Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marmor, M.T.; Grimm, B.; Hanflik, A.M.; Richter, P.H.; Sivananthan, S.; Yarboro, S.R.; Braun, B.J. Use of Wearable Technology to Measure Activity in Orthopaedic Trauma Patients: A Systematic Review. Indian J. Orthop. 2022, 56, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.J.; Grimm, B.; Hanflik, A.M.; Richter, P.H.; Sivananthan, S.; Yarboro, S.R.; Marmor, M.T. Wearable technology in orthopedic trauma surgery—An AO trauma survey and review of current and future applications. Injury 2022, 53, 1961–1965. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.J.; Grimm, B.; Hanflik, A.M.; Marmor, M.T.; Richter, P.H.; Sands, A.K.; Sivananthan, S. Finding NEEMO: Towards organizing smart digital solutions in orthopaedic trauma surgery. EFORT Open Rev. 2020, 5, 408–420. [Google Scholar] [CrossRef]
- Braun, B.J.; Histing, T.; Menger, M.M.; Platte, J.; Grimm, B.; Hanflik, A.M.; Richter, P.H.; Sivananthan, S.; Yarboro, S.R.; Gueorguiev, B.; et al. “Bring Your Own Device”—A New Approach to Wearable Outcome Assessment in Trauma. Medicina 2023, 59, 403. [Google Scholar] [CrossRef]
- Karas, M.; Marinsek, N.; Goldhahn, J.; Foschini, L.; Ramirez, E.; Clay, I. Predicting subjective recovery from lower limb surgery using consumer wearables. Digit. Biomark. 2020, 4, 73–86. [Google Scholar] [CrossRef]
- Braun, B.J.; Histing, T.; Menger, M.M.; Herath, S.C.; Mueller-Franzes, G.A.; Grimm, B.; Marmor, M.T.; Truhn, D. Wearable activity data can predict functional recovery after musculoskeletal injury: Feasibility of a machine learning approach. Injury 2024, 55, 111254. [Google Scholar] [CrossRef] [PubMed]
- Larose, G.; Roffey, D.M.; Broekhuyse, H.M.; Guy, P.; O’Brien, P.; Lefaivre, K.A. Trajectory of Recovery following ORIF for Distal Radius Fractures. J. Wrist Surg. 2023, 13, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.L.G.; Jayakumar, P.; Laverty, D.; Hill, A.D.; Koenig, K.M. Patient-reported outcome measures and patient activation: What are their roles in orthopedic trauma? J. Orthop. Trauma 2019, 33, S38–S42. [Google Scholar] [CrossRef]
- Gregory, J.J.; Werth, P.M.; Reilly, C.A.; Lucas, A.P.; Bessen, S.Y.; Rode, J.B.; Morrissey, J.A.; Sparks, M.B.; Jevsevar, D.S.; Gitajn, I.L. Trajectory of Recovery in PROMIS Global Physical Health After Surgical Fracture Fixation. JAAOS-J. Am. Acad. Orthop. Surg. 2022, 30, e434–e443. [Google Scholar] [CrossRef]
- Halm-Pozniak, A.; Lohmann, C.H.; Zagra, L.; Braun, B.; Gordon, M.; Grimm, B. Best practice in digital orthopaedics. EFORT Open Rev. 2023, 8, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Youssef, Y.; De Wet, D.; Back, D.A.; Scherer, J. Digitalization in orthopaedics: A narrative review. Front. Surg. 2024, 10, 1325423. [Google Scholar] [CrossRef]
- Constantinescu, D.; Pavlis, W.; Rizzo, M.; Berge, D.V.; Barnhill, S.; Hernandez, V.H. The role of commercially available smartphone apps and wearable devices in monitoring patients after total knee arthroplasty: A systematic review. EFORT Open Rev. 2022, 7, 481–490. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Ram, P.R.; Jeyaraman, N.; Ramasubramanian, S.; Shyam, A. The Era of Digital Orthopedics: A Bone or Bane? J. Orthop. Case Rep. 2024, 14, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Izmailova, E.S.; Wagner, J.A.; Perakslis, E.D. Wearable Devices in Clinical Trials: Hype and Hypothesis. Clin. Pharmacol. Ther. 2018, 104, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.; Chan, D.; Lee, H.; Ng, C.C.; Yeo, A.H.L. Reporting adherence, validity and physical activity measures of wearable activity trackers in medical research: A systematic review. Int. J. Med. Inform. 2022, 160, 104696. [Google Scholar] [CrossRef] [PubMed]
- Framingham, M. IDC Reports Strong Growth in the Worldwide Wearables Market, Led by Holiday Shipments of Smartwatches, Wrist Bands, and Ear-Worn Devices; IDC: Needham, MA, USA, 2019. [Google Scholar]
- Andone, I.; Błaszkiewicz, K.; Eibes, M.; Trendafilov, B.; Montag, C.; Markowetz, A. How age and gender affect smartphone usage. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016; pp. 9–12. [Google Scholar]
- Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef]
- Onyeaka, H.K.; Romero, P.; Healy, B.C.; Celano, C.M. Age Differences in the use of health information technology among adults in the united states: An analysis of the health information national trends survey. J. Aging Health 2021, 33, 147–154. [Google Scholar] [CrossRef]
- Savage, M.; Savage, L.C. Doctors routinely share health data electronically under HIPAA, and sharing with patients and patients’ third-party health apps is consistent: Interoperability and privacy analysis. J. Med. Internet Res. 2020, 22, e19818. [Google Scholar] [CrossRef]
