Prediction Model for POstoperative atriaL fibrillAtion in caRdIac Surgery: The POLARIS Score
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Endpoint and Definitions
2.3. Atrial Fibrillation Pharmacological Management
2.4. Statistical Analysis
3. Results
Derivation and Validation Cohorts
4. Discussion
4.1. Future Perspectives
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAD | Antiarrhythmic drugs |
AF | Atrial fibrillation |
CVA | Cerebrovascular accident |
POAF | Postoperative atrial fibrillation |
POLARIS | POstoperative atriaL fibrillAtion in caRdIac Surgery |
Appendix A
References
- Mariscalco, G.; Biancari, F.; Zanobini, M.; Cottini, M.; Piffaretti, G.; Saccocci, M.; Banach, M.; Beghi, C.; Angelini, G.D. Bedside Tool for Predicting the Risk of Postoperative Atrial Fibrillation after Cardiac Surgery: The POAF Score. J. Am. Heart Assoc. 2014, 3, e000752. [Google Scholar] [CrossRef]
- Greenberg, J.W.; Lancaster, T.S.; Schuessler, R.B.; Melby, S.J. Postoperative Atrial Fibrillation Following Cardiac Surgery: A Persistent Complication. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2017, 52, 665–672. [Google Scholar] [CrossRef]
- Dobrev, D.; Aguilar, M.; Heijman, J.; Guichard, J.-B.; Nattel, S. Postoperative Atrial Fibrillation: Mechanisms, Manifestations and Management. Nat. Rev. Cardiol. 2019, 16, 417–436. [Google Scholar] [CrossRef]
- Gaudino, M.; Di Franco, A.; Rong, L.Q.; Piccini, J.; Mack, M. Postoperative Atrial Fibrillation: From Mechanisms to Treatment. Eur. Heart J. 2023, 44, ehad019. [Google Scholar] [CrossRef]
- Thorén, E.; Hellgren, L.; Jidéus, L.; Ståhle, E. Prediction of Postoperative Atrial Fibrillation in a Large Coronary Artery Bypass Grafting Cohort. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 588–593. [Google Scholar] [CrossRef]
- Parise, O.; Parise, G.; Vaidyanathan, A.; Occhipinti, M.; Gharaviri, A.; Tetta, C.; Bidar, E.; Maesen, B.; Maessen, J.G.; La Meir, M.; et al. Machine Learning to Identify Patients at Risk of Developing New-Onset Atrial Fibrillation after Coronary Artery Bypass. J. Cardiovasc. Dev. Dis. 2023, 10, 82. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, C.; Yang, J.; Xiang, H.; Lan, W.; Tang, Y. A Novel Predictive Model for New-Onset Atrial Fibrillation in Patients after Isolated Cardiac Valve Surgery. Front. Cardiovasc. Med. 2022, 9, 949259. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J.G.M. Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach: The Euro Heart Survey on Atrial Fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef]
- Demography—Elderly Population—OECD Data. Available online: https://www.oecd.org/en/data/indicators/elderly-population.html (accessed on 1 March 2023).
