Clinical Features and Prospective Outcomes of Thin-Filament Hypertrophic Cardiomyopathy: Intrinsic Data and Comparative Insights from Other Cohorts
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Follow-Up and Treatment
3.3. Comparison of Thin-Filament HCM Patients Across Different Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [CrossRef] [PubMed]
- Gerull, B.; Klaassen, S.; Brodehl, A. The Genetic Landscape of Cardiomyopathies. In Genetic Causes of Cardiac Disease; Erdmann, J., Moretti, A., Eds.; Cardiac and Vascular Biology; Springer International Publishing: Cham, Switzerland, 2019; Volume 7, pp. 45–91. [Google Scholar] [CrossRef]
- Yamada, Y.; Namba, K.; Fujii, T. Cardiac muscle thin filament structures reveal calcium regulatory mechanism. Nat. Commun. 2020, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Christian, S.; Cirino, A.; Hansen, B.; Harris, S.; Murad, A.M.; Natoli, J.L.; Malinowski, J.; Kelly, M.A. Diagnostic validity and clinical utility of genetic testing for hypertrophic cardiomyopathy: A systematic review and meta-analysis. Open Heart 2022, 9, e001815. [Google Scholar] [CrossRef]
- Lopes, L.R.; Rahman, M.S.; Elliott, P.M. A systematic review and meta-analysis of genotype–phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart 2013, 99, 1800–1811. [Google Scholar] [CrossRef]
- Spudich, J.A. Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflug. Arch.-Eur. J. Physiol. 2019, 471, 701–717. [Google Scholar] [CrossRef]
- Ho, C.Y.; Sweitzer, N.K.; McDonough, B.; Maron, B.J.; Casey, S.A.; Seidman, J.G.; Seidman, C.E.; Solomon, S.D. Assessment of Diastolic Function with Doppler Tissue Imaging to Predict Genotype in Preclinical Hypertrophic Cardiomyopathy. Circulation 2002, 105, 2992–2997. [Google Scholar] [CrossRef]
- Green, E.M.; Wakimoto, H.; Anderson, R.L.; Evanchik, M.J.; Gorham, J.M.; Harrison, B.C.; Henze, M.; Kawas, R.; Oslob, J.D.; Rodriguez, H.M.; et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 2016, 351, 617–621. [Google Scholar] [CrossRef]
- Olivotto, I.; Oreziak, A.; Barriales-Villa, R.; Abraham, T.P.; Masri, A.; Garcia-Pavia, P.; Saberi, S.; Lakdawala, N.K.; Wheeler, M.T.; Owens, A.; et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2020, 396, 759–769. [Google Scholar] [CrossRef]
- Keyt, L.K.; Duran, J.M.; Bui, Q.M.; Chen, C.; Miyamoto, M.I.; Enciso, J.S.; Tardiff, J.C.; Adler, E.D. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front. Cardiovasc. Med. 2022, 9, 972301. [Google Scholar] [CrossRef]
- Robinson, P.; Liu, X.; Sparrow, A.; Patel, S.; Zhang, Y.-H.; Casadei, B.; Watkins, H.; Redwood, C. Hypertrophic cardiomyopathy mutations increase myofilament Ca2+ buffering, alter intracellular Ca2+ handling, and stimulate Ca2+-dependent signaling. J. Biol. Chem. 2018, 293, 10487–10499. [Google Scholar] [CrossRef]
