Relationships Among Comorbidities, Disease Severity, and Hospitalization Duration in the United States Using the Healthcare Cost and Utilization Project (HCUP) Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Variable Definitions
2.2. Methods
3. Results
3.1. Characteristics of Patients and the Prevalence of MCCs
3.2. Differences in LOS Among Patient Characteristics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- AGE: This variable represents the patient’s age in years, and only individuals aged 18 or older were included. To analyze differences in hospital length of stay (LOS) among elderly patients, AGE was categorized into two groups: under 65 years (coded as 0) and 65 years or older (coded as 1).
- SEX: this variable indicates the patient’s sex, with males coded as 0 and females as 1.
- ROM (risk of mortality): This variable is divided into five levels (0–4). The levels are categorized as follows: (0) no classification, (1) minor risk of death, (2) moderate risk, (3) major risk, and (4) extreme risk.
- SOI (severity of illness): this variable is also divided into five levels (0–4) and categorized as follows: (0) no classification, (1) minor functional loss, (2) moderate loss, (3) major loss, and (4) extreme loss.
- MCC: This variable identifies patients with multiple chronic conditions. The classification method for chronic diseases follows previous research [1,35], categorizing diseases into 46 major groups using the International Classification of Diseases, 10th Revision, Clinical Modification [36]. For example, conditions with ICD-10-CM codes F00–03, F05.1, G30, G31, and R54 are grouped under “dementia”. Patients are classified as having MCCs if they have at least three chronic conditions. MCCs are coded as 0 if fewer than three conditions are present and 1 otherwise.
References
- Van den Bussche, H.; Koller, D.; Kolonko, T. Which chronic diseases and disease combinations are specific to multimorbidity in the elderly? Results of a claims data based cross-sectional study in Germany. BMC Public Health 2011, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.; Tong, M.; Levine, E.; Kishore, S. Prevalence of multiple chronic conditions by US state and territory, 2017. PLoS ONE 2020, 15, e0232346. [Google Scholar]
- He, Z.; Bian, J.; Carretta, H.; Lee, J.; Hogan, W.; Shenkman, E.; Charness, N. Prevalence of Multiple Chronic Conditions Among Older Adults in Florida and the United States: Comparative analysis of the OneFlorida data trust and national inpatient sample. J. Med. Internet Res. 2018, 20, e137. [Google Scholar] [CrossRef] [PubMed]
- Johnston, M.C.; Crilly, M.; Black, C.; Prescott, G.J.; Mercer, S.W. Defining and measuring multimorbidity: A systematic review of systematic reviews. Eur. J. Public Health 2019, 29, 182–189. [Google Scholar] [CrossRef]