- Goh, S.L.; Yap, K.H.; Chua, K.C.; Chao, V.T.T. Does Preoperative Statin Therapy Prevent Postoperative Atrial Fibrillation in Patients Undergoing Cardiac Surgery? Interact. Cardiovasc. Thorac. Surg. 2015, 20, 422–428. [Google Scholar] [CrossRef]
- Klinger, R.Y.; Thunberg, C.A.; White, W.D.; Fontes, M.; Waldron, N.H.; Piccini, J.P.; Hughes, G.C.; Podgoreanu, M.V.; Stafford-Smith, M.; Newman, M.F.; et al. Intraoperative Magnesium Administration Does Not Reduce Postoperative Atrial Fibrillation After Cardiac Surgery. Anesth. Analg. 2015, 121, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Lagier, D.; Nee, L.; Guieu, R.; Kerbaul, F.; Fenouillet, E.; Roux, N.; Giorgi, R.; Theron, A.; Grisoli, D.; Gariboldi, V.; et al. Peri-Operative Oral Caffeine Does Not Prevent Postoperative Atrial Fibrillation after Heart Valve Surgery with Cardiopulmonary Bypass: A Randomised Controlled Clinical Trial. Eur. J. Anaesthesiol. 2018, 35, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Thein, P.M.; White, K.; Banker, K.; Lunny, C.; Mirzaee, S.; Nasis, A. Preoperative Use of Oral Beta-Adrenergic Blocking Agents and the Incidence of New-Onset Atrial Fibrillation After Cardiac Surgery. A Systematic Review and Meta-Analysis. Heart Lung Circ. 2018, 27, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Amar, D.; Shi, W.; Hogue, C.W.; Zhang, H.; Passman, R.S.; Thomas, B.; Bach, P.B.; Damiano, R.; Thaler, H.T. Clinical Prediction Rule for Atrial Fibrillation After Coronary Artery Bypass Grafting. J. Am. Coll. Cardiol. 2004, 44, 1248–1253. [Google Scholar] [CrossRef]
- Mahoney, E.M.; Thompson, T.D.; Veledar, E.; Williams, J.; Weintraub, W.S. Cost-Effectiveness of Targeting Patients Undergoing Cardiac Surgery for Therapy with Intravenous Amiodarone to Prevent Atrial Fibrillation. J. Am. Coll. Cardiol. 2002, 40, 737–745. [Google Scholar] [CrossRef]
- Zaman, A.G.; Archbold, R.A.; Helft, G.; Paul, E.A.; Curzen, N.P.; Mills, P.G. Atrial Fibrillation after Coronary Artery Bypass Surgery: A Model for Preoperative Risk Stratification. Circulation 2000, 101, 1403–1408. [Google Scholar] [CrossRef]
- Magee, M.J.; Herbert, M.A.; Dewey, T.M.; Edgerton, J.R.; Ryan, W.H.; Prince, S.; Mack, M.J. Atrial Fibrillation after Coronary Artery Bypass Grafting Surgery: Development of a Predictive Risk Algorithm. Ann. Thorac. Surg. 2007, 83, 1707–1712, discussion 1712. [Google Scholar] [CrossRef]
- Mathew, J.P.; Fontes, M.L.; Tudor, I.C.; Ramsay, J.; Duke, P.; Mazer, C.D.; Barash, P.G.; Hsu, P.H.; Mangano, D.T.; Investigators of the Ischemia Research and Education Foundation; et al. A Multicenter Risk Index for Atrial Fibrillation after Cardiac Surgery. JAMA 2004, 291, 1720–1729. [Google Scholar] [CrossRef]
