4 = Unknown/Not specified 5 = New neoplasm |
TRT2 | Time, in months, from the diagnosis date to the follow-up date. | Date: “yyyy-mm-dd” |
Variable | Retrospective n (p) | Prospective n (p) |
---|---|---|
Age in classes: | ||
0–65 | 120 (14%) | 0 (0%) |
65–69 | 131 (15%) | 40 (13%) |
70–79 | 478 (54%) | 201 (65%) |
80–89 | 143 (16%) | 67 (22%) |
90–95 | 5 (1%) | 0 (0%) |
NA | 69 (7%) | 0 (0%) |
Sex: | ||
1 = male | 284 (53%) | 153 (50%) |
2 = female | 252 (47%) | 155 (50%) |
NA | 410 (43%) | 0 (0%) |
Stage of lymphoma: | ||
1 | 115 (12%) | 33 (11%) |
2 | 189 (20%) | 63 (20%) |
3 | 203 (22%) | 53 (17%) |
4 | 435 (46%) | 159 (52%) |
NA | 4 (0.5%) | 0 (0%) |
IPI: | ||
0 | 184 (20%) | 60 (21%) |
1 | 282 (31%) | 69 (24%) |
2 | 288 (31%) | 88 (31%) |
3 | 162 (18%) | 70 (24%) |
NA | 30 (3%) | 21 (7%) |
Response to therapy: | ||
0 = Complete remission | 687 (72%) | 201 (66%) |
1 = Partial remission | 119 (13%) | 52 (17%) |
2 = Non-response/progression | 134 (14%) | 30 (10%) |
3 = Non-evaluable for sudden death | 6 (1%) | 23 (7%) |
NA | 0 (0%) | 2 (0.7%) |
Presence/absence of systemic symptoms: | ||
1 = No symptoms | 739 (81%) | 216 (70%) |
2 = Symptoms | 174 (19%) | 92 (30%) |
NA | 33 (4%) | 0 (0%) |
Relapse: | ||
0 = No | 566 (60%) | 206 (67%) |
1 = Yes | 129 (14%) | 81 (26%) |
2 = Never in Remission | 251 (26%) | 21 (7%) |
NA | 0 (0%) | 0 (0%) |
Cause of death: | ||
Alive | 614 (65%) | 231 (75%) |
Lymphoma | 207 (22%) | 57 (19%) |
Acute cardiac episode | 16 (2%) | 0 (0%) |
Other causes | 109 (11%) | 20 (6%) |
NA | 0 (0%) | 0 (0%) |
Variable | Retrospective n (p) | Prospective n (p) |
---|---|---|
Age in classes: | ||
65–69 | 131 (17%) | 40 (13%) |
70–79 | 478 (63%) | 201 (65%) |
80–89 | 143 (19%) | 67 (22%) |
90–95 | 5 (1%) | 0 (0%) |
NA | 0 (0%) | 0 (0%) |
Sex: | ||
1 = male | 229 (52%) | 153 (50%) |
2 = female | 214 (48%) | 155 (50%) |
NA | 314 (42%) | 0 (0%) |
Stage of lymphoma: | ||
1 | 97 (13%) | 33 (11%) |
2 | 161 (21%) | 63 (20%) |
3 | 166 (22%) | 53 (17%) |
4 | 332 (44%) | 159 (52%) |
NA | 1 (0.1%) | 0 (0%) |
IPI: | ||
0 | 145 (20%) | 60 (21%) |
1 | 233 (31%) | 69 (24%) |
2 | 232 (31%) | 88 (31%) |
3 | 131 (18%) | 70 (24%) |
NA | 16 (2%) | 21 (7%) |
Response to therapy: | ||
0 = Complete remission | 552 (73%) | 201 (66%) |
1 = Partial remission | 89 (12%) | 52 (17%) |
2 = Non-response/progression | 111 (14%) | 30 (10%) |
3 = Non-evaluable for sudden death | 5 (1%) | 23 (7%) |
NA | 0 (0%) | 2 (0.7%) |
Presence/absence of systemic symptoms: | ||
1 = No symptoms | 589 (80%) | 216 (70%) |
2 = Symptoms | 146 (20%) | 92 (30%) |
NA | 22 (3%) | 0 (0%) |
Relapse: | ||
0 = No | 452 (60%) | 206 (67%) |
1 = Yes | 104 (14%) | 81 (26%) |
2 = Never in Remission | 201 (26%) | 21 (7%) |
NA | 0 (0%) | 0 (0%) |
Cause of death: | ||
Alive | 485 (64%) | 231 (75%) |
Lymphoma | 175 (23%) | 57 (19%) |
Acute cardiac episode | 10 (1%) | 0 (0%) |
Other causes | 87 (12%) | 20 (6%) |
NA | 0 (0%) | 0 (0%) |
Number of samples: 2 | |||
Sample sizes: 308, 757 | |||
Number of ties: 221 | |||
Mean of Anderson–Darling Criterion: 1 | |||
Standard deviation of Anderson–Darling criterion: 0.76009 | |||
T.AD = (Anderson–Darling criterion − mean)/sigma | |||
Null hypothesis: All samples come from a common population. | |||
AD | T.AD | asympt. p-value | |
version 1: | 22.138 | 27.810 | 2.1177 × 10−12 |
version 2: | 22.200 | 27.831 | 2.2051 × 10−12 |
Sample sizes within each dataset: | |||
---|---|---|---|
Dataset 1: 33 63 53 159 | |||
Dataset 2: 97 161 166 332 | |||
Total sample size per dataset: 308 756 | |||