- Nicholson, K.; Almirall, J.; Fortin, M. The measurement of multimorbidity. Health psychology: Official journal of the Division of Health Psychology. Am. Psychol. Assoc. 2019, 38, 783–790. [Google Scholar]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.; Kelly, L.; Potter, C.M.; Jenkinson, C.; Gibbons, E.; Forder, J.; Fitzpatrick, R. Quality of life and burden of morbidity in primary care users with multimorbidity. Patient Relat. Outcome Meas. 2018, 9, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Singer, L.; Green, M.; Rowe, F.; Ben-Shlomo, Y.; Kulu, H.; Morrissey, K. Trends in multimorbidity, complex multimorbidity and multiple functional limitations in the ageing population of England, 2002–2015. J. Comorbidity 2019, 9, 2235042X19872030. [Google Scholar] [CrossRef] [PubMed]
- Tadeu, A.C.R.; De Figueiredo, I.J.; Santiago, L.M. Multimorbidity and consultation time: A systematic review. BMC Fam. Pract. 2020, 21, 152. [Google Scholar] [CrossRef]
- Hajat, C.; Stein, E. The global burden of multiple chronic conditions: A narrative review. Prev. Med. Rep. 2018, 12, 284–293. [Google Scholar] [CrossRef]
- Kshatri, J.S.; Palo, S.K.; Bhoi, T.; Barik, S.R.; Pati, S. Prevalence and Patterns of Multimorbidity Among Rural Elderly: Findings of the AHSETS Study. Front. Public Health 2020, 8, 582663. [Google Scholar] [CrossRef] [PubMed]
- Suls, J.; Green, P.A.; Boyd, C.M. Multimorbidity: Implications and directions for health psychology and behavioral medicine. Health Psychol. 2019, 38, 772. [Google Scholar] [CrossRef] [PubMed]
- Zemedikun, D.T.; Gray, L.J.; Khunti, K.; Davies, M.J.; Dhalwani, N.N. Patterns of Multimorbidity in Middle-Aged and Older Adults: An Analysis of the UK Biobank Data. Mayo Clin. Proc. 2018, 93, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves-Bradley, D.C.; Lannin, N.A.; Clemson, L.M.; Cameron, I.D.; Shepperd, S. Discharge planning from hospital. Cochrane Database Syst. Rev. 2016, 1, CD000313. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Elixhauser, A.; Steiner, C.; Harris, D.R.; Coffey, R.M. Comorbidity measures for use with administrative data. Med. Care 1998, 36, 8–27. [Google Scholar] [CrossRef]
- Khanh, L.N.; Helenowski, I.B.; Hoel, A.W.; Ho, K.J. The Comorbidity-Polypharmacy Score is an Objective and Practical Predictor of Outcomes and Mortality after Vascular Surgery. Clin. Res. 2020, 69, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Palamuthsingam, D.; Pascoe, E.M.; Hawley, C.M.; Johnson, D.W.; Fahim, M. Revised cardiac risk index in predicting cardiovascular complications in patients receiving chronic kidney replacement therapy undergoing elective general surgery. Perioper. Med. 2024, 13, 70. [Google Scholar] [CrossRef]
- Mendez, C.M.; Harrington, D.W.; Christenson, P.; Spellberg, B. Impact of Hospital Variables on Case Mix Index as a Marker of Disease Severity. Popul. Health Manag. 2024, 17, 28–34. [Google Scholar] [CrossRef] [PubMed]