- Burgos, L.M.; Seoane, L.; Parodi, J.B.; Espinoza, J.; Galizia Brito, V.; Benzadón, M.; Navia, D. Postoperative Atrial Fibrillation Is Associated with Higher Scores on Predictive Indices. J. Thorac. Cardiovasc. Surg. 2019, 157, 2279–2286. [Google Scholar] [CrossRef]
- Cameron, M.J.; Tran, D.T.T.; Abboud, J.; Newton, E.K.; Rashidian, H.; Dupuis, J.-Y. Prospective External Validation of Three Preoperative Risk Scores for Prediction of New Onset Atrial Fibrillation After Cardiac Surgery. Anesth. Analg. 2018, 126, 33–38. [Google Scholar] [CrossRef]
- Tran, D.T.T.; Perry, J.J.; Dupuis, J.-Y.; Elmestekawy, E.; Wells, G.A. Predicting New-Onset Postoperative Atrial Fibrillation in Cardiac Surgery Patients. J. Cardiothorac. Vasc. Anesth. 2015, 29, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Dominici, C.; Chello, M. Concomitant Surgical Ablation for Treatment of Atrial Fibrillation in Patients Undergoing Cardiac Surgery. Rev. Cardiovasc. Med. 2022, 23, 101. [Google Scholar] [CrossRef] [PubMed]
- Baudo, M.; Rosati, F.; Lapenna, E.; Di Bacco, L.; Benussi, S. Surgical Options for Atrial Fibrillation Treatment during Concomitant Cardiac Procedures. Ann. Cardiothorac. Surg. 2024, 13, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Maimari, M.; Baikoussis, N.G.; Gaitanakis, S.; Dalipi-Triantafillou, A.; Katsaros, A.; Kantsos, C.; Lozos, V.; Triantafillou, K. Does Minimal Invasive Cardiac Surgery Reduce the Incidence of Post-Operative Atrial Fibrillation? Ann. Card. Anaesth. 2020, 23, 7–13. [Google Scholar] [CrossRef]
- Mihos, C.G.; Santana, O.; Lamas, G.A.; Lamelas, J. Incidence of Postoperative Atrial Fibrillation in Patients Undergoing Minimally Invasive versus Median Sternotomy Valve Surgery. J. Thorac. Cardiovasc. Surg. 2013, 146, 1436–1441. [Google Scholar] [CrossRef]
- Glower, D.D.; Desai, B.S.; Hughes, G.C.; Milano, C.A.; Gaca, J.G. Aortic Valve Replacement via Right Minithoracotomy versus Median Sternotomy: A Propensity Score Analysis. Innovations 2014, 9, 75–81, discussion 81. [Google Scholar] [CrossRef]
- Brinkman, W.T.; Hoffman, W.; Dewey, T.M.; Culica, D.; Prince, S.L.; Herbert, M.A.; Mack, M.J.; Ryan, W.H. Aortic Valve Replacement Surgery: Comparison of Outcomes in Matched Sternotomy and PORT ACCESS Groups. Ann. Thorac. Surg. 2010, 90, 131–135. [Google Scholar] [CrossRef]
- Murtuza, B.; Pepper, J.R.; Stanbridge, R.D.; Darzi, A.; Athanasiou, T. Does Minimal-Access Aortic Valve Replacement Reduce the Incidence of Postoperative Atrial Fibrillation? Tex. Heart Inst. J. 2008, 35, 428–438. [Google Scholar]
- Scott, L.; Li, N.; Dobrev, D. Role of Inflammatory Signaling in Atrial Fibrillation. Int. J. Cardiol. 2019, 287, 195–200. [Google Scholar] [CrossRef]
