Echocardiographic Assessment of Biventricular Mechanics in Patients with Mild-to-Moderate Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Clinical Findings
3.2. Instrumental Findings
3.3. Risk-of-Bias Assessment
3.4. Effect of IPF on RV-GLS
3.5. Effect of IPF on LV-GLS
3.6. Effect of IPF on TAPSE
3.7. Effect of IPF on LVEF
4. Discussion
4.1. Main Findings of the Present Systematic Review and Meta-Analysis
4.2. Pathophysiological Mechanisms Underpinning Myocardial Strain Impairment in Mild-to-Moderate IPF
4.3. Implications for Clinical Practice
4.4. Limitations of the Included Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef]
- Jovanovic, D.M.; Šterclová, M.; Mogulkoc, N.; Lewandowska, K.; Müller, V.; Hájková, M.; Studnicka, M.; Tekavec-Trkanjec, J.; Littnerová, S.; Vašáková, M.; et al. Comorbidity burden and survival in patients with idiopathic pulmonary fibrosis: The EMPIRE registry study. Respir. Res. 2022, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Amatto, V.C.; Behr, J.; Stowasser, S. Comorbidities in idiopathic pulmonary fibrosis patients: A systematic literature review. Eur. Respir. J. 2015, 46, 1113–1130. [Google Scholar] [CrossRef] [PubMed]
- Caminati, A.; Lonati, C.; Cassandro, R.; Elia, D.; Pelosi, G.; Torre, O.; Zompatori, M.; Uslenghi, E.; Harari, S. Comorbidities in idiopathic pulmonary fibrosis: An underestimated issue. Eur. Respir. Rev. 2019, 28, 190044. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Kitamura, H.; Hayakawa, K.; Fukui, K.; Tabata, E.; Otoshi, R.; Iwasawa, T.; Utsunomiya, D.; Kimura, K.; Tamura, K.; et al. Coronary artery disease and heart failure in patients with idiopathic pulmonary fibrosis. Heart Vessels 2021, 36, 1151–1158. [Google Scholar] [CrossRef]
- Ozaltin, B.; Chapman, R.; Arfeen, M.Q.U.; Fitzpatick, N.; Hemingway, H.; Direk, K.; Jacob, J. Delineating excess comorbidities in idiopathic pulmonary fibrosis: An observational study. Respir. Res. 2024, 25, 249. [Google Scholar] [CrossRef]
- Nathan, S.D.; Basavaraj, A.; Reichner, C.; Shlobin, O.A.; Ahmad, S.; Kiernan, J.; Burton, N.; Barnett, S.D. Prevalence and impact of coronary artery disease in idiopathic pulmonary fibrosis. Respir. Med. 2010, 104, 1035–1041. [Google Scholar] [CrossRef]
- Finkelhor, R.S.; Lewis, S.A.; Pillai, D. Limitations and strengths of doppler/echo pulmonary artery systolic pressure-right heart catheterization correlations: A systematic literature review. Echocardiography 2015, 32, 10–18. [Google Scholar] [CrossRef]
- Keir, G.J.; Wort, S.J.; Kokosi, M.; George, P.M.; Walsh, S.L.F.; Jacob, J.; Price, L.; Bax, S.; Renzoni, E.A.; Maher, T.M.; et al. Pulmonary hypertension in interstitial lung disease: Limitations of echocardiography compared to cardiac catheterization. Respirology 2018, 23, 687–694. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Cassandro, R.; Luisi, F.; Ferrante, D.; Nicolosi, G.L.; Lombardo, M.; Anzà, C.; Harari, S. Correlation Between Doppler Echocardiography and Right Heart Catheterisation-Derived Systolic and Mean Pulmonary Artery Pressures: Determinants of Discrepancies Between the Two Methods. Heart Lung Circ. 2021, 30, 656–664. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef] [PubMed]