- McCormick, P.J.; Lin, H.M.; Deiner, S.G.; Levin, M.A. Validation of the all patient refined diagnosis related group (APR-DRG) risk of mortality and severity of illness modifiers as a measure of perioperative risk. J. Med. Syst. 2018, 42, 81. [Google Scholar] [CrossRef] [PubMed]
- Rushton, J.; Evans, I.; Carr, S.; Mathews, C.; Morgan, W.; Dean, S.; Chisambara, C.; Mustfa, N.; Stone, H.; Hussain, I. Impact of disease severity and comorbidities on length of stay (LOS) in COPD. Eur. Respir. J. 2016, 48, PA4157. [Google Scholar]
- Taylor, S.L.; Sen, S.; Greenhalgh, D.G.; Lawless, M.; Curri, T.; Palmieri, T.L. A competing risk analysis for hospital length of stay in patients with burns. JAMA Surg. 2015, 150, 450–456. [Google Scholar] [CrossRef]
- Rotter, T.; Kinsman, L.; James, E.; Machotta, A.; Gothe, H.; Willis, J.; Snow, P.; Kugler, J. Clinical pathways: Effects on professional practice, patient outcomes, length of stay and hospital costs. Cochrane Database Syst. Rev. 2010, 3, CD006632. [Google Scholar] [CrossRef] [PubMed]
- Faddy, M.J.; Graves, N.; Pettitt, A.N. Modeling length of stay in hospital and other right skewed data: Comparison of phase-type, gamma and log-normal distributions. Value Health 2009, 12, 309–314. [Google Scholar] [CrossRef]
- Xie, H.; Chaussalet, T.J.; Millard, P.H. A continuous time Markov model for the length of stay of elderly people in institutional long-term care. J. R. Stat. Soc. Ser. A 2005, 168, 51–61. [Google Scholar] [CrossRef]
- Ho, J.C.; Sotoodeh, M. Improving length of stay prediction using a hidden Markov model. AMIA Jt. Summits Transl. Sci. Proc. 2019, 2019, 425–434. [Google Scholar]
- Carter, E.M.; Potts, H.W.W. Predicting length of stay from an electronic patient record system: A primary total knee replacement example. BMC Med. Inform. Decis. Mak. 2014, 14, 26. [Google Scholar] [CrossRef]
- Ward, B.W.; Schiller, J.S.; Goodman, R.A. Multiple chronic conditions among US adults. Prev. Chronic Dis. Public Health Res. Pract. Policy 2012, 11, E62. [Google Scholar]
- Mello, A.D.C.; Engstrom, E.M.; Alves, L.C. Health-related and sociodemographic factors associated with frailty in the elderly: A systematic literature review. Cad. De Saude Publica 2014, 30, 1143–1168. [Google Scholar] [CrossRef] [PubMed]
- Skinner, H.G.; Coffey, R.; Jones, J.; Heslin, K.C.; Moy, E. The effects of multiple chronic conditions on hospitalization costs and utilization for ambulatory care sensitive conditions in the United States: A nationally representative cross-sectional study. BMC Health Serv. Res. 2016, 16, 77. [Google Scholar] [CrossRef] [PubMed]
- Healthcare Cost and Utilization Project (HCUP). 2016 National Inpatient Sample (NIS); Agency for Healthcare Research and Quality: Rockville, MD, USA. Available online: https://hcup-us.ahrq.gov/databases.jsp (accessed on 10 January 2025).
- Azen, R.; Walker, C.M. Categorical Data Analysis for the Behavioral and Social Sciences, 2nd ed.; Routledge: New York, NY, USA, 2021; pp. 215–274. [Google Scholar]