- Yao, C.; Veleva, T.; Scott, L.; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-Taha, I.; et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation 2018, 138, 2227–2242. [Google Scholar] [CrossRef]
- Schuessler, R.B.; Ishii, Y.; Khagi, Y.; Diabagate, K.; Boineau, J.P.; Damiano, R.J. The Effects of Inflammation on Heart Rate and Rhythm in a Canine Model of Cardiac Surgery. Heart Rhythm. 2012, 9, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Nakashima, H.; Saku, K. The HMG-CoA Reductase Inhibitor Atorvastatin Prevents Atrial Fibrillation by Inhibiting Inflammation in a Canine Sterile Pericarditis Model. Cardiovasc. Res. 2004, 62, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Zeng, M.; Liu, Y.; Xu, Y.; Bai, Y.; Cao, L.; Ling, Z.; Fan, J.; Yin, Y. CHA2DS2-VASc Score for Identifying Patients at High Risk of Postoperative Atrial Fibrillation After Cardiac Surgery: A Meta-Analysis. Ann. Thorac. Surg. 2020, 109, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Y.; Zhang, A.-D.; Lu, H.-Y.; Guo, J.; Wang, F.-F.; Li, Z.-C. CHADS2 versus CHA2DS2-VASc Score in Assessing the Stroke and Thromboembolism Risk Stratification in Patients with Atrial Fibrillation: A Systematic Review and Meta-Analysis. J. Geriatr. Cardiol. JGC 2013, 10, 258–266. [Google Scholar] [CrossRef]
- Mauro, M.D.; Calafiore, A.M.; Di Franco, A.; Nicolini, F.; Formica, F.; Scrofani, R.; Antona, C.; Messina, A.; Troise, G.; Mariscalco, G.; et al. Association Between Cardioplegia and Postoperative Atrial Fibrillation in Coronary Surgery. Int. J. Cardiol. 2021, 324, 38–43. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Developed with the Special Contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Karakasis, P.; Pamporis, K.; Siontis, K.C.; Theofilis, P.; Samaras, A.; Patoulias, D.; Stachteas, P.; Karagiannidis, E.; Stavropoulos, G.; Tzikas, A.; et al. Major Clinical Outcomes in Symptomatic vs. Asymptomatic Atrial Fibrillation: A Meta-Analysis. Eur. Heart J. 2024, ehae694. [Google Scholar] [CrossRef]
Variable | Overall (n = 5739) | Center 1 (n = 3467) | Center 2 (n = 2272) | p-Value |
---|---|---|---|---|
Age | 66 [56–73.40] | 65.40 [54.00–73.20] | 67.00 [58.00–74.00] | <0.001 |
Male sex | 4055 (70.7%) | 2525 (72.8%) | 1530 (67.3%) | <0.001 |
BMI | 25.95 [23.00–28.74] | 26.00 [23.03–29.00] | 25.00 [23.00–28.00] | 0.001 |
Obesity | 1003 (17.5%) | 634 (18.3%) | 369 (16.2%) | 0.051 |
Creatinine | 0.90 [0.80–1.09] | 0.90 [0.80, 1.10] | 0.93 [0.80–1.07] | 0.003 |
eGFR | 81.77 [64.84–93.33] | 83.17 [64.41–94.95] | 79.88 [65.39–90.90] | <0.001 |
CKD | 597 (10.4%) | 315 (9.1%) | 282 (12.4%) | <0.001 |
History of smoke | 1861 (32.4%) | 888 (25.6%) | 973 (42.8%) | <0.001 |
CAD familiarity | 1277 (22.3%) | 806 (23.2%) | 471 (20.7%) | 0.027 |
CAD | 2570 (44.8%) | 1734 (50.0%) | 836 (36.8%) | <0.001 |
