The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Status Report on Road Safety 2018: Summary; World Health Organization: Geneva, Switzerland, 2018; p. 16.
- Alharbi, R.; Mosley, I.; Miller, C.; Hillel, S.; Lewis, V. Factors associated with physical, psychological and functional outcomes in adult trauma patients following road traffic crash: A scoping literature review. Transp. Res. Res. Res. Interdiscip. Perspect. 2019, 3, 100061. [Google Scholar] [CrossRef]
- Atreya, A.; Kc, A.; Nepal, S.; Menezes, R.G.; Khadka, A.; Shah, P.; Kandel, R.A. Road traffic injuries among patients visiting the emergency department in a tertiary care centre: A descriptive cross-sectional study. JNMA J. Nepal Med. Assoc. 2022, 60, 922. [Google Scholar] [CrossRef] [PubMed]
- Nantulya, V.M.; Reich, M.R. The neglected epidemic: Road traffic injuries in developing countries. BMJ 2002, 324, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wu, X.; Huang, J.; Peng, Y.; Liu, W.I. Investigation of clusters and injuries in pedestrian crashes using GIS in Changsha, China. Saf. Sci. 2020, 127, 104710. [Google Scholar] [CrossRef]
- Li, Y.; Fan, W. Mixed logit approach to modeling the severity of pedestrian-injury in pedestrian-vehicle crashes in North Carolina: Accounting for unobserved heterogeneity. J. Transp. Saf. Secur. 2022, 14, 796–817. [Google Scholar] [CrossRef]
- Blazquez, C.A.; Celis, M.S. A spatial and temporal analysis of child pedestrian crashes in Santiago, Chile. Accid. Anal. Prev. 2013, 50, 304–311. [Google Scholar] [CrossRef]
- Henary, B.Y.; Crandall, J.; Bhalla, K.; Mock, C.N.; Roudsari, B.S. Child and adult pedestrian impact: The influence of vehicle type on injury severity. In Annual Proceedings/Association for the Advancement of Automotive Medicine; Association for the Advancement of Automotive Medicine: Chicago, IL, USA, 2003. [Google Scholar]
- Park, S.-H.; Bae, M.-K. Exploring the determinants of the severity of pedestrian injuries by pedestrian age: A case study of Daegu Metropolitan City, South Korea. Int. J. Environ. Res. Public Health 2020, 17, 2358. [Google Scholar] [CrossRef]
- Cinnamon, J.; Schuurman, N.; Hameed, S.M. Pedestrian injury and human behaviour: Observing road-rule violations at high-incident intersections. PLoS ONE 2011, 6, e21063. [Google Scholar] [CrossRef]
- Khan, M.A.; Grivna, M.; Nauman, J.; Soteriades, E.S.; Cevik, A.A.; Hashim, M.J.; Govender, R.; Al Azeezi, S.R. Global incidence and mortality patterns of pedestrian road traffic injuries by sociodemographic index, with forecasting: Findings from the global burden of diseases, injuries, and risk factors 2017 study. Int. J. Environ. Res. Public Health 2020, 17, 2135. [Google Scholar] [CrossRef]
- Al-Naami, M.; Arafah, M.; Al-Ibrahim, F. Trauma care systems in Saudi Arabia: An agenda for action. Ann. Saudi Med. 2010, 30, 50. [Google Scholar] [CrossRef]
- Alghnam, S.; Alkelya, M.; Al-Bedah, K.; Al-Enazi, S. Burden of traumatic injuries in Saudi Arabia: Lessons from a major trauma registry in Riyadh, Saudi Arabia. Ann. Saudi Med. 2014, 34, 291. [Google Scholar] [CrossRef] [PubMed]