- Gellman, M.D. Encyclopedia of Behavioral Medicine, 2nd ed.; Springer: Cham, Switzerland, 2020; pp. 36–136. [Google Scholar]
- McMartin, K. Discharge planning in chronic conditions: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2013, 13, 1–72. [Google Scholar] [PubMed]
- Valderas, J.M.; Starfield, B.; Sibbald, B.; Salisbury, C.; Roland, M. Defining comorbidity: Implications for understanding health and health services. Ann. Fam. Med. 2009, 7, 357–363. [Google Scholar] [CrossRef] [PubMed]
- ICD-10 Version:2016. Available online: https://icd.who.int/browse10/2016/en (accessed on 10 January 2025).
SEX = 1 (Female) | MCC = 1 | |||||
---|---|---|---|---|---|---|
Variable | Count | Percentage | Count | Percentage | Count | Percentage |
Total | 748,572 | 100.00 | 435,642 | 58.20 | 499,534 | 66.73 |
AGE | ||||||
0: under 65 | 427,045 | 57.05 | 260,954 | 61.11 | 208,107 | 48.73 |
1: no less than 65 | 321,527 | 42.95 | 174,688 | 54.33 | 291,427 | 90.64 |
ROM | ||||||
0 | 195 | 0.03 | 89 | 45.64 | 62 | 31.79 |
1 | 380,785 | 50.87 | 248,053 | 65.14 | 171,719 | 45.10 |
2 | 181,864 | 24.29 | 93,925 | 51.65 | 157,444 | 86.57 |
3 | 138,419 | 18.49 | 70,743 | 51.11 | 127,725 | 92.27 |
4 | 47,309 | 6.32 | 22,832 | 48.26 | 42,584 | 90.01 |
SOI | ||||||
0 | 195 | 0.03 | 89 | 45.64 | 62 | 31.79 |
1 | 207,703 | 27.75 | 137,726 | 66.31 | 85,165 | 41.00 |
2 | 304,162 | 40.63 | 175,835 | 57.81 | 208,965 | 68.70 |
3 | 187,303 | 25.02 | 98,573 | 52.63 | 161,800 | 86.38 |
4 | 49,209 | 6.57 | 23,419 | 47.59 | 43,542 | 88.48 |
Variable | Count | Percentage | ||||||
---|---|---|---|---|---|---|---|---|
LOS = 1 | LOS = 2 | LOS = 3 | LOS = 4 | LOS = 1 | LOS = 2 | LOS = 3 | LOS = 4 | |
Total | 98,848 | 536,971 | 106,937 | 5816 | 13.20 | 71.73 | 14.29 | 0.78 |
AGE | ||||||||
0: under 65 | 61,790 | 311,424 | 50,221 | 3610 | 14.47 | 72.93 | 11.76 | 0.85 |
1: no less than 65 | 37,058 | 225,547 | 56,716 | 2206 | 11.53 | 70.15 | 17.64 | 0.69 |
SEX | ||||||||
0: Male | 45,919 | 210,183 | 53,654 | 3174 | 14.67 | 67.17 | 17.15 | 1.01 |
1: Female | 52,929 | 326,788 | 53,283 | 2642 | 12.15 | 75.01 | 12.23 | 0.61 |
MCC | ||||||||
0 | 36,167 | 189,976 | 21,212 | 1683 | 14.52 | 76.28 | 8.52 | 0.68 |
1 | 62,681 | 346,995 | 85,725 | 4133 | 12.55 | 69.46 | 17.16 | 0.83 |
ROM | ||||||||
0 | 32 | 131 | 29 | 3 | 16.41 | 67.18 | 14.87 | 1.54 |
1 | 66,061 | 285,150 | 27,735 | 1839 | 17.35 | 74.88 | 7.28 | 0.48 |
2 | 22,249 | 134,823 | 23,997 | 795 | 12.23 | 74.13 | 13.20 | 0.44 |
3 | 8044 | 95,130 | 34,131 | 1114 | 5.81 | 68.73 | 24.66 | 0.80 |
4 | 2462 | 21,737 | 21,045 | 2065 | 5.20 | 45.95 | 44.48 | 4.36 |
SOI | ||||||||
0 | 32 | 131 | 29 | 3 | 16.41 | 67.18 | 14.87 | 1.54 |
1 | 43,671 | 154,845 | 8796 | 391 | 21.03 | 74.55 | 4.23 | 0.19 |
2 | 41,830 | 230,366 | 30,406 | 1560 | 13.75 | 75.74 | 10.00 | 0.51 |
3 | 11,164 | 131,293 | 43,615 | 1231 | 5.96 | 70.10 | 23.29 | 0.66 |
4 | 2151 | 20,336 | 24,091 | 2631 | 4.37 | 41.33 | 48.96 | 5.35 |