Previous PTCA | 631 (11.0%) | 389 (11.2%) | 242 (10.7%) | 0.528 |
Diabetes | 1089 (19.0%) | 701 (20.2%) | 388 (17.2%) | 0.005 |
Dyslipidemia | 3055 (53.2%) | 1794 (51.7%) | 1261 (55.5%) | 0.006 |
Hypertension | 3980 (69.4%) | 2452 (70.7%) | 1528 (67.3%) | 0.006 |
AAD | 2581 (45.0%) | 1249 (36.0%) | 1332 (58.6%) | <0.001 |
Previous CVA | 200 (3.5%) | 198 (5.7%) | 2 (0.1%) | <0.001 |
PAD | 629 (11.0%) | 366 (10.6%) | 263 (11.6%) | 0.244 |
Endocarditis | 170 (3.0%) | 105 (3.0%) | 65 (2.9%) | 0.779 |
COPD | 636 (11.1%) | 458 (13.2%) | 178 (7.9%) | <0.001 |
Cardiogenic shock | 49 (0.9%) | 41 (1.2%) | 8 (0.4%) | 0.001 |
NYHA III-IV | 1915 (33.4%) | 1559 (45.0%) | 356 (15.7%) | <0.001 |
CHA2DS2-VASc | 2.0 [1.0–3.0] | 2.0 [1.0–3.0] | 2.0 [1.0–3.0] | <0.001 |
EF (%) | 59.00 [52.00–64.00] | 55.00 [50.00–60.00] | 62.00 [56.00–66.00] | <0.001 |
PAH | 1788 (31.2%) | 550 (15.9%) | 1238 (54.5%) | <0.001 |
Outcome | Overall (n = 5739) | Center 1 (n = 3467) | Center 2 (n = 2272) | p-Value |
---|---|---|---|---|
Non-elective | 382 (6.7%) | 258 (7.4%) | 124 (5.5%) | 0.004 |
Prior Cardiac Surgery | 451 (7.9%) | 232 (6.7%) | 219 (9.6%) | <0.001 |
Minimally invasive Approach | 639 (11.1%) | 512 (14.8%) | 127 (5.6%) | <0.001 |
CXC time | 75.00 [55.00–101.00] | 67.00 [47.25–90.00] | 84.00 [64.00–114.00] | <0.001 |
CPB time | 104.00 [81.00–137.00] | 98.00 [74.00–126.50] | 114.00 [89.00–150.00] | <0.001 |
CABG | 2348 (40.9%) | 1627 (46.9%) | 721 (31.7%) | <0.001 |
On-pump | 1795 (76.4%) | 1126 (69.2%) | 669 (92.8%) | <0.001 |
Off-pump | 553 (23.6%) | 501 (30.8%) | 52 (7.2%) | |
Aortic valve surgery | 1960 (34.2%) | 956 (27.6%) | 1004 (44.2%) | <0.001 |
Biologic valve | 1498 (76.4%) | 573 (59.9%) | 925 (92.2%) | <0.001 |
Mechanical valve | 462 (23.6%) | 383 (40.1%) | 79 (7.8) | |
Mitral valve surgery | 1383 (24.1%) | 592 (17.1%) | 791 (34.8%) | <0.001 |
Valvuloplasty | 964 (69.7%) | 438 (74.0%) | 526 (66.5%) | 0.002 |
Biologic valve | 274 (19.8%) | 52 (8.8%) | 222 (28.1%) | <0.001 |
Mechanical valve | 145 (10.5%) | 102 (17.2%) | 43 (5.4%) | <0.001 |
Tricuspid valve surgery | 240 (4.2%) | 67 (1.9%) | 173 (7.6%) | <0.001 |
Valvuloplasty | 231 (96.3%) | 65 (97.0%) | 166 (95.9%) | 0.698 |
Biologic valve | 9 (3.7%) | 2 (3.0%) | 7 (4.1%) | |
Pulmonary valve surgery | 40 (0.7%) | 37 (1.1%) | 3 (0.1%) | <0.001 |
Aortic surgery | 795 (13.9%) | 498 (14.4%) | 297 (13.1%) | 0.166 |
Root | 152 (2.6%) | 118 (3.4%) | 34 (1.5%) | <0.001 |
Ascending aorta | 581 (10.1%) | 337 (9.7%) | 244 (10.7%) | 0.227 |
Aortic arch | 62 (1.1%) | 43 (1.2%) | 19 (0.8%) | 0.188 |
Outcome | Overall (n = 5739) | Center 1 (n = 3467) | Center 2 (n = 2272) | p-Value |
---|---|---|---|---|
IABP | 132 (2.3%) | 81 (2.3%) | 51 (2.2%) | 0.892 |