- Mansuri, F.A.; Al-Zalabani, A.H.; Zalat, M.M.; Qabshawi, R.I. Road safety and road traffic accidents in Saudi Arabia: A systematic review of existing evidence. Saudi Med. J. 2015, 36, 418. [Google Scholar] [CrossRef] [PubMed]
- Leo, C.; Rizzi, M.C.; Bos, N.M.; Davidse, R.J.; Linder, A.; Tomasch, E.; Klug, C. Are there any significant differences in terms of age and sex in pedestrian and cyclist accidents? Front. Bioeng. Biotechnol. 2021, 9, 677952. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, R.J.; Al-Jafar, R.; Chowdhury, S.; Rahman, M.A.; Almuwallad, A.; Alshibani, A.; Lewis, V. Impact of easing COVID-19 lockdown restrictions on traumatic injuries in Riyadh, Saudi Arabia: One-year experience at a major trauma centre. BMC Public Health 2023, 23, 22. [Google Scholar] [CrossRef]
- Cloutier, M.-S.; Rafiei, M.; Desrosiers-Gaudette, L.; AliYas, Z. An examination of child pedestrian rule compliance at crosswalks around parks in Montreal, Canada. Int. J. Environ. Res. Public Health 2022, 19, 13784. [Google Scholar] [CrossRef]
- Chowdhury, S.; Almarhabi, M.M.; Varghese, B.B.; Leenen, L. Trauma resuscitation training: An evaluation of nurses’ knowledge. J. Trauma Nurs. 2022, 29, 192–200. [Google Scholar] [CrossRef]
- Alharbi, R.J.; Lewis, V.; Miller, C. A state-of-the-art review of factors that predict mortality among traumatic injury patients following a road traffic crash. Australas. Emerg. Care 2022, 25, 13–22. [Google Scholar] [CrossRef]
- Albedewi, H.; Al-Saud, N.; Kashkary, A.; Al-Qunaibet, A.; AlBalawi, S.M.; Alghnam, S. Epidemiology of childhood injuries in Saudi Arabia: A scoping review. BMC Pediatr. 2021, 21, 424. [Google Scholar] [CrossRef]
- Billah, K.; Sharif, H.O.; Dessouky, S. Analysis of pedestrian–motor vehicle crashes in San Antonio, Texas. Sustainability 2021, 13, 6610. [Google Scholar] [CrossRef]
- Se, C.; Champahom, T.; Wisutwattanasak, P.; Jomnonkwao, S.; Ratanavaraha, V. Temporal instability and differences in injury severity between restrained and unrestrained drivers in speeding-related crashes. Sci. Rep. 2023, 13, 9756. [Google Scholar] [CrossRef]
- Turner, C.; McClure, R. Age and gender differences in risk-taking behaviour as an explanation for high incidence of motor vehicle crashes as a driver in young males. Inj. Control. Saf. Promot. 2003, 10, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, A.; Saulle, R.; Villari, P.; La Torre, G. Male gender, age and low income are risk factors for road traffic injuries among adolescents: An umbrella review of systematic reviews and meta-analyses. J. Public Health 2019, 27, 263–272. [Google Scholar] [CrossRef]
- Tournier, I.; Dommes, A.; Cavallo, V. Review of safety and mobility issues among older pedestrians. Accid. Anal. Prev. 2016, 91, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, R.J.; Lewis, V.; Othman, O.; Miller, C. Exploring factors that influence injured patients’ outcomes following road traffic crashes: A multi-site feasibility study. Trauma Care 2022, 2, 35–50. [Google Scholar] [CrossRef]