- Ley, B.; Ryerson, C.J.; Vittinghoff, E.; Ryu, J.H.; Tomassetti, S.; Lee, J.S.; Poletti, V.; Buccioli, M.; Elicker, B.M.; Jones, K.D.; et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann. Intern. Med. 2012, 156, 684–691. [Google Scholar] [CrossRef]
- Papiris, S.A.; Daniil, Z.D.; Malagari, K.; Kapotsis, G.E.; Sotiropoulou, C.; Milic-Emili, J.; Roussos, C. The Medical Research Council dyspnea scale in the estimation of disease severity in idiopathic pulmonary fibrosis. Respir. Med. 2005, 99, 755–761. [Google Scholar] [CrossRef]
- Ma, L.L.; Wang, Y.Y.; Yang, Z.H.; Huang, D.; Weng, H.; Zeng, X.T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef]
- D’Andrea, A.; Stanziola, A.; Di Palma, E.; Martino, M.; D’Alto, M.; Dellegrottaglie, S.; Cocchia, R.; Riegler, L.; Betancourt Cordido, M.V.; Lanza, M.; et al. Right Ventricular Structure and Function in Idiopathic Pulmonary Fibrosis with or without Pulmonary Hypertension. Echocardiography 2016, 33, 57–65. [Google Scholar] [CrossRef]
- D’Andrea, A.; Stanziola, A.A.; Saggar, R.; Saggar, R.; Sperlongano, S.; Conte, M.; D’Alto, M.; Ferrara, F.; Gargani, L.; Lancellotti, P.; et al. Right Ventricular Functional Reserve in Early-Stage Idiopathic Pulmonary Fibrosis: An Exercise Two-Dimensional Speckle Tracking Doppler Echocardiography Study. Chest 2019, 155, 297–306. [Google Scholar] [CrossRef]
- Buonauro, A.; Santoro, C.; Galderisi, M.; Canora, A.; Sorrentino, R.; Esposito, R.; Lembo, M.; Canonico, M.E.; Ilardi, F.; Fazio, V.; et al. Impaired Right and Left Ventricular Longitudinal Function in Patients with Fibrotic Interstitial Lung Diseases. J. Clin. Med. 2020, 9, 587. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Caminati, A.; Lipsi, R.; Nicolosi, G.L.; Lombardo, M.; Anzà, C.; Harari, S. Early left atrial dysfunction in idiopathic pulmonary fibrosis patients without chronic right heart failure. Int. J. Cardiovasc. Imaging 2020, 36, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Cobra, S.B.; Rodrigues, M.P.; de Melo, F.X.; Ferreira, N.M.C.; Melo-Silva, C.A. Right ventricular contractility decreases during exercise in patients with non-advanced idiopathic pulmonary fibrosis. Medicine 2021, 100, e25915. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Buonauro, A.; Canora, A.; Rea, G.; Canonico, M.E.; Esposito, R.; Sanduzzi, A.; Esposito, G.; Bocchino, M. Non-Invasive Assessment of Right Ventricle to Arterial Coupling for Prognosis Stratification of Fibrotic Interstitial Lung Diseases. J. Clin. Med. 2022, 11, 6115. [Google Scholar] [CrossRef] [PubMed]