- Watkins, H.; McKenna, W.J.; Thierfelder, L.; Suk, H.J.; Anan, R.; O’Donoghue, A.; Spirito, P.; Matsumori, A.; Moravec, C.S.; Seidman, J.G. Mutations in the Genes for Cardiac Troponin T and α-Tropomyosin in Hypertrophic Cardiomyopathy. N. Engl. J. Med. 1995, 332, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Karibe, A.; Tobacman, L.S.; Strand, J.; Butters, C.; Back, N.; Bachinski, L.L.; Arai, A.E.; Ortiz, A.; Roberts, R.; Homsher, E.; et al. Hypertrophic cardiomyopathy caused by a novel alpha-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis. Circulation 2001, 103, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Fahed, A.C.; Nemer, G.; Bitar, F.F.; Arnaout, S.; Abchee, A.B.; Batrawi, M.; Khalil, A.; Abou Hassan, O.K.; DePalma, S.R.; McDonough, B.; et al. Founder Mutation in N Terminus of Cardiac Troponin I Causes Malignant Hypertrophic Cardiomyopathy. Circ. Genom. Precis. Med. 2020, 13, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Anan, R.; Shono, H.; Kisanuki, A.; Arima, S.; Nakao, S.; Tanaka, H. Patients with familial hypertrophic cardiomyopathy caused by a Phe110Ile missense mutation in the cardiac troponin T gene have variable cardiac morphologies and a favorable prognosis. Circulation 1998, 98, 391–397. [Google Scholar] [CrossRef]
- Pasquale, F.; Syrris, P.; Kaski, J.P.; Mogensen, J.; McKenna, W.J.; Elliott, P. Long-Term Outcomes in Hypertrophic Cardiomyopathy Caused by Mutations in the Cardiac Troponin T Gene. Circ. Cardiovasc. Genet. 2012, 5, 10–17. [Google Scholar] [CrossRef]
- Coppini, R.; Ho, C.Y.; Ashley, E.; Day, S.; Ferrantini, C.; Girolami, F.; Tomberli, B.; Bardi, S.; Torricelli, F.; Cecchi, F.; et al. Clinical Phenotype and Outcome of Hypertrophic Cardiomyopathy Associated with Thin-Filament Gene Mutations. J. Am. Coll. Cardiol. 2014, 64, 2589–2600. [Google Scholar] [CrossRef]
- Chumakova, O.S.; Baklanova, T.N.; Milovanova, N.V.; Zateyshchikov, D.A. Hypertrophic Cardiomyopathy in Underrepresented Populations: Clinical and Genetic Landscape Based on a Russian Single-Center Cohort Study. Genes 2023, 14, 2042. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Van Driest, S.L.; Ellsworth, E.G.; Ommen, S.R.; Tajik, A.J.; Gersh, B.J.; Ackerman, M.J. Prevalence and Spectrum of Thin Filament Mutations in an Outpatient Referral Population with Hypertrophic Cardiomyopathy. Circulation 2003, 108, 445–451. [Google Scholar] [CrossRef]
- Norrish, G.; Gasparini, M.; Field, E.; Cervi, E.; Kaski, J.P. Childhood-onset hypertrophic cardiomyopathy caused by thin-filament sarcomeric variants. J. Med. Genet. 2024, 61, 420–422. [Google Scholar] [CrossRef]
- Marston, N.A.; Han, L.; Olivotto, I.; Day, S.M.; Ashley, E.A.; Michels, M.; Pereira, A.C.; Ingles, J.; Semsarian, C.; Jacoby, D.; et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur. Heart J. 2021, 42, 1988–1996. [Google Scholar] [CrossRef] [PubMed]
