Counter-Rotate Technique Is Substantial for Correcting Thoracolumbar/Lumbar Curvature in AIS Patients with Thoracic Scoliosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Surgical Procedure
Correction of Thoracolumbar/Lumbar Curve Using CRT
2.3. Radiographical and CT Imaging Evaluation
2.4. Statistical Analysis
3. Results
3.1. Basic Characteristics of Patients with AIS
3.2. Thoracolumbar/Lumbar Cobb Angle Before and After Surgery
3.3. Analysis of Changing in Intervertebral Disc Angulation Below LIV
3.4. An Analysis of Changing in LIV Tilting Angle
3.5. An Analysis of Changing in Thoracolumbar/Lumbar Vertebral Rotation at LIV
3.6. Multivariate Regression Analysis of Deterioration of Thoracolumbar/Lumbar Curve After Surgery
3.7. Representative Cases in Lenke 1C Using CRT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, S.L.; Zavala, D.C.; Ponseti, I.V. Idiopathic scoliosis: Long term follow-up and prognosis in untreated patients. J. Bone Jt. Surg. Am. 1981, 63, 702–712. [Google Scholar] [CrossRef]
- Pishnamaz, M.; Migliorini, F.; Blume, C.; Kobbe, P.; Trobisch, P.; Delbrück, H.; Hildebrand, F.; Herren, C. Long-term outcomes of spinal fusion in adolescent idiopathic scoliosis: A literature review. Eur. J. Med. Res. 2024, 29, 534. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Nishiyama, M.; Kamata, M. Selective Thoracic Fusion for King-Moe Type II/Lenke 1C Curve in Adolescent Idiopathic Scoliosis: A Comprehensive Review of Major Concerns. Spine Surg. Relat. Res. 2018, 3, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Lenke, L.G.; Betz, R.R.; Harms, J.; Bridwell, K.H.; Clements, D.H.; Lowe, T.G.; Blanke, K. Adolescent idiopathic scoliosis: A new classification to determine extent of spinal arthrodesis. J. Bone Jt. Surg. Am. 2001, 83, 1169–1181. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, C.S.; Park, J.S.; Ma, C.H.; Shin, T.S.; Jeon, C.Y. Long-term Radiographic and Clinical Outcomes After Selective Thoracic Fusion for Adolescent Idiopathic Scoliosis With Lenke 1C Curve. J. Pediatr. Orthop. 2023, 43, e649–e656. [Google Scholar] [CrossRef]
- Fujii, T.; Kawabata, S.; Suzuki, S.; Tsuji, O.; Nori, S.; Okada, E.; Nagoshi, N.; Yagi, M.; Michikawa, T.; Nakamura, M.; et al. Can Postoperative Distal Adding-On be Predicted in Lenke Type 1B and 1C Curves with Intraoperative Radiographs? Spine 2022, 47, E215–E221. [Google Scholar] [CrossRef]
- Bizzoca, D.; Piazzolla, A.; Solarino, G.; Moretti, L.; Moretti, B. Subjective perception of spinal deformity after selective versus non-selective fusion of Lenke 1C curves. Spine Deform. 2022, 10, 855–863. [Google Scholar] [CrossRef]
- Mladenov, K.V.; Pinnschmidt, H.O.; Stücker, R. Anterior Vertebral Body Tethering for Skeletally Immature Patients with AIS: Indication for Spinal Fusion at Skeletal Maturity Is Not Obviated in 60% of Cases. J. Clin. Med. 2023, 12, 3933. [Google Scholar] [CrossRef]
- Trobisch, P.D.; Castelein, R.; Da Paz, S. Radiographic outcome after vertebral body tethering of the lumbar spine. Eur. Spine J. 2023, 32, 1895–1900. [Google Scholar] [CrossRef]
- Akazawa, T.; Umehara, T.; Iinuma, M.; Asano, K.; Kuroya, S.; Torii, Y.; Murakami, K.; Kotani, T.; Sakuma, T.; Minami, S.; et al. Spinal Alignments of Residual Lumbar Curve Affect Disc Degeneration after Spinal Fusion in Patients with Adolescent Idiopathic Scoliosis: Follow-up after 5 or More Years. Spine Surg. Relat. Res. 2019, 4, 50–56. [Google Scholar] [CrossRef]