- Cazzoletti, L.; Zanolin, M.E.; Dorelli, G.; Ferrari, P.; Dalle Carbonare, L.G.; Crisafulli, E.; Alemayohu, M.A.; Olivieri, M.; Verlato, G.; Ferrari, M. Six-minute walk distance in healthy subjects: Reference standards from a general population sample. Respir. Res. 2022, 23, 83. [Google Scholar] [CrossRef] [PubMed]
- Muraru, D.; Onciul, S.; Peluso, D.; Soriani, N.; Cucchini, U.; Aruta, P.; Romeo, G.; Cavalli, G.; Iliceto, S.; Badano, L.P. Sex- and Method-Specific Reference Values for Right Ventricular Strain by 2-Dimensional Speckle-Tracking Echocardiography. Circ. Cardiovasc. Imaging 2016, 9, e003866. [Google Scholar] [CrossRef]
- Voigt, J.U.; Cvijic, M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC Cardiovasc. Imaging 2019, 12, 1849–1863. [Google Scholar] [CrossRef]
- Hilde, J.M.; Skjørten, I.; Grøtta, O.J.; Hansteen, V.; Melsom, M.N.; Hisdal, J.; Humerfelt, S.; Steine, K. Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62, 1103–1111. [Google Scholar] [CrossRef]
- Tadic, M.; Nita, N.; Schneider, L.; Kersten, J.; Buckert, D.; Gonska, B.; Scharnbeck, D.; Reichart, C.; Belyavskiy, E.; Cuspidi, C.; et al. The Predictive Value of Right Ventricular Longitudinal Strain in Pulmonary Hypertension, Heart Failure, and Valvular Diseases. Front. Cardiovasc. Med. 2021, 8, 698158. [Google Scholar] [CrossRef]
- Calabrese, F.; Giacometti, C.; Rea, F.; Loy, M.; Valente, M. Idiopathic interstitial pneumonias: Primum movens: Epithelial, endothelial or whatever. Sarcoidosis Vasc. Diffuse Lung Dis. 2005, 22 (Suppl. S1), S15–S23. [Google Scholar]
- Sonaglioni, A.; Caminati, A.; Nicolosi, G.L.; Lombardo, M.; Harari, S. Incremental prognostic value of arterial elastance in mild-to-moderate idiopathic pulmonary fibrosis. Int. J. Cardiovasc. Imaging 2022, 38, 1473–1485. [Google Scholar] [CrossRef]
- Ferns, G.A.A.; Heikal, L. Hypoxia in Atherogenesis. Angiology 2017, 68, 472–493. [Google Scholar] [CrossRef] [PubMed]
- Tarbell, J.; Mahmoud, M.; Corti, A.; Cardoso, L.; Caro, C. The role of oxygen transport in atherosclerosis and vascular disease. J. R. Soc. Interface 2020, 17, 20190732. [Google Scholar] [CrossRef] [PubMed]
- Petit, M.; Vieillard-Baron, A. Ventricular interdependence in critically ill patients: From physiology to bedside. Front. Physiol. 2023, 14, 1232340. [Google Scholar] [CrossRef] [PubMed]
- Lazar, J.M.; Flores, A.R.; Grandis, D.J.; Orie, J.E.; Schulman, D.S. Effects of chronic right ventricular pressure overload on left ventricular diastolic function. Am. J. Cardiol. 1993, 72, 1179–1182. [Google Scholar] [CrossRef]
- Santamore, W.P.; Dell’Italia, L.J. Ventricular interdependence: Significant left ventricular contributions to right ventricular systolic function. Prog. Cardiovasc. Dis. 1998, 40, 289–308. [Google Scholar] [CrossRef]
- Morris-Thurgood, J.A.; Frenneaux, M.P. Diastolic ventricular interaction and ventricular diastolic filling. Heart Fail. Rev. 2000, 5, 307–323. [Google Scholar] [CrossRef]
