Comparison of Neural Network Structures for Identifying Shockable Rhythm During Cardiopulmonary Resuscitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Clinical Setting
2.2. Ethical Statement
2.3. Data Processing
2.4. Architecture of Neural Network and Training
2.4.1. Reference Model [27]
2.4.2. CNN Model with Deeper Layers
2.4.3. LSTM Model
2.4.4. CNN Model with Residual and Attention Mechanisms
2.4.5. Overview of Model Architecture
2.4.6. Loss Function
2.4.7. Model Ensemble and Decision Process
2.5. Statistical Analysis
3. Results
3.1. Performance of CNN with Deeper Convolutional Layers
3.2. Performance of LSTM and Bi-LSTM Models
3.3. Performance of CNN with Attention Mechanism and Residual Block
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olasveengen, T.M.; Semeraro, F.; Ristagno, G.; Castren, M.; Handley, A.; Kuzovlev, A.; Monsieurs, K.G.; Raffay, V.; Smyth, M.; Soar, J. European resuscitation council guidelines 2021: Basic life support. Resuscitation 2021, 161, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Lee, B.K.; Ko, S.-k.; Ro, Y.S. Recent status of sudden cardiac arrests in emergency medical facilities: A report from the National Emergency Department Information System (NEDIS) of Korea, 2018–2022. Clin. Exp. Emerg. Med. 2023, 10, S36–S41. [Google Scholar] [CrossRef] [PubMed]
- Panchal, A.R.; Bartos, J.A.; Cabañas, J.G.; Donnino, M.W.; Drennan, I.R.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Lavonas, E.J.; Morley, P.T. Part 3: Adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2020, 142, S366–S468. [Google Scholar] [CrossRef]
- Sell, R.E.; Sarno, R.; Lawrence, B.; Castillo, E.M.; Fisher, R.; Brainard, C.; Dunford, J.V.; Davis, D.P. Minimizing pre-and post-defibrillation pauses increases the likelihood of return of spontaneous circulation (ROSC). Resuscitation 2010, 81, 822–825. [Google Scholar] [CrossRef]
- Pierce, A.E.; Roppolo, L.P.; Owens, P.C.; Pepe, P.E.; Idris, A.H. The need to resume chest compressions immediately after defibrillation attempts: An analysis of post-shock rhythms and duration of pulselessness following out-of-hospital cardiac arrest. Resuscitation 2015, 89, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Edelson, D.P.; Abella, B.S.; Kramer-Johansen, J.; Wik, L.; Myklebust, H.; Barry, A.M.; Merchant, R.M.; Hoek, T.L.V.; Steen, P.A.; Becker, L.B. Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation 2006, 71, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Cheskes, S.; Schmicker, R.H.; Christenson, J.; Salcido, D.D.; Rea, T.; Powell, J.; Edelson, D.P.; Sell, R.; May, S.; Menegazzi, J.J.; et al. Perishock Pause. Circulation 2011, 124, 58–66. [Google Scholar] [CrossRef]
- Bircher, N.G.; Chan, P.S.; Xu, Y.; American Heart Association’s Get with the Guidelines–Resuscitation Investigators. Delays in Cardiopulmonary Resuscitation, Defibrillation, and Epinephrine Administration All Decrease Survival in In-hospital Cardiac Arrest. Anesthesiology 2019, 130, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Aramendi, E.; Ayala, U.; Irusta, U.; Alonso, E.; Eftestøl, T.; Kramer-Johansen, J. Suppression of the cardiopulmonary resuscitation artefacts using the instantaneous chest compression rate extracted from the thoracic impedance. Resuscitation 2012, 83, 692–698. [Google Scholar] [CrossRef]