Patients transfused | 2314 (40.3%) | 1289 (37.2%) | 1025 (45.1%) | <0.001 |
Revision for bleeding | 203 (3.5%) | 113 (3.3%) | 90 (4.0%) | 0.182 |
Perioperative AMI | 40 (0.7%) | 9 (0.3%) | 31 (1.4%) | <0.001 |
Sternal revision | 95 (1.7%) | 53 (1.5) | 42 (1.8) | 0.410 |
Septicemia | 87 (1.5%) | 26 (0.7%) | 61 (2.7%) | <0.001 |
Severe GI complications | 151 (2.6%) | 79 (2.3%) | 72 (3.2%) | 0.039 |
Perioperative CVA | 66 (1.2%) | 40 (1.2%) | 26 (1.1%) | 0.974 |
Pneumonia | 60 (1.0%) | 23 (0.7%) | 37 (1.6%) | 0.001 |
Atrial fibrillation | 1874 (32.7%) | 920 (26.5%) | 954 (42.0%) | <0.001 |
PM placement | 193 (3.4%) | 96 (2.8%) | 97 (4.3%) | 0.002 |
Cardiac arrest | 23 (0.4%) | 12 (0.3%) | 11 (0.5%) | 0.551 |
Cardiac tamponade | 70 (1.2%) | 39 (1.1%) | 31 (1.4%) | 0.419 |
Tracheostomy | 34 (0.6%) | 23 (0.7%) | 11 (0.5%) | 0.491 |
MOF | 28 (0.5%) | 8 (0.2%) | 20 (0.9%) | 0.001 |
Hospital stay | 7.00 [6.00, 9.00] | 6.00 (5.00–8.00) | 7.00 (7.00–10.00) | <0.001 |
30-day mortality | 78 (1.4%) | 32 (0.9%) | 46 (2.0%) | 0.001 |
Variable | No AF (n = 3865) | AF (n = 1874) | p-Value |
---|---|---|---|
Preoperative | |||
Age | 64.00 (53.00–72.00) | 69.20 (61.92–75.90) | <0.001 |
Male sex | 2807 (72.6%) | 1248 (66.6%) | <0.001 |
BMI | 25.91 (23.00–28.73) | 26.00 (23.00–29.00) | 0.655 |
Obesity | 654 (16.9%) | 349 (18.6%) | 0.120 |
Creatinine | 0.90 (0.80–1.10) | 0.90 (0.80–1.08) | 0.625 |
eGFR | 83.45 (65.65–94.94) | 78.46 (63.01–90.09) | <0.001 |
CKD | 352 (9.1%) | 245 (13.1%) | <0.001 |
History of smoke | 1267 (32.8%) | 594 (31.7%) | 0.428 |
CAD familiarity | 858 (22.2%) | 419 (22.4%) | 0.919 |
CAD | 1767 (45.7%) | 803 (42.8%) | 0.043 |
Previous PTCA | 440 (11.4%) | 191 (10.2%) | 0.191 |
Diabetes | 741 (19.2%) | 348 (18.6%) | 0.610 |
Dyslipidemia | 2012 (52.1%) | 1043 (55.7%) | 0.011 |
Hypertension | 2618 (67.7%) | 1362 (72.7%) | <0.001 |
AAD | 1628 (42.1%) | 953 (50.9%) | <0.001 |
Previous CVA | 149 (3.9%) | 51 (2.7%) | 0.034 |
PAD | 389 (10.1%) | 240 (12.8) | 0.002 |
Endocarditis | 129 (3.3%) | 41 (2.2%) | 0.020 |
COPD | 417 (10.8%) | 219 (11.7%) | 0.332 |
Cardiogenic shock | 35 (0.9%) | 14 (0.7%) | 0.646 |
NYHA 3–4 | 1282 (33.2%) | 633 (33.8%) | 0.668 |
CHA2DS2-VASc | 2.0 [1.0–3.0] | 3.0 [1.0–3.0] | <0.001 |
EF (%) | 58.00 (51.00–63.00) | 60.00 (53.00–65.00) | <0.001 |
PAH | 1018 (26.3%) | 770 (41.1%) | <0.001 |
Intraoperative | |||
Non-elective | 267 (6.9%) | 115 (6.1%) | 0.297 |
Reintervention | 319 (8.3%) | 132 (7.0%) | 0.122 |
Minimally invasive | 511 (13.2%) | 128 (6.8%) | <0.001 |
CXC time | 73.00 (54.00–100.00) | 78.00 (59.00–104.00) | <0.001 |
CPB time | 103.00 (79.00–134.00) | 107.00 (85.00–143.00) | <0.001 |
CABG | 1639 (42.4%) | 709 (37.8%) | 0.001 |
On-pump | 1225 (74.7%) | 557 (78.6%) | 0.047 |