- Cassagnes, L.; Gaillard, V.; Monge, E.; Faivre, J.B.; Delhaye, C.; Molinari, F.; Petyt, G.; Hossein-Foucher, C.; Wallaert, B.; Duhamel, A.; et al. Prevalence of asymptomatic coronary disease in fibrosing idiopathic interstitial pneumonias. Eur. J. Radiol. 2015, 84, 163–171. [Google Scholar] [CrossRef]
- Tran, D.L.; Lau, E.M.T.; Celermajer, D.S.; Davis, G.M.; Cordina, R. Pathophysiology of exercise intolerance in pulmonary arterial hypertension. Respirology 2018, 23, 148–159. [Google Scholar] [CrossRef]
- Domingo, E.; Grignola, J.C.; Aguilar, R.; Arredondo, C.; Bouteldja, N.; Messeguer, M.L.; Roman, A. Impairment of pulmonary vascular reserve and right ventricular systolic reserve in pulmonary arterial hypertension. BMC Pulm. Med. 2014, 14, 69. [Google Scholar] [CrossRef]
- Hubbard, R.B.; Smith, C.; Le Jeune, I.; Gribbin, J.; Fogarty, A.W. The association between idiopathic pulmonary fibrosis and vascular disease: A population-based study. Am. J. Respir. Crit. Care Med. 2008, 178, 1257–1261. [Google Scholar] [CrossRef]
- Nicolosi, G.L. The strain and strain rate imaging paradox in echocardiography: Overabundant literature in the last two decades but still uncertain clinical utility in an individual case. Arch. Med. Sci. Atheroscler. Dis. 2020, 5, e297–e305. [Google Scholar] [CrossRef] [PubMed]
- Mirea, O.; Pagourelias, E.D.; Duchenne, J.; Bogaert, J.; Thomas, J.D.; Badano, L.P.; Voigt, J.U.; EACVI-ASE-Industry Standardization Task Force. Intervendor Differences in the Accuracy of Detecting Regional Functional Abnormalities: A Report From the EACVI-ASE Strain Standardization Task Force. JACC Cardiovasc. Imaging 2018, 11, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Negishi, T.; Negishi, K.; Thavendiranathan, P.; Cho, G.Y.; Popescu, B.A.; Vinereanu, D.; Kurosawa, K.; Penicka, M.; Marwick, T.H.; SUCCOUR Investigators. Effect of Experience and Training on the Concordance and Precision of Strain Measurements. JACC Cardiovasc. Imaging 2017, 10, 518–522. [Google Scholar] [CrossRef]
- Rösner, A.; Barbosa, D.; Aarsæther, E.; Kjønås, D.; Schirmer, H.; D’hooge, J. The influence of frame rate on two-dimensional speckle-tracking strain measurements: A study on silico-simulated models and images recorded in patients. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1137–1147. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Granato, A.; Bonanomi, A.; Rigamonti, E.; Lombardo, M. Influence of chest wall conformation on reproducibility of main echocardiographic indices of left ventricular systolic function. Minerva Cardiol. Angiol. 2024, 72, 111–124. [Google Scholar] [CrossRef]
Study Name, Country and Publication Year | Population | Mean Age of IPF Pts (% Males) | Study Design | Imaging Method | Main Findings in IPF Patients vs. Healthy Controls |
---|---|---|---|---|---|
D’Andrea A., et al. (2016) [18], Italy | IPF = 52 Controls = 45 | 66.7 (48.1) | Prospective | 2D-TTE, STE | ↔LV internal dimensions, LVMi, E/A, E/e’, LVEF; ↓LV-GLS; ↔TAPSE, TDI RV peak S’; ↑RV basal diameter, TRV, sPAP; ↓RV-GLS |