- Isasi, I.; Irusta, U.; Elola, A.; Aramendi, E.; Eftestøl, T.; Kramer-Johansen, J.; Wik, L. A robust machine learning architecture for a reliable ECG rhythm analysis during CPR. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1903–1907. [Google Scholar]
- Isasi, I.; Irusta, U.; Rad, A.B.; Aramendi, E.; Zabihi, M.; Eftestøl, T.; Kramer-Johansen, J.; Wik, L. Automatic Cardiac Rhythm Classification with Concurrent Manual Chest Compressions. IEEE Access 2019, 7, 115147–115159. [Google Scholar] [CrossRef]
- Isasi, I.; Irusta, U.; Aramendi, E.; Eftestøl, T.; Kramer-Johansen, J.; Wik, L. Rhythm analysis during cardiopulmonary resuscitation using convolutional neural networks. Entropy 2020, 22, 595. [Google Scholar] [CrossRef]
- Jekova, I.; Krasteva, V. Optimization of end-to-end convolutional neural networks for analysis of out-of-hospital cardiac arrest rhythms during cardiopulmonary resuscitation. Sensors 2021, 21, 4105. [Google Scholar] [CrossRef]
- Hajeb-Mohammadalipour, S.; Cascella, A.; Valentine, M.; Chon, K.H. Automated condition-based suppression of the CPR artifact in ECG data to make a reliable shock decision for AEDs during CPR. Sensors 2021, 21, 8210. [Google Scholar] [CrossRef] [PubMed]
- Hajeb-M, S.; Cascella, A.; Valentine, M.; Chon, K. Deep neural network approach for continuous ECG-based automated external defibrillator shock advisory system during cardiopulmonary resuscitation. J. Am. Heart Assoc. 2021, 10, e019065. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.; Conway, S.; Ahmad, M.; Adegbie, D.; Patel, N.; Myneni, V.; Alradhawi, M.; Kumar, N.; Obaid, D.R.; Pimenta, D. Role of artificial intelligence in defibrillators: A narrative review. Open Heart 2022, 9, e001976. [Google Scholar] [CrossRef]
- Krasteva, V.; Jekova, I. Rhythm Analysis During Cardio-Pulmonary Resuscitation with Convolutional and Recurrent Neural Networks Using ECG and Optional Impedance Input. In The International Symposium on Bioinformatics and Biomedicine; Springer: Cham, Switzerland, 2022; pp. 3–15. [Google Scholar]
- Picon, A.; Irusta, U.; Álvarez-Gila, A.; Aramendi, E.; Alonso-Atienza, F.; Figuera, C.; Ayala, U.; Garrote, E.; Wik, L.; Kramer-Johansen, J. Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia. PLoS ONE 2019, 14, e0216756. [Google Scholar] [CrossRef]
- Xiong, P.; Lee, S.M.-Y.; Chan, G. Deep learning for detecting and locating myocardial infarction by electrocardiogram: A literature review. Front. Cardiovasc. Med. 2022, 9, 860032. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Lee, K.; Mokhtar, S.A.; Ismail, I.; Pauzi, A.L.b.M.; Zhang, Q.; Lim, P.Y. Deep learning-based ECG arrhythmia classification: A systematic review. Appl. Sci. 2023, 13, 4964. [Google Scholar] [CrossRef]
- Han, C.; Shi, L. ML–ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG. Comput. Methods Programs Biomed. 2020, 185, 105138. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (accessed on 25 November 2024).