- Nohara, A.; Kawakami, N.; Seki, K.; Tsuji, T.; Ohara, T.; Saito, T.; Kawakami, K. The Effects of Spinal Fusion on Lumbar Disc Degeneration in Patients with Adolescent Idiopathic Scoliosis: A Minimum 10-Year Follow-Up. Spine Deform. 2015, 3, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Akazawa, T.; Kotani, T.; Sakuma, T.; Minami, S.; Orita, S.; Inage, K.; Fujimoto, K.; Shiga, Y.; Torii, Y.; Umehara, T.; et al. Modic Changes and Disc Degeneration of Nonfused Segments 27 to 45 Years After Harrington Instrumentation for Adolescent Idiopathic Scoliosis: Comparison to Healthy Controls. Spine 2018, 43, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Larson, A.N.; Fletcher, N.D.; Daniel, C.; Richards, B.S. Lumbar curve is stable after selective thoracic fusion for adolescent idiopathic scoliosis: A 20-year follow-up. Spine 2012, 37, 833–839. [Google Scholar] [CrossRef]
- Chang, D.G.; Suk, S.I.; Kim, J.H.; Song, K.S.; Suh, S.W.; Kim, S.Y.; Kim, G.U.; Yang, J.H.; Lee, J.H. Long-term Outcome of Selective Thoracic Fusion Using Rod Derotation and Direct Vertebral Rotation in the Treatment of Thoracic Adolescent Idiopathic Scoliosis: More Than 10-Year Follow-up Data. Clin. Spine Surg. 2020, 33, E50–E57. [Google Scholar] [CrossRef]
- Simmons, E.H.; Jackson, R.P. The management of nerve root entrapment syndromes associated with the collapsing scoliosis of idiopathic lumbar and thoracolumbar curves. Spine 1979, 4, 533–541. [Google Scholar] [CrossRef]
- Ohashi, M.; Watanabe, K.; Hirano, T.; Hasegawa, K.; Katsumi, K.; Tashi, H.; Shibuya, Y.; Kawashima, H. Impact of the flexibility of the spinal deformity on low back pain and disc degeneration in adult patients nonoperatively treated for adolescent idiopathic scoliosis with thoracolumbar or lumbar curves. Spine Deform. 2022, 10, 133–140. [Google Scholar] [CrossRef]
- Akazawa, T.; Watanabe, K.; Matsumoto, M.; Tsuji, T.; Kawakami, N.; Kotani, T.; Sakuma, T.; Yamamoto, T.; Demura, S.; Orita, S.; et al. Modic changes and disc degeneration in adolescent idiopathic scoliosis patients who reach middle age without surgery: Can residual deformity cause lumbar spine degeneration? J. Orthop. Sci. 2018, 23, 884–888. [Google Scholar] [CrossRef]
- Yuan, W.; Shen, J.; Chen, L.; Wang, H.; Yu, K.; Cong, H.; Zhou, J.; Lin, Y. Differences in Nonspecific Low Back Pain between Young Adult Females with and without Lumbar Scoliosis. Pain Res. Manag. 2019, 2019, 9758273. [Google Scholar] [CrossRef]
- Uehara, M.; Takahashi, J.; Ikegami, S.; Kuraishi, S.; Futatsugi, T.; Oba, H.; Takizawa, T.; Munakata, R.; Koseki, M.; Kato, H. Correlation of Lower Instrumented Vertebra With Spinal Mobility and Health-related Quality of Life After Posterior Spinal Fusion for Adolescent Idiopathic Scoliosis. Clin. Spine Surg. 2019, 32, E326–E329. [Google Scholar] [CrossRef]
- Gottlich, C.; Sponseller, P.D. Ponte Osteotomy in Pediatric Spine Surgery. J. Bone Jt. Surg. Essent. Surg. Tech. 2020, 10, e19.00001. [Google Scholar] [CrossRef]
- Seki, S.; Makino, H.; Yahara, Y.; Kamei, K.; Futakawa, H.; Yasuda, T.; Suzuki, K.; Nakano, M.; Kawaguchi, Y. Rod Rotation with Outrigger Is Substantial for Correcting Apical Hypokyphosis in Patients with Adolescent Idiopathic Scoliosis: Novel Outrigger Device for Concave Rod Rotation. J. Clin. Med. 2023, 12, 6780. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Suk, S.I.; Chung, E.R. Direct vertebral rotation: A new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine 2004, 29, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Kaya, O.; Kara, D.; Gok, H.; Kahraman, S.; Sanlı, T.; Karadereler, S.; Enercan, M.; Hamzaoglu, A. The Importance of Lumbar Curve Flexibility and Apical Vertebral Rotation for the Prediction of Spontaneous Lumbar Curve Correction in Selective Thoracic Fusion for Lenke Type 1 and 2 C Curves: Retrospective Cohort Study with a Mean Follow-Up of More than 10 years. Glob. Spine J. 2022, 12, 1516–1523. [Google Scholar] [CrossRef]