- Vakayil, V.; Ingraham, N.E.; Robbins, A.J.; Freese, R.; Northrop, E.F.B.; Brunsvold, M.E.; Pendleton, K.M.; Charles, A.; Chipman, J.G.; Tignanelli, C.J. Epidemiological trends of surgical admissions to the intensive care unit in the United States. J. Trauma Acute Care Surg. 2020, 89, 279. [Google Scholar] [CrossRef]
- Feng, X.Y.J.; Nah, S.A.; Lee, Y.T.; Lin, Y.C.; Chiang, L. Pedestrian injuries in children: Who is most at risk? Singap. Med. J. 2015, 56, 618. [Google Scholar] [CrossRef]
- Useche, S.A.; Cendales, B.; Gómez, V. Measuring fatigue and its associations with job stress, health and traffic accidents in professional drivers: The case of BRT operators. EC Neurol. 2017, 4, 103–118. [Google Scholar]
- Alsofayan, Y.M.; Alghnam, S.A.; Alshahrani, S.M.; Hajjam, R.M.; AlJardan, B.A.; Alhajjaj, F.S.; Alowais, J.M. Do crashes happen more frequently at sunset in Ramadan than the rest of the year? J. Taibah Univ. Med. Sci. 2022, 17, 1031–1038. [Google Scholar] [CrossRef]
Characteristics | Total, n (%) |
---|---|
Age group | |
<17 | 177 (16.7) |
18–29 | 322 (30.3) |
30–44 | 300 (28.2) |
45–59 | 170 (16.0) |
≥60 | 93 (8.8) |
Gender | |
Male | 950 (89.5) |
Female | 112 (10.5) |
Injury type | |
Head and face | 388 (21.3) |
Thorax | 207 (11.3) |
Abdomen and pelvis | 289 (16.0) |
Spine | 246 (13.5) |
Upper extremities | 188 (10.4) |
Lower extremities | 498 (27.5) |
Prehospital physiological assessment, mean (SD) | |
First systolic BP | 125.71 (21.77) |
First heart rate | 91.46 (17.40) |
First RR | 17.45 (3.17) |
On arrival at the ED, mean (SD) | |
First systolic BP | 125 (23.33) |
First heart rate | 94 (20.910) |
First RR | 20.17 (2.90) |
First O2 saturation | 97.02 (5.67) |
Assisted respiration | 239 (23.9) |
GCS score | |
13–15 | 834 (85.1) |
9–12 | 39 (3.9) |
3–8 | 108 (11) |
ISS | |
≤14 | 741 (69.8) |
15–40 | 301 (28.3) |
>40 | 19 (1.8) |
Requires operation | 696 (65.5) |
ICU admission | 271 (25.6) |
Days in hospital, median (IQR) | 9 (12) |
In-hospital mortality | 52 (4.9) |
Variables, n (%) | <18 | 18–29 | 30–44 | 45–59 | ≥60 | p-Value |
---|---|---|---|---|---|---|
Gender, n (%) | 0.036 | |||||
Male | 147 (13.8) | 296 (27.9) | 272 (25.6) | 152 (14.3) | 83 (7.8) | |
Female | 30 (2.8) | 26 (2.4) | 28 (2.6) | 18 (1.7) | 10 (0.9) | |
Time of day, n (%) | 0.166 | |||||
Day (6:00–18:59) | 59 (5.6) | 108 (10.2) | 112 (10.5) | 75 (7.1) | 36 (3.4) | |
Night (19:00–5:59) | 118 (11.1) | 214(20.4) | 188 (17.7) | 95 (8.9) | 57 (5.4) | |
Day of week, n (%) | 0.030 | |||||
Weekday | 136 (12.8) | 231 (21.8) | 205 (19.3) | 133 (12.5) | 59 (5.6) | |
Weekend | 41 (3.9) | 91 (8.6) | 95 (8.9) | 37 (3.5) | 34 (3.2) | |
Month of injury, n (%) | 0.994 | |||||
January–March | 52 (4.9) | 82 (7.7) | 78 (7.3) | 49 (4.6) | 26 (2.4) | |
April–June | 55 (5.2) | 95 (8.9) | 96 (9.0) | 48 (4.5) | 29 (2.7) | |
July–September | 25 (2.4) | 53 (5.0) | 41 (3.9) | 25 (2.4) | 14 (1.3) | |
October–December | 45 (4.2) | 92 (8.7) | 85 (8.0) | 48 (4.5) | 24 (2.3) | |
Type of injury, n (%) | ||||||