Coefficient | Estimate | 95% Confidence Interval Timate | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
(β) | |||||||||
1.343 | −0.083 | −2.108 | 0.955; | −0.586; | −3.293; | <0.001 | 0.037 | <0.001 | |
1.730 | 0.420 | −0.923 | |||||||
−0.022 | −0.156 | −0.682 | −0.039; | −0.178; | −0.745; | 0.001 | <0.001 | <0.001 | |
−0.005 | −0.134 | −0.619 | |||||||
0.372 | 0.110 | −0.082 | 0.358; | 0.091; | −0.137; | <0.001 | <0.001 | <0.001 | |
0.386 | 0.128 | −0.027 | |||||||
−0.275 | −0.099 | −0.427 | −0.292; | −0.123; | −0.494; | <0.001 | <0.001 | <0.001 | |
−0.259 | −0.075 | −0.359 | |||||||
0.105 | −0.061 | 0.189 | −0.090; | −0.314; | −0.407; | 0.015 | 0.032 | 0.027 | |
0.300 | 0.191 | 0.785 | |||||||
0.290 | 0.174 | −0.182 | 0.095; | −0.079; | −0.779; | <0.001 | 0.009 | 0.028 | |
0.485 | 0.426 | 0.415 | |||||||
0.620 | 0.728 | 0.090 | 0.425; | 0.476; | −0.507; | <0.001 | <0.001 | 0.038 | |
0.816 | 0.981 | 0.687 | |||||||
0.238 | 0.593 | 0.253 | 0.038; | 0.337; | −0.346; | 0.001 | <0.001 | 0.020 | |
0.438 | 0.849 | 0.853 | |||||||
−0.311 | −1.463 | −2.437 | −0.506; | −1.716; | −3.039; | <0.001 | <0.001 | <0.001 | |
−0.116 | −1.210 | −1.835 | |||||||
0.155 | −0.238 | −0.730 | −0.039; | −0.490; | −1.326; | 0.006 | 0.003 | 0.001 | |
0.350 | 0.015 | −0.134 | |||||||
0.753 | 1.099 | 0.599 | 0.558; | 0.846; | 0.004; | <0.001 | <0.001 | 0.002 | |
0.948 | 1.351 | 1.195 | |||||||
0.655 | 2.037 | 2.918 | 0.455; | 1.78; | 2.319; | <0.001 | <0.001 | <0.001 | |
0.856 | 2.293 | 3.516 |
Variable | Estimate of Odds Ratio | ||
---|---|---|---|
LOS = 2 | LOS = 3 | LOS = 4 | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
AGE = 1 | 0.978 (0.962, 0.995) | 0.856 (0.837, 0.875) | 0.506 (0.475, 0.539) |
SEX = 1 | 1.451 (1.431, 1.471) | 1.116 (1.095, 1.137) | 0.921 (0.872, 0.973) |
MCC = 1 | 0.759 (0.747, 0.772) | 0.905 (0.884, 0.927) | 0.652 (0.610, 0.698) |
ROM = 1 | 1.111 (0.914, 1.350) | 0.941 (0.731, 1.211) | 1.208 (0.665, 2.192) |
ROM = 2 | 1.336 (1.099, 1.624) | 1.190 (0.924, 1.532) | 0.834 (0.459, 1.514) |
ROM = 3 | 1.859 (1.529, 2.261) | 2.072 (1.609, 2.668) | 1.094 (0.602, 1.987) |
ROM = 4 | 1.269 (1.039, 1.549) | 1.810 (1.401, 2.338) | 1.288 (0.707, 2.347) |
SOI = 1 | 0.733 (0.603, 0.891) | 0.231 (0.180, 0.298) | 0.087 (0.048, 0.160) |
SOI = 2 | 1.168 (0.961, 1.420) | 0.788 (0.613, 1.015) | 0.482 (0.265, 0.875) |
SOI = 3 | 2.123 (1.747, 2.581) | 3.000 (2.331, 3.861) | 1.821 (1.004, 3.303) |
SOI = 4 | 1.926 (1.576, 2.353) | 7.665 (5.931, 9.907) | 18.499 (10.168, 33.659) |
Patient Characteristics | Predicted Probabilities (Prediction Error) for Patients’ LOS | ||||
---|---|---|---|---|---|
MCC | Variable | LOS = 1 | LOS = 2 | LOS = 3 | LOS = 4 |
MCC = 0 | AGE = 0 | 10.78 (1.71) | 70.12 (3.24) | 17.59 (3.70) | 1.51 (0.65) |
AGE = 1 | 10.30 (1.70) | 68.04 (3.66) | 18.97 (3.75) | 2.69 (1.12) | |
SEX = 0 | 12.02 (1.87) | 65.92 (3.43) | 19.63 (3.87) | 2.42 (1.05) | |