- Fujii, T.; Daimon, K.; Fujita, N.; Yagi, M.; Michikawa, T.; Hosogane, N.; Nagoshi, N.; Tsuji, O.; Kaneko, S.; Tsuji, T.; et al. Risk Factors for Postoperative Distal Adding-on in Lenke Type 1B and 1C and its Influence on Residual Lumbar Curve. J. Pediatr. Orthop. 2020, 40, e77–e83. [Google Scholar] [CrossRef]
- Uehara, M.; Takahashi, J.; Ikegami, S.; Kuraishi, S.; Futatsugi, T.; Oba, H.; Takizawa, T.; Munakata, R.; Koseki, M.; Kato, H. Prediction of Spontaneous Lumbar Curve Correction After Posterior Spinal Fusion for Adolescent Idiopathic Scoliosis Lenke Type 1 Curves. Clin. Spine Surg. 2019, 32, E112–E116. [Google Scholar] [CrossRef]
- Schulz, J.; Asghar, J.; Bastrom, T.; Shufflebarger, H.; Newton, P.O.; Sturm, P.; Betz, R.R.; Samdani, A.F.; Yaszay, B.; Harms Study Group. Optimal radiographical criteria after selective thoracic fusion for patients with adolescent idiopathic scoliosis with a C lumbar modifier: Does adherence to current guidelines predict success? Spine 2014, 39, E1368–E1373. [Google Scholar] [CrossRef]
- Eardley-Harris, N.; Munn, Z.; Cundy, P.J.; Gieroba, T.J. The effectiveness of selective thoracic fusion for treating adolescent idiopathic scoliosis: A systematic review protocol. JBI Database Syst. Rev. Implement. Rep. 2015, 13, 4–16. [Google Scholar] [CrossRef]
- Wang, Y.; Bünger, C.E.; Wu, C.; Zhang, Y.; Hansen, E.S. Postoperative trunk shift in Lenke 1C scoliosis: What causes it? How can it be prevented? Spine 2012, 37, 1676–1682. [Google Scholar] [CrossRef]
- Abel, M.F.; Herndon, S.K.; Sauer, L.D.; Novicoff, W.M.; Smith, J.S.; Shaffrey, C.I.; Spinal Deformity Study Group. Selective versus nonselective fusion for idiopathic scoliosis: Does lumbosacral takeoff angle change? Spine 2011, 36, 1103–1112. [Google Scholar] [CrossRef]
Title | 1 or 2B (n = 28) | 1 or 2C (n = 17) | Overall (n = 45) | p-Value * |
---|---|---|---|---|
Height (cm) | 156.1 ± 8.9 | 155.1 ± 5.2 | 155.8 ± 7.4 | 0.81 |
Weight (kg) | 47.6 ± 4.1 | 45.1 ± 4.2 | 46.5 ± 6.0 | 0.68 |
Age (years) | 16.0 ± 4.5 | 13.6 ± 1.2 | 15.1 ± 3.2 | 0.51 |
Main Thoracic Cobb angle (degrees) | 50.6 ± 8.6 | 46.8 ± 3.4 | 50.0 ± 8.5 | 0.08 |
Thoracolumbar/Lumbar Cobb angle (degrees) | 33.5 ± 5.4 | 37.6 ± 3.6 | 35.1 ± 4.2 | p < 0.05 |
Risser’s sign | 3.9 ± 1.7 | 4.2 ± 0.4 | 3.9 ± 1.1 | 0.14 |
Fixed intervertebral space | 10.0 ± 1.5 | 10.2 ± 1.9 | 10.0 ± 1.6 | 0.78 |
Title | Odds | p-Value |
---|---|---|
Age | 1.2 | p < 0.01 |
Risser’s sign | 1.4 | p < 0.05 |
Postoperative thoracolumbar/lumbar Cobb angle (1st erect) | 5.3 | p < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seki, S.; Newton, P.O.; Makino, H.; Futakawa, H.; Kamei, K.; Yashima, Y.; Kawaguchi, Y. Counter-Rotate Technique Is Substantial for Correcting Thoracolumbar/Lumbar Curvature in AIS Patients with Thoracic Scoliosis. J. Clin. Med. 2025, 14, 706. https://doi.org/10.3390/jcm14030706
Seki S, Newton PO, Makino H, Futakawa H, Kamei K, Yashima Y, Kawaguchi Y. Counter-Rotate Technique Is Substantial for Correcting Thoracolumbar/Lumbar Curvature in AIS Patients with Thoracic Scoliosis. Journal of Clinical Medicine. 2025; 14(3):706. https://doi.org/10.3390/jcm14030706
Chicago/Turabian StyleSeki, Shoji, Peter O. Newton, Hiroto Makino, Hayato Futakawa, Katsuhiko Kamei, Yushi Yashima, and Yoshiharu Kawaguchi. 2025. "Counter-Rotate Technique Is Substantial for Correcting Thoracolumbar/Lumbar Curvature in AIS Patients with Thoracic Scoliosis" Journal of Clinical Medicine 14, no. 3: 706. https://doi.org/10.3390/jcm14030706
APA StyleSeki, S., Newton, P. O., Makino, H., Futakawa, H., Kamei, K., Yashima, Y., & Kawaguchi, Y. (2025). Counter-Rotate Technique Is Substantial for Correcting Thoracolumbar/Lumbar Curvature in AIS Patients with Thoracic Scoliosis. Journal of Clinical Medicine, 14(3), 706. https://doi.org/10.3390/jcm14030706