Head and face | 75 (7.1) | 102 (9.6) | 100 (9.4) | 66 (6.2) | 45 (4.2) | 0.010 |
Thorax | 33 (3.1) | 66 (6.2) | 43 (4.0) | 40 (3.8) | 25 (2.4) | 0.049 |
Abdomen and pelvis | 55 (5.2) | 72 (6.8) | 84 (7.9) | 47 (4.4) | 31 (2.9) | 0.134 |
Spine | 25 (2.4) | 66 (6.2) | 78 (7.3) | 47 (4.4) | 30 (2.8) | 0.002 |
Upper extremities | 30 (2.8) | 56 (5.3) | 55 (5.2) | 34 (3.2) | 13 (6.9) | 0.796 |
Lower extremities | 71 (6.7) | 163 (15.3) | 141 (13.3) | 81 (7.6) | 42 (4.0) | 0.266 |
GCS | <0.001 | |||||
13–15 | 124 (12.6) | 255 (26.0) | 253 (25.8) | 137 (14.0) | 65 (6.6) | |
9–12 | 7 (0.7) | 10 (1.0) | 8 (0.8) | 6 (0.6) | 8 (0.8) | |
3–8 | 36 (3.7) | 30 (3.1) | 20 (2.0) | 11 (1.1) | 11 (1.1) | |
Require operation | 104 (9.8) | 220 (20.7) | 200 (18.9) | 114 (10.7) | 58 (5.5) | 0.228 |
Mean hospital stays | 14.12 | 14.20 | 14.93 | 16.94 | 18.69 | 0.256 |
ICU admission (%) | 62 (5.8) | 77 (7.3) | 62 (5.8) | 39 (3.7) | 31 (2.9) | 0.003 |
Mean ICU stay | 5.02 | 2.54 | 2.79 | 3.11 | 5.54 | 0.002 |
Mortality, n (%) | 8 (0.8) | 13 (1.2) | 7 (0.7) | 10 (0.9) | 14 (1.3) | <0.001 |
Independent Variable | ICU Admission | Mortality |
---|---|---|
β (95% CI) p-Value | β (95% CI) p-Value | |
Age group | ||
1–17 | −0.00 (−0.05, 0.05) 0.931 | −0.05 (−0.06, 0.00) 0.120 |
30–44 | −0.04 (−0.09, 0.01) 0.068 | −0.03 (−0.04, 0.01) 0.278 |
45–59 | −0.03 (−0.09, −0.01) 0.129 | −0.02 (−0.02, 0.05) 0.421 |
≥60 | −0.03 (−0.11, 0.02) 0.196 | 0.10 (0.03, 0.12) < 0.001 |
Gender | ||
Male | Ref | Ref |
Female | −0.03 (−0.11, 0.00) 0.072 | −0.01 (−0.56, 0.57) 0.574 |
Injury type, n (%) | ||
Head | 0.08 (0.03, 0.11) < 0.001 | 0.01 (−0.03, 0.02) 0.716 |
Thorax | 0.05 (0.00, 0.09) 0.039 | 0.01 (−0.02, 0.03) 0.733 |
Spine | −0.00 (−0.05, 0.03) 0.679 | −0.01 (−0.02, −0.02) 0.534 |
Mode of arrival | ||
Red Crescent ambulance | −0.06 (−0.09, −0.01) 0.010 | −0.03 (−0.04, 0.01) 0.221 |
Private/police vehicle | −0.07 (−0.15, −0.03) 0.003 | −0.06 (−0.08, −0.00) 0.048 |
GCS score | −0.12 (−0.01, −0.00) < 0.001 | −0.12 (−0.00, −0.00) < 0.001 |
ISS | 0.17 (0.06, 0.01) < 0.001 | 0.12 (0.00, 0.01) < 0.001 |
Length of stay in ICU | 0.55 (0.02, 0.03) < 0.001 | 0.34 (0.00, 0.01) < 0.001 |
Length of stay in hospital | −0.06 (−0.00, 0.00) 0.022 | −0.20 (−0.00, −0.00) < 0.001 |
Require operation | −0.00 (−0.4, 0.03) 0.926 | −0.04 (−0.04, 0.00) 0.118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, R.J. The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes. J. Clin. Med. 2025, 14, 741. https://doi.org/10.3390/jcm14030741
Alharbi RJ. The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes. Journal of Clinical Medicine. 2025; 14(3):741. https://doi.org/10.3390/jcm14030741
Chicago/Turabian StyleAlharbi, Rayan Jafnan. 2025. "The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes" Journal of Clinical Medicine 14, no. 3: 741. https://doi.org/10.3390/jcm14030741
APA StyleAlharbi, R. J. (2025). The Impact of Age Differences and Injury Severity on Pedestrian Traffic Crashes: An Analysis of Clinical Characteristics and Outcomes. Journal of Clinical Medicine, 14(3), 741. https://doi.org/10.3390/jcm14030741