- He, K.; Gan, C.; Li, Z.; Rekik, I.; Yin, Z.; Ji, W.; Gao, Y.; Wang, Q.; Zhang, J.; Shen, D. Transformers in medical image analysis. Intell. Med. 2023, 3, 59–78. [Google Scholar] [CrossRef]
- Fu, L.; Lu, B.; Nie, B.; Peng, Z.; Liu, H.; Pi, X. Hybrid network with attention mechanism for detection and location of myocardial infarction based on 12-lead electrocardiogram signals. Sensors 2020, 20, 1020. [Google Scholar] [CrossRef]
- Li, D.; Wu, H.; Zhao, J.; Tao, Y.; Fu, J. Automatic classification system of arrhythmias using 12-lead ECGs with a deep neural network based on an attention mechanism. Symmetry 2020, 12, 1827. [Google Scholar] [CrossRef]
- Geng, Q.; Liu, H.; Gao, T.; Liu, R.; Chen, C.; Zhu, Q.; Shu, M. An ecg classification method based on multi-task learning and cot attention mechanism. Healthcare 2023, 11, 1000. [Google Scholar] [CrossRef]
- Ahn, S.; Jung, S.; Park, J.-H.; Cho, H.; Moon, S.; Lee, S. Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: In-hospital setting. Resuscitation 2024, 202, 110325. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-C.; Jung, C.-W. Vital Recorder—A free research tool for automatic recording of high-resolution time-synchronised physiological data from multiple anaesthesia devices. Sci. Rep. 2018, 8, 1527. [Google Scholar] [CrossRef]
- Vistisen, S.T.; Pollard, T.J.; Enevoldsen, J.; Scheeren, T.W. VitalDB: Fostering collaboration in anaesthesia research. Br. J. Anaesth. 2021, 127, 184–187. [Google Scholar] [CrossRef]
- Derkenne, C.; Frattini, B.; Menetre, S.; Ha, V.H.T.; Lemoine, F.; Beganton, F.; Didon, J.P.; Rozenberg, E.; Salome, M.; Trichereau, J. Analysis during chest compressions in out-of-hospital cardiac arrest patients, a cross/sectional study: The DEFI 2022 study. Resuscitation 2024, 202, 110292. [Google Scholar] [CrossRef]
- de Graaf, C.; Beesems, S.G.; Oud, S.; Stickney, R.E.; Piraino, D.W.; Chapman, F.W.; Koster, R.W. Analyzing the heart rhythm during chest compressions: Performance and clinical value of a new AED algorithm. Resuscitation 2021, 162, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jung, S.; Ahn, S. Reply to: “Predicting shockable rhythms during chest compression with artificial intelligence: A Winning Bet?”. Resuscitation 2024, 202, 110368. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.P.; Freed, B.C.; Walter, D.P.; Perry, J.C.; Barakat, A.F.; Elashery, A.R.A.; Shah, K.S.; Kutty, S.; McGillion, M.; Ng, F.S. Convolution neural network algorithm for shockable arrhythmia classification within a digitally connected automated external defibrillator. J. Am. Heart Assoc. 2023, 12, e026974. [Google Scholar] [CrossRef] [PubMed]
- Adib, E.; Fernandez, A.S.; Afghah, F.; Prevost, J.J. Synthetic ecg signal generation using probabilistic diffusion models. IEEE Access 2023, 11, 75818–75828. [Google Scholar] [CrossRef]
- Azizi, S.; Kornblith, S.; Saharia, C.; Norouzi, M.; Fleet, D.J. Synthetic data from diffusion models improves imagenet classification. arXiv 2023, arXiv:2304.08466 2023. [Google Scholar]
- Qian, J.; Sun, M.; Zhou, S.; Wan, B.; Li, M.; Chiang, P. TimeLDM: Latent Diffusion Model for Unconditional Time Series Generation. arXiv 2024, arXiv:2407.04211 2024. [Google Scholar]
Variable | Numbers |
---|---|
Patient information | |