Off-pump | 414 (25.3%) | 152 (21.4%) | |
Aortic valve surgery | 1193 (30.9%) | 767 (40.9%) | <0.001 |
Biologic valve | 879 (73.7%) | 620 (80.8%) | <0.001 |
Mechanical valve | 314 (26.3%) | 147 (19.2%) | |
Mitral valve surgery | 819 (21.2%) | 564 (30.1%) | <0.001 |
Valvuloplasty | 603 (73.7%) | 365 (64.7%) | <0.001 |
Biologic valve | 133 (16.2%) | 148 (26.2%) | <0.001 |
Mechanical valve | 83 (10.1%) | 52 (9.1) | 0.573 |
Tricuspid valve surgery | 143 (3.7%) | 97 (5.2%) | 0.011 |
Valvuloplasty | 133 (93.0%) | 90 (92.8%) | 0.947 |
Biologic valve | 10 (7.0%) | 7 (7.2%) | |
Pulmonary valve surgery | 27 (0.7%) | 13 (0.7%) | 0.999 |
Aortic surgery | 381 (9.9%) | 220 (11.7%) | 0.033 |
Root | 98 (2.5%) | 54 (2.9%) | 0.498 |
Ascending aorta | 366 (9.5%) | 215 (11.5%) | 0.021 |
Aortic arch | 45 (1.2%) | 17 (0.9%) | 0.455 |
Postoperative | |||
IABP | 84 (2.2%) | 48 (2.6%) | 0.409 |
Patients transfused | 1413 (36.6%) | 900 (48.0%) | <0.001 |
Revision for bleeding | 131 (3.4%) | 72 (3.8%) | 0.427 |
Perioperative AMI | 24 (0.6%) | 16 (0.9%) | 0.409 |
Sternal revision | 59 (1.5%) | 36 (1.9%) | 0.323 |
Septicemia | 43 (1.1%) | 44 (2.3%) | 0.001 |
Severe GI complications | 51 (1.3%) | 50 (2.7%) | <0.001 |
Perioperative CVA | 31 (0.8%) | 35 (1.9%) | <0.001 |
Pneumonia | 34 (0.9%) | 26 (1.4%) | 0.102 |
PM placement | 134 (3.5%) | 69 (3.7%) | 0.679 |
Cardiac arrest | 11 (0.3%) | 12 (0.6%) | 0.075 |
Cardiac tamponade | 42 (1.1%) | 27 (1.4%) | 0.248 |
Tracheostomy | 16 (0.4%) | 18 (1.0%) | 0.019 |
MOF | 13 (0.3%) | 15 (0.8%) | 0.030 |
Hospital stay | 7.00 (6.00–8.00) | 7.00 (7.00–10.00) | <0.001 |
30-day mortality | 58 (1.5%) | 20 (1.1%) | 0.227 |
Variable | Estimate ± SE | p-Value | Estimate ± SE | p-Value | OR (95% CI) |
---|---|---|---|---|---|
Multivariable | Stepwise | ||||
Age | 0.029749 ± 0.003442 | <0.001 | 0.030752 ± 0.003301 | <0.001 | 1.0312 (1.0246–1.0379) |
Mitral valve surgery | 0.635331 ± 0.111565 | <0.001 | 0.643032 ± 0.109971 | <0.001 | 1.9022 (1.5334–2.3598) |
Aortic valve surgery | 0.366675 ± 0.089709 | <0.001 | 0.364955 ± 0.089214 | <0.001 | 1.4404 (1.2094–1.7157) |
Minimally invasive | −0.436048 ± 0.131267 | <0.001 | −0.432276 ± 0.129828 | <0.001 | 0.6490 (0.5032–0.8371) |
PAH | 0.325651 ± 0.108381 | 0.0026 | 0.332384 ± 0.106235 | 0.00176 | 1.3943 (1.1322–1.7170) |
CKD | 0.272529 ± 0.132413 | 0.0395 | 0.267365 ± 0.130788 | 0.04093 | 1.3065 (1.0111–1.6883) |
Obesity | 0.162595 ± 0.103069 | 0.0946 | 0.185355 ± 0.100455 | 0.06502 | 1.2036 (0.9885–1.4656) |
AAD | 0.124381 ± 0.084496 | 0.1410 | |||
Hypertension | 0.100003 ± 0.098719 | 0.3110 | |||
Diabetes | −0.121208 ± 0.102306 | 0.2361 | |||
COPD | 0.027680 ± 0.122956 | 0.8219 | |||
Male sex | 0.000881 ± 0.090084 | 0.9922 |