D’Andrea A., et al. (2019) [19], Italy | IPF = 50 Controls = 50 | 61.2 (70) | Prospective | 2D-TTE, ESE, STE | Resting findings: ↑RV basal diameter, sPAP; ↔E/e’, TAPSE, LV-GLS; ↓RV-GLS; Peak exercise findings: ↓Watt achieved, maximal HR, SpO2; ↑ sPAP; ↓RV-GLS |
Buonauro A., et al. (2020) [20], Italy | IPF = 33 Controls = 30 | 70.1 (81.8) | Prospective | 2D-TTE, 3D-TTE, STE | ↔LVMi, LVEF; ↓transmitral E/A; ↑E/e’; ↓LV-GLS; ↑RV basal diameter, sPAP; ↓TAPSE, tricuspid E/A, RV-GLS, 3D-RVEF |
Sonaglioni A., et al. (2020) [21], Italy | IPF = 50 Controls = 30 | 73.8 (72) | Retrospective | 2D-TTE, STE | ↔LVMi, LVEF, E/A, RV basal diameter, TAPSE; ↑E/e’, TRV, sPAP; ↓LASr, LV-GLS; ↔RASr, RV-GLS |
Cobra S.B., et al. (2021) [22], Brazil | IPF = 20 Controls = 10 | 72.3 (50) | Prospective | 2D-TTE, CPET, STE | Resting findings: ↑LAVi, ↔E/e’, ↓RV-FAC, TAPSE, ↑mPAP, sPAP, ↔RV-GLS; Peak exercise findings: ↑mPAP, ↓RV-GLS, ↓peak V’O2, O2 pulse, maximal HR |
Santoro C., et al. (2022) [23], Italy | IPF = 50 Controls = 30 | 67 (74) | Retrospective | 2D-TTE, STE | ↔LV internal dimensions, LVMi, E/e’, LVEF, LV-GLS; ↓E/A; ↑RV basal diameter, TRV, sPAP; ↔TAPSE; ↓RV-GLS, TAPSE/sPAP, RV-GLS/sPAP |
IPF Patients | Controls | p Value | Number of Studies for Parameters Assessed (%) | |
---|---|---|---|---|
Demographics | ||||
Age (yrs) | 68.5 (61.2–73.8) | 66.4 (59.4–71.1) | <0.05 | 6 (100) |
Male sex (%) | 66.0 (48.1–74) | 59.8 (40–70) | <0.05 | 6 (100) |
Ethnicity | ||||
European (%) | 83.3 | 83.3 | NS | 6 (100) |
Latin American (%) | 16.7 | 16.7 | NS | 6 (100) |
Anthropometrics | ||||
BMI (Kg/m2) | 27.5 (24.7–28.9) | 26.7 (25.2–29.6) | <0.05 | 6 (100) |
Cardiovascular risk factors and cardiovascular disease burden | ||||
Current/ex smokers (%) | 56.6 (31–75) | 52.6 (28–66.7) | <0.05 | 6 (100) |
Hypertension (%) | 50.7 (44–60) | 33.5 (17–50) | <0.05 | 3 (50) |
Type 2 diabetes (%) | 17 (12–20) | 11.7 (0–23.4) | <0.05 | 4 (66.7) |
History of CAD (%) | 14 (14–14) | / | / | 2 (33.3) |
Respiratory parameters | ||||
Room air SaO2 (%) | 88.3 (83.4–93.2) | 93.3 (92.5–94.1) | <0.05 | 2 (33.3) |
PaO2 (mmHg) | 75.4 (71.6–80.7) | / | / | 2 (33.3) |
FEV1 % predicted | 75.5 (70.9–81.3) | / | / | 4 (66.7) |
FVC % predicted | 68.7 (61–75.9) | / | / | 6 (100) |
FEV1/FVC (%) | 84.3 (80.1–87) | / | / | 3 (50) |
DLCO % predicted | 45.1 (35.8–53.9) | / | / | 6 (100) |
6MW distance (m) | 419.4 (346.4–490) | / | / | 5 (83.3) |
Hemodynamics | ||||
HR (bpm) | 76.2 (71.9–79.5) | 72 (68.2–77.6) | <0.05 | 4 (66.7) |
SBP (mmHg) | 135.6 (128.3–139) | 129.3 (124–134.6) | <0.05 | 4 (66.7) |
DBP (mmHg) | 80.7 (78.9–82) | 78.8 (76.5–80.5) | <0.05 | 4 (66.7) |
Conventional echoDoppler variables | ||||
IVS thickness (mm) | 9.3 (9.1–9.5) | 9.4 (9–9.8) | NS | 2 (33.3) |
PW thickness (mm) | 8.5 (8.5–8.6) | 8.6 (8.5–8.7) | NS | 2 (33.3) |