The number of patients | 172 |
Sex, male, n (%) | 118 (16.6%) |
Age, median (IQR) | 66 (54–81) |
Recorded resuscitation cycle per patient, median (IQR) | 5 (2–8) |
Electrocardiogram annotation, n (%) | |
Shockable rhythm | 969 (51.3%) |
Ventricular fibrillation | 822 (43.5%) |
Pulseless ventricular tachycardia | 147 (7.8%) |
Non-shockable rhythm | 920 (48.7%) |
Asystole | 359 (19.0%) |
Pulseless electrical activity | 561 (29.7%) |
Model | Total | Training | Validation | Test |
---|---|---|---|---|
CNN model (n = 5) | 1889 | 1640 | 143 | 106 |
CNN model (n = 7) | 1889 | 1548 | 190 | 151 |
LSTM model | 1889 | 1488 | 246 | 155 |
Bi-LSTMmodel | 1889 | 1446 | 206 | 237 |
Advanced Bi-LSTM model | 1889 | 1569 | 172 | 148 |
CNN (n = 3) +Residual +Attention | 1889 | 1573 | 154 | 162 |
Model | Description | Architecture and Key Parameters |
---|---|---|
CNN model (n = 5) |
|
|
CNN model (n = 7) |
|
|
LSTM model |
|
|
Bi-LSTM model |
|
|
Advanced Bi-LSTM model |
|
|
CNN (n = 3) + Residual + Attention |
|
|
Model | Test Cases | AUROC | Sensitivity | Specificity | AUPRC | Accuracy | PPV | NPV |
---|---|---|---|---|---|---|---|---|
Reference model (n = 3) [27] | 227 | 0.8672 | 91.4% | 61.0% | 0.8695 | 74.9% | 66.4% | 89.3% |
CNN model (n = 5) | 106 | 0.7374 | 56.3% | 80.7% | 0.7515 | 69.6% | 72.1% | 69.2% |
CNN model (n = 7) | 151 | 0.6950 | 23.3% | 84.5% | 0.6717 | 52.1% | 61.7% | 49.5% |
Model | Test Cases | AUROC | Sensitivity | Specificity | AUPRC | Accuracy | PPV | NPV |
---|---|---|---|---|---|---|---|---|
Reference model [27] | 227 | 0.8672 | 91.4% | 61.0% | 0.8695 | 74.9% | 66.4% | 89.3% |
LSTM model | 155 | 0.7719 | 66.1% | 74.4% | 0.6453 | 71.1% | 63.9% | 77.3% |
Bi-LSTM model | 237 | 0.8287 | 69.7% | 80.0% | 0.8011 | 74.3% | 82.5% | 69.3% |
Advanced Bi-LSTM model | 148 | 0.7236 | 66.7% | 65.6% | 0.6819 | 66.1% | 69.3% | 67.6% |
Model | Test Cases | AUROC | Sensitivity | Specificity | AUPRC | Accuracy | PPV | NPV |
---|---|---|---|---|---|---|---|---|
Reference Model [27] | 227 | 0.8672 | 91.4% | 61.0% | 0.8695 | 74.9% | 66.4% | 89.3% |
CNN (n = 3) +Residual +Attention | 162 | 0.7759 | 78.5% | 58.5% | 0.6465 | 66.9% | 59.4% | 84.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Jung, S.; Ahn, S.; Cho, H.; Moon, S.; Park, J.-H. Comparison of Neural Network Structures for Identifying Shockable Rhythm During Cardiopulmonary Resuscitation. J. Clin. Med. 2025, 14, 738. https://doi.org/10.3390/jcm14030738
Lee S, Jung S, Ahn S, Cho H, Moon S, Park J-H. Comparison of Neural Network Structures for Identifying Shockable Rhythm During Cardiopulmonary Resuscitation. Journal of Clinical Medicine. 2025; 14(3):738. https://doi.org/10.3390/jcm14030738
Chicago/Turabian StyleLee, Sukyo, Sumin Jung, Sejoong Ahn, Hanjin Cho, Sungwoo Moon, and Jong-Hak Park. 2025. "Comparison of Neural Network Structures for Identifying Shockable Rhythm During Cardiopulmonary Resuscitation" Journal of Clinical Medicine 14, no. 3: 738. https://doi.org/10.3390/jcm14030738
APA StyleLee, S., Jung, S., Ahn, S., Cho, H., Moon, S., & Park, J.-H. (2025). Comparison of Neural Network Structures for Identifying Shockable Rhythm During Cardiopulmonary Resuscitation. Journal of Clinical Medicine, 14(3), 738. https://doi.org/10.3390/jcm14030738