Overall | Validation | Derivation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
POLARIS | Patients | POAF | %POAF | CHA2DS2-VASc | Patients | POAF | % POAF | Patients | POAF | %POAF | Patients | POAF | %POAF |
1.5 | 122 | 9 | 7.38 | 0 | 601 | 135 | 22.5 | 120 | 9 | 7.50 | 2 | 0 | 0.00 |
2 | 685 | 119 | 17.37 | 1 | 1285 | 341 | 26.5 | 561 | 98 | 17.47 | 124 | 21 | 16.94 |
2.5 | 154 | 18 | 11.69 | 2 | 1430 | 447 | 31.3 | 139 | 16 | 11.51 | 15 | 2 | 13.33 |
3 | 1385 | 350 | 25.27 | 3 | 1294 | 491 | 37.9 | 1008 | 226 | 22.42 | 377 | 124 | 32.89 |
3.5 | 173 | 43 | 24.86 | 4 | 771 | 316 | 41.0 | 150 | 37 | 24.67 | 23 | 6 | 26.09 |
4 | 1341 | 480 | 35.79 | 5 | 309 | 127 | 41.1 | 781 | 251 | 32.14 | 560 | 229 | 40.89 |
4.5 | 125 | 39 | 31.20 | 6 | 41 | 14 | 34.1 | 80 | 25 | 31.25 | 45 | 14 | 31.11 |
5 | 990 | 433 | 43.74 | 7 | 8 | 3 | 26.7 | 400 | 151 | 37.75 | 590 | 282 | 47.80 |
5.5 | 54 | 14 | 25.93 | 8 | 0 | 0 | 0 | 22 | 8 | 36.36 | 32 | 6 | 18.75 |
6 | 486 | 249 | 51.23 | 9 | 0 | 0 | 0 | 152 | 71 | 46.71 | 334 | 178 | 53.29 |
6.5 | 11 | 5 | 45.45 | 10 | 0 | 0 | 0 | 1 | 0 | 0.00 | 10 | 5 | 50.00 |
7 | 174 | 92 | 52.87 | 47 | 25 | 53.19 | 127 | 67 | 52.76 | ||||
7.5 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
8 | 38 | 22 | 57.89 | 6 | 3 | 50.00 | 32 | 19 | 59.38 | ||||
8.5 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
9 | 1 | 1 | 100.00 | 0 | 0 | 1 | 1 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosati, F.; Baudo, M.; Tomasi, C.; Scotti, G.; Pirola, S.; Mastroiacovo, G.; Polvani, G.; Bisleri, G.; Benussi, S.; Di Bacco, L.; et al. Prediction Model for POstoperative atriaL fibrillAtion in caRdIac Surgery: The POLARIS Score. J. Clin. Med. 2025, 14, 650. https://doi.org/10.3390/jcm14020650
Rosati F, Baudo M, Tomasi C, Scotti G, Pirola S, Mastroiacovo G, Polvani G, Bisleri G, Benussi S, Di Bacco L, et al. Prediction Model for POstoperative atriaL fibrillAtion in caRdIac Surgery: The POLARIS Score. Journal of Clinical Medicine. 2025; 14(2):650. https://doi.org/10.3390/jcm14020650
Chicago/Turabian StyleRosati, Fabrizio, Massimo Baudo, Cesare Tomasi, Giacomo Scotti, Sergio Pirola, Giorgio Mastroiacovo, Gianluca Polvani, Gianluigi Bisleri, Stefano Benussi, Lorenzo Di Bacco, and et al. 2025. "Prediction Model for POstoperative atriaL fibrillAtion in caRdIac Surgery: The POLARIS Score" Journal of Clinical Medicine 14, no. 2: 650. https://doi.org/10.3390/jcm14020650
APA StyleRosati, F., Baudo, M., Tomasi, C., Scotti, G., Pirola, S., Mastroiacovo, G., Polvani, G., Bisleri, G., Benussi, S., Di Bacco, L., & Muneretto, C. (2025). Prediction Model for POstoperative atriaL fibrillAtion in caRdIac Surgery: The POLARIS Score. Journal of Clinical Medicine, 14(2), 650. https://doi.org/10.3390/jcm14020650