LV-EDD (mm) | 48 (47.9–48.1) | 48.1 (48–48.2) | NS | 2 (33.3) |
RWT | 0.39 (0.36–0.44) | 0.38 (0.36–0.42) | NS | 4 (66.7) |
LVMi (g/m2) | 83.7 (73.2–95.3) | 80.4 (75.7–91.7) | NS | 4 (66.7) |
LVEF (%) | 60.5 (55.8–63) | 61.4 (57.4–63.2) | NS | 4 (66.7) |
LAVi (mL/m2) | 26.7 (20.8–33.9) | 24.1 (14.7–32) | NS | 3 (50) |
E/A ratio | 0.79 (0.71–0.92) | 0.89 (0.75–0.97) | <0.05 | 4 (66.7) |
E/e’ ratio | 9.08 (5.3–14.4) | 7.05 (4.3–9.6) | <0.05 | 6 (100) |
RAVi (mL/m2) | 15.5 (9.7–21.3) | 12.5 (6.9–18.1) | NS | 1 (16.7) |
RV basal diameter (mm) | 36.4 (32.5–39.8) | 32.3 (28–35.9) | <0.05 | 5 (83.3) |
TDI RV peak systolic velocity S’ (cm/s) | 12.6 (11.5–13.9) | 12.7 (12–13) | NS | 4 (66.7) |
TAPSE (mm) | 21.1 (20.3–22) | 22.4 (21–23.4) | <0.05 | 6 (100) |
TRV (m/s) | 2.66 (1.84–3.21) | 2.17 (1.61–2.47) | <0.05 | 6 (100) |
sPAP (mmHg) | 34.6 (18.6–46.1) | 24.3 (15.3–30.1) | <0.05 | 6 (100) |
TAPSE/sPAP ratio (mm/mmHg) | 0.65 (0.48–1.09) | 0.96 (0.75–1.37) | <0.05 | 1 (16.7) |
Myocardial strain parameters (%) | ||||
RV-GLS (%) | 18.6 (13.4–22.6) | 22 (18.4–24.2) | <0.05 | 6 (100) |
RV-GLS/sPAP ratio (%/mmHg) | 0.55 (0.47–0.67) | 0.92 (0.77–1.07) | <0.05 | 1 (16.7) |
LV-GLS (%) | 18.8 (15.9–20.9) | 20.8 (18.8–22.7) | <0.05 | 5 (83.3) |
LASr (%) | 23.7 (18.8–28.6) | 37.1 (31.9–42.3) | <0.05 | 1 (16.7) |
Anti-fibrotic treatment (%) | 42 (0–84) | / | / | 2 (33.3) |
Moderators | Coefficient | Standard Error | 95%CI Lower | 95%CI Upper | p-Value |
---|---|---|---|---|---|
Age | 0.10 | 0.12 | −0.13 | 0.33 | 0.39 |
Hypertension | −0.12 | 0.11 | −0.34 | 0.09 | 0.26 |
Type 2 diabetes | −0.09 | 0.18 | −0.44 | 0.27 | 0.64 |
Smoking | −0.02 | 0.04 | −0.09 | 0.06 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonaglioni, A.; Caminati, A.; Nicolosi, G.L.; Muti-Schünemann, G.E.U.; Lombardo, M.; Harari, S. Echocardiographic Assessment of Biventricular Mechanics in Patients with Mild-to-Moderate Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 714. https://doi.org/10.3390/jcm14030714
Sonaglioni A, Caminati A, Nicolosi GL, Muti-Schünemann GEU, Lombardo M, Harari S. Echocardiographic Assessment of Biventricular Mechanics in Patients with Mild-to-Moderate Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2025; 14(3):714. https://doi.org/10.3390/jcm14030714
Chicago/Turabian StyleSonaglioni, Andrea, Antonella Caminati, Gian Luigi Nicolosi, Giovanna Elsa Ute Muti-Schünemann, Michele Lombardo, and Sergio Harari. 2025. "Echocardiographic Assessment of Biventricular Mechanics in Patients with Mild-to-Moderate Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 14, no. 3: 714. https://doi.org/10.3390/jcm14030714
APA StyleSonaglioni, A., Caminati, A., Nicolosi, G. L., Muti-Schünemann, G. E. U., Lombardo, M., & Harari, S. (2025). Echocardiographic Assessment of Biventricular Mechanics in Patients with Mild-to-Moderate Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 14(3), 714. https://doi.org/10.3390/jcm14030714