- Saul, T.; Bui, Q.M.; Argiro, A.; Keyt, L.; Olivotto, I.; Adler, E. Natural history and clinical outcomes of patients with hypertrophic cardiomyopathy from thin filament mutations. ESC Heart Fail. 2024, 11, 3501–3510. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee Members; Ommen, S.R.; Ho, C.Y.; Asif, I.M.; Balaji, S.; Burke, M.A.; Day, S.M.; Dearani, J.A.; Epps, K.C.; Evanovich, L.; et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2024, 83, 2324–2405. [Google Scholar] [CrossRef]
- Buongiorno, A.L.; Blandino, A.; Bianchi, F.; Masi, A.S.; Pierri, A.; Mabritto, B.; Bongioanni, S.; Grossi, S.; Mascia, G.; Porto, I.; et al. Effectiveness of 2014 ESC HCM-Risk-SCD score in prediction of appropriate implantable-cardioverter-defibrillator shocks. J. Cardiovasc. Med. 2023, 24, 313–314. [Google Scholar] [CrossRef]
- Monda, E.; Limongelli, G. Integrated Sudden Cardiac Death Risk Prediction Model for Patients With Hypertrophic Cardiomyopathy. Circulation 2023, 147, 281–283. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Watkins, H. Assigning a causal role to genetic variants in hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 2013, 6, 2–4. [Google Scholar] [CrossRef]
- Sparrow, A.J.; Watkins, H.; Daniels, M.J.; Redwood, C.; Robinson, P. Mavacamten rescues increased myofilament calcium sensitivity and dysregulation of Ca2+ flux caused by thin filament hypertrophic cardiomyopathy mutations. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H715–H722. [Google Scholar] [CrossRef]
- Lampert, R.; Ackerman, M.J.; Marino, B.S.; Burg, M.; Ainsworth, B.; Salberg, L.; Tome Esteban, M.T.; Ho, C.Y.; Abraham, R.; Balaji, S.; et al. Vigorous Exercise in Patients with Hypertrophic Cardiomyopathy. JAMA Cardiol. 2023, 8, 595–605. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef] [PubMed]
- Konhilas, J.P.; Watson, P.A.; Maass, A.; Boucek, D.M.; Horn, T.; Stauffer, B.L.; Luckey, S.W.; Rosenberg, P.; Leinwand, L.A. Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circ. Res. 2006, 98, 540–548. [Google Scholar] [CrossRef] [PubMed]
Thin-Filament HCM n = 15 | Thick-Filament HCM n = 67 | p-Value | |
---|---|---|---|
Demography and Medical History | |||
Age, years | 49 (19) | 45 (24) | 0.35 |
Age at diagnosis, years | 44 (20) | 39 (22) | 0.14 |
Probands, n (%) | 12 (80) | 57 (85) | 0.44 |
Male sex, n (%) | 6 (40) | 37 (55) | 0.29 |
Symptomatic, n (%) | 8 (53) | 44 (66) | 0.37 |
5-year SCD risk score, % | 2.0 (1.8) | 3.3 (2.9) | 0.002 |
5-year SCD risk score > 6%, n (%) | 0 | 12 (20) | 0.06 |
NSVT, n (%) | 2 (15) | 17 (30) | 0.25 |
Family HCM in probands only, n (%) | 7 (58) | 26 (46) | 0.42 |
Family SCD * in probands only, n (%) | 2 (17) | 6 (11) | 0.42 |
NT-proBNP, pg/mL | 810 (970) | 845 (2083) | 0.63 |
Echocardiography | |||
Maximal LVWT, mm | 17 (5) | 21 (5) | 0.024 |
LVEF, % | 71 (14) | 67 (12) | 0.60 |
LVOTO, n (%) | 5 (33) | 24 (36) | 0.86 |
Rest LVOTO, n (%) | 3 (20) | 13 (19) | 0.60 |
E/e’ | 9.5 (8.1) | 8.9 (5.8) | 0.76 |
LA diameter, mm | 42 (13) | 43 (11) | 0.15 |
Contrast Cardiac Magnetic Resonance | |||
Number performed, n (%) | 8 (53) | 37 (55) | 0.89 |