Number of unique values per dataset: 279 642 | |||
AD.i = Anderson–Darling criterion for i-th dataset | |||
Means: 3 3 | |||
Standard deviations: 1.30713 1.31388 | |||
T.i = (AD.i − mean.i)/sigma.i | |||
Null hypothesis: All samples within a dataset come from a common distribution. | |||
The common distribution may change between datasets. | |||
For Dataset 1, we obtain | |||
AD | T.AD | asympt. p-value | |
version 1: | 4.9182 | 1.4675 | 0.084444 |
version 2: | 4.9300 | 1.4756 | 0.083727 |
For Dataset 2, we obtain | |||
AD | T.AD | asympt. p-value | |
version 1: | 3.7171 | 0.54579 | 0.23577 |
version 2: | 3.7300 | 0.55548 | 0.23342 |
Combined Anderson–Darling criterion: AD.comb = AD.1 + AD.2 | |||
Mean = 6 Standard deviation = 1.85334 | |||
T.comb = (AD.comb − mean)/sigma | |||
AD.comb | T.comb | asympt. p-value | |
version 1: | 8.6353 | 1.4219 | 0.088954 |
version 2: | 8.6600 | 1.4352 | 0.087501 |
Sample sizes within each dataset: | |||
---|---|---|---|
Dataset 1: 60 69 88 70 | |||
Dataset 2: 145 233 232 131 | |||
Total sample size per dataset: 287 741 | |||
Number of unique values per dataset: 262 635 | |||
AD.i = Anderson–Darling criterion for i-th dataset | |||
Mean: 3 3 | |||
Standard deviations: 1.30547 and 1.31365 | |||
T.i = (AD.i − mean.i)/sigma.i | |||
Null hypothesis: All samples within a dataset come from a common distribution. | |||
The common distribution may change between datasets. | |||
For Dataset 1, we obtain | |||
AD | T.AD | asympt. p-value | |
version 1: | 6.6066 | 2.7627 | 0.018224 |
version 2: | 6.6400 | 2.7860 | 0.017743 |
For Dataset 2, we obtain | |||
AD | T.AD | asympt. p-value | |
version 1: | 16.962 | 10.629 | 4.8262 × 10−7 |
version 2: | 17.000 | 10.635 | 4.7151 × 10−7 |
Combined Anderson–Darling criterion: AD.comb = AD.1 + AD.2 | |||
Mean = 6 Standard deviation = 1.85201 | |||
T.comb = (AD.comb − mean)/sigma | |||
AD.comb | T.comb | asympt. p-value | |
version 1: | 23.569 | 9.4863 | 2 × 10−7 |
version 2: | 23.640 | 9.5248 | 2 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, C.; Branda, F.; Petrosillo, N.; Arcari, A.; Merli, F.; Spina, M.; Ceccarelli, G.; Ciccozzi, M.; Scarpa, F.; Rigacci, L. Retrospective Analysis of R-COMP Therapy in Patients with Diffuse Large B-Cell Lymphoma (DLBCL): Assessing the Impact of Sample Selection Bias. J. Clin. Med. 2025, 14, 639. https://doi.org/10.3390/jcm14020639
Romano C, Branda F, Petrosillo N, Arcari A, Merli F, Spina M, Ceccarelli G, Ciccozzi M, Scarpa F, Rigacci L. Retrospective Analysis of R-COMP Therapy in Patients with Diffuse Large B-Cell Lymphoma (DLBCL): Assessing the Impact of Sample Selection Bias. Journal of Clinical Medicine. 2025; 14(2):639. https://doi.org/10.3390/jcm14020639
Chicago/Turabian StyleRomano, Chiara, Francesco Branda, Nicola Petrosillo, Annalisa Arcari, Francesco Merli, Michele Spina, Giancarlo Ceccarelli, Massimo Ciccozzi, Fabio Scarpa, and Luigi Rigacci. 2025. "Retrospective Analysis of R-COMP Therapy in Patients with Diffuse Large B-Cell Lymphoma (DLBCL): Assessing the Impact of Sample Selection Bias" Journal of Clinical Medicine 14, no. 2: 639. https://doi.org/10.3390/jcm14020639
APA StyleRomano, C., Branda, F., Petrosillo, N., Arcari, A., Merli, F., Spina, M., Ceccarelli, G., Ciccozzi, M., Scarpa, F., & Rigacci, L. (2025). Retrospective Analysis of R-COMP Therapy in Patients with Diffuse Large B-Cell Lymphoma (DLBCL): Assessing the Impact of Sample Selection Bias. Journal of Clinical Medicine, 14(2), 639. https://doi.org/10.3390/jcm14020639