- Rochester, L.; Mazzà, C.; Mueller, A.; Caulfield, B.; McCarthy, M.; Becker, C.; Miller, R.; Piraino, P.; Viceconti, M.; Dartee, W.P.; et al. A roadmap to inform development, validation and approval of digital mobility outcomes: The Mobilise-D approach. Digit. Biomark. 2020, 4, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Mikolaizak, A.S.; Rochester, L.; Maetzler, W.; Sharrack, B.; Demeyer, H.; Mazzà, C.; Caulfield, B.; Garcia-Aymerich, J.; Vereijken, B.; Arnera, V.; et al. Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement–The Mobilise-D study protocol. PLoS ONE 2022, 17, e0269615. [Google Scholar] [CrossRef] [PubMed]
- Brittain, G.; Buckley, E.; Costa, G.D.; Martinis, M.; Chakraborty, S.; Stuerner, K.H.; Rothhammer, V.; Gassner, H.; Leocani, L.; Comi, G.; et al. Mobilise-D: The largest observational trial of digital mobility outcome measures in multiple sclerosis. J. Neurol. Sci. 2023, 455, 121059. [Google Scholar] [CrossRef]
- Natarajan, P.; Fonseka, R.D.; Maharaj, M.M.; Koinis, L.; Mobbs, R.J. Continuous data capture of gait and mobility metrics using wearable devices for postoperative monitoring in common elective orthopaedic procedures of the hip, knee, and spine: A scoping review. J. Orthop. Surg. Res. 2023, 18, 812. [Google Scholar] [CrossRef]
- Grimm, B.; Bolink, S. Evaluating physical function and activity in the elderly patient using wearable motion sensors. EFORT Open Rev. 2016, 1, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Schrøder, C.K.; Tønning, L.U.; Tjur, M.; Kristensen, P.K.; Mechlenburg, I. Reference Values for Daily Physical Activity Measured with Accelerometers in a Danish Background Population between 18 and 80 Years of Age. Appl. Sci. 2023, 13, 1443. [Google Scholar] [CrossRef]
- Zini, M.L.L.; Banfi, G. A narrative literature review of bias in collecting patient reported outcomes measures (PROMs). Int. J. Environ. Res. Public Health 2021, 18, 12445. [Google Scholar] [CrossRef]
- Patterson, J.T.; Duong, A.; Becerra, J.A.; Nakata, H. Feasibility of Capturing Orthopaedic Trauma Research Outcomes Using Personal Mobile Devices. JAAOS-J. Am. Acad. Orthop. Surg. 2023, 31, 212–217. [Google Scholar] [CrossRef] [PubMed]
Reason to Decline | Frequency (%) | Potentially Addressed By |
---|---|---|
Uninterested to participate in study | 21 | Continued patient education |
No smartphone/wearable available | 19 | Switch to dedicated device |
Technical difficulties to follow data transmission protocol | 15 | Low-maintenance workflow/minimal input data harvesting Continued patient education |
Does not know how to use own smartphone/wearable | 12 | Switch to dedicated device Continued patient education |
Unable to understand German language informed consent | 8 | Adaptation of study setup (i.e., translation service) |
Too many worries to focus on study | 7 | Continued patient education |
Data safety concerns | 6 | Patient education/data safety protocol |
Use of smartphone too rare/does not carry phone enough | 5 | Continued patient education Switch to dedicated device |
Unable to use wearable due to injury | 3 | Switch to dedicated device (outside zone of injury) |
Feels too old to participate | 2 | Continued patient education Switch to dedicated device |
Participation in another study | 1 | Adaptation of study setup (i.e., wearable study as adjunct) |
Does not want to spent unnecessary time on phone | 1 | Low-maintenance workflow/minimal input data harvesting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braun, B.J.; Hofmann, K.; Meierhofer, C.N.; Menger, M.M.; Maisenbacher, T.C.; Vogel, C.; Haas, D.; Marmor, M.T.; Histing, T.; Braun, E.-M.; et al. Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery. J. Clin. Med. 2025, 14, 805. https://doi.org/10.3390/jcm14030805
Braun BJ, Hofmann K, Meierhofer CN, Menger MM, Maisenbacher TC, Vogel C, Haas D, Marmor MT, Histing T, Braun E-M, et al. Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery. Journal of Clinical Medicine. 2025; 14(3):805. https://doi.org/10.3390/jcm14030805
Chicago/Turabian StyleBraun, Benedikt J., Kira Hofmann, Chiara N. Meierhofer, Maximilian M. Menger, Tanja C. Maisenbacher, Carolina Vogel, Dannik Haas, Meir T. Marmor, Tina Histing, Eva-Marie Braun, and et al. 2025. "Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery" Journal of Clinical Medicine 14, no. 3: 805. https://doi.org/10.3390/jcm14030805
APA StyleBraun, B. J., Hofmann, K., Meierhofer, C. N., Menger, M. M., Maisenbacher, T. C., Vogel, C., Haas, D., Marmor, M. T., Histing, T., Braun, E.-M., & The AO Smart Digital Solutions Task Force. (2025). Patient Recruitment Characteristics for Wearable-Sensor-Based Outcome Assessment in Trauma Surgery. Journal of Clinical Medicine, 14(3), 805. https://doi.org/10.3390/jcm14030805