Maximal LVWT, mm | 17 (4) | 21 (5) | 0.006 |
Indexed LV EDV, mL/m2 | 61 (27) | 70 (25) | 0.041 |
LGE, n (%) | 7 (88) | 32 (87) | 0.71 |
Electrocardiogram | |||
QRS, msec | 100 (18) | 95 (23) | 0.32 |
Sokolow–Lyon index, mm | 25.5 (11) | 25 (16) | 0.85 |
Q waves, n (%) | 3 (20) | 15 (22) | 0.57 |
T-wave inversion, (%) | 8 (53) | 42 (63) | 0.50 |
Our Group 2024 n = 15 | Coppini et al., 2014 [17] n = 80 | Driest et al., 2003 [20] n = 18 | Norrish et al., 2024 [21] n = 21 | |
---|---|---|---|---|
Population | Adult | Adult | Adult | Pediatric |
Prevalence in genotyped HCM | 6.5 | 8 | 4.6 | - |
Probands | 80 | 100 | 100 | 35 |
Genetics * | ||||
TPM1 | 60 | 9 | 16 | 24 |
TNNT2 | 13 | 54 | 44 | 52 |
TNNI3 | 13 | 30 | 33 | 14 |
TNNC1 | 7 | 0 | 0 | 0 |
ACTC1 | 7 | 8 | 6 | 9.5 |
Baseline | ||||
Age at diagnosis, years | 45 ± 13 | 44 ± 16 | 40 ± 18 | 13 (6) |
Male sex | 40 | 55 | 61 | 71 |
Symptomatic | 53 | 54 | 68 | 43 |
Family HCM * | 58 | 44 | 39 | 71 |
Family SCD * | 17 | 36 | 21 | 38 |
NSVT | 13 | 30 | - | 16 |
Maximal LVWT, mm | 17 (5) | 18 ± 5 | 19.8 ± 6 | 15 (16) |
LVEF, % | 71 (14) | 65 ± 10 | - | - |
LVOTO | 33 | 19 | 42 | 5 |
LGE | 88 | 85 | - | 75 |
Infero-lateral Q | 20 | 37 | - | - |
T-wave inversion | 53 | 67 | - | - |
Treatment ** | ||||
Beta blockers | 40 | 67 | - | - |
ICD | 0 | 24 | 11 | 62 |
Septal reduction therapy | 7 | 14 | 32 | 5 |
Follow-up | ||||
Duration, years | 4.7 ± 2.3 | 4.7 ± 2.7 | - | 5.0 (4.5) |
Type | Prospective | Prospective | - | Prospective |
Death | 0 | 2 | - | 0 |
Malignant arrhythmias *** | 0 | 13 | - | 14 |
Progression to NYHA class III/IV | 20 | 15 | - | - |
Dropped LVEF < 50% | 0 | 13 | - | 0 |
Stroke | 0 | 4 | - | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chumakova, O.S.; Baklanova, T.N.; Zateyshchikov, D.A. Clinical Features and Prospective Outcomes of Thin-Filament Hypertrophic Cardiomyopathy: Intrinsic Data and Comparative Insights from Other Cohorts. J. Clin. Med. 2025, 14, 866. https://doi.org/10.3390/jcm14030866
Chumakova OS, Baklanova TN, Zateyshchikov DA. Clinical Features and Prospective Outcomes of Thin-Filament Hypertrophic Cardiomyopathy: Intrinsic Data and Comparative Insights from Other Cohorts. Journal of Clinical Medicine. 2025; 14(3):866. https://doi.org/10.3390/jcm14030866
Chicago/Turabian StyleChumakova, Olga S., Tatiana N. Baklanova, and Dmitry A. Zateyshchikov. 2025. "Clinical Features and Prospective Outcomes of Thin-Filament Hypertrophic Cardiomyopathy: Intrinsic Data and Comparative Insights from Other Cohorts" Journal of Clinical Medicine 14, no. 3: 866. https://doi.org/10.3390/jcm14030866
APA StyleChumakova, O. S., Baklanova, T. N., & Zateyshchikov, D. A. (2025). Clinical Features and Prospective Outcomes of Thin-Filament Hypertrophic Cardiomyopathy: Intrinsic Data and Comparative Insights from Other Cohorts. Journal of Clinical Medicine, 14(3), 866. https://doi.org/10.3390/jcm14030866