SEX = 1 | 9.06 (1.39) | 72.24 (3.24) | 16.93 (3.53) | 1.77 (0.79) | |
ROM = 0 | 12.92 (1.93) | 67.46 (3.23) | 17.20 (3.53) | 2.42 (1.06) | |
ROM = 1 | 12.05 (1.78) | 69.95 (3.17) | 15.24 (3.19) | 2.77 (1.22) | |
ROM = 2 | 10.29 (1.54) | 71.63 (3.14) | 16.44 (3.48) | 1.64 (0.73) | |
ROM = 3 | 7.44 (1.19) | 71.24 (3.70) | 19.86 (3.96) | 1.46 (0.64) | |
ROM = 4 | 10.01 (1.62) | 65.14 (3.89) | 22.66 (4.24) | 2.19 (0.92) | |
SOI = 0 | 12.51 (0.89) | 71.43 (1.28) | 14.87 (0.92) | 1.19 (0.16) | |
SOI = 1 | 18.26 (1.24) | 76.53 (1.27) | 5.06 (0.35) | 0.15 (0.02) | |
SOI = 2 | 11.57 (0.84) | 77.04 (1.10) | 10.85 (0.71) | 0.53 (0.07) | |
SOI = 3 | 5.96 (0.46) | 71.92 (1.31) | 21.09 (1.20) | 1.03 (0.14) | |
SOI = 4 | 4.40 (0.33) | 48.49 (1.77) | 39.52 (1.57) | 7.58 (0.92) | |
MCC = 1 | AGE = 0 | 13.31 (2.09) | 65.90 (3.22) | 19.59 (4.05) | 1.20 (0.52) |
AGE = 1 | 12.72 (2.07) | 63.97 (3.57) | 21.16 (4.13) | 2.15 (0.90) | |
SEX = 0 | 14.75 (2.27) | 61.54 (3.29) | 21.77 (4.25) | 1.93 (0.84) | |
SEX = 1 | 11.28 (1.73) | 68.33 (3.21) | 18.97 (3.89) | 1.42 (0.63) | |
ROM = 0 | 15.86 (2.34) | 63.07 (3.12) | 19.14 (3.91) | 1.93 (0.84) | |
ROM = 1 | 14.88 (2.17) | 65.81 (3.06) | 17.08 (3.56) | 2.23 (0.98) | |
ROM = 2 | 12.75 (1.90) | 67.54 (3.11) | 18.39 (3.84) | 1.32 (0.58) | |
ROM = 3 | 9.28 (1.48) | 67.38 (3.71) | 22.18 (4.32) | 1.17 (0.50) | |
ROM = 4 | 12.31 (1.99) | 60.88 (3.78) | 25.07 (4.61) | 1.74 (0.73) | |
SOI = 0 | 15.43 (1.06) | 67.01 (1.37) | 16.61 (1.00) | 0.95 (0.13) | |
SOI = 1 | 22.47 (1.45) | 71.76 (1.45) | 5.65 (0.39) | 0.12 (0.02) | |
SOI = 2 | 14.40 (1.01) | 72.94 (1.23) | 12.24 (0.78) | 0.43 (0.06) | |
SOI = 3 | 7.41 (0.56) | 68.01 (1.39) | 23.74 (1.30) | 0.83 (0.11) | |
SOI = 4 | 5.38 (0.41) | 44.96 (1.71) | 43.62 (1.63) | 6.04 (0.74) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Park, J. Relationships Among Comorbidities, Disease Severity, and Hospitalization Duration in the United States Using the Healthcare Cost and Utilization Project (HCUP) Database. J. Clin. Med. 2025, 14, 680. https://doi.org/10.3390/jcm14030680
Lee J, Park J. Relationships Among Comorbidities, Disease Severity, and Hospitalization Duration in the United States Using the Healthcare Cost and Utilization Project (HCUP) Database. Journal of Clinical Medicine. 2025; 14(3):680. https://doi.org/10.3390/jcm14030680
Chicago/Turabian StyleLee, Junse, and Jungmin Park. 2025. "Relationships Among Comorbidities, Disease Severity, and Hospitalization Duration in the United States Using the Healthcare Cost and Utilization Project (HCUP) Database" Journal of Clinical Medicine 14, no. 3: 680. https://doi.org/10.3390/jcm14030680
APA StyleLee, J., & Park, J. (2025). Relationships Among Comorbidities, Disease Severity, and Hospitalization Duration in the United States Using the Healthcare Cost and Utilization Project (HCUP) Database. Journal of Clinical Medicine, 14(3), 680. https://doi.org/10.3390/jcm14030680