Aortic Stenosis Prevention: Is a New Cardiovascular Disease Paradigm Coming of Age?
Abstract
:1. Introduction—The Problem of CAS
2. Pathophysiology Mechanisms—Risk Factors of Calcific AS (CAS)
3. Can Diagnostic Data Give Clues to Prevention and Treatment?
4. The Importance of Biomarkers
5. Management of CAS: Therapy vs. Prevention
5.1. Mechanical and Ultrasound Interventions
5.2. Promising Preventive Therapeutic Drug Targets of CAS
5.2.1. RAAS Inhibition
5.2.2. Hypolipidemic Therapy
5.2.3. Antidiabetic Treatment
5.2.4. Anti-Inflammatory and Antifibrotic Therapies
5.2.5. Antithrombotic Treatment
5.2.6. Miscellaneous Candidates
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ancona, R.; Pinto, S.C. Epidemiology of aortic valve stenosis (AS) and of aortic valve incompetence (AI): Is the prevalence of AS/AI similar in different parts of the world? ESC E J. Cardiol. Pract. 2020, 18, 10–12. [Google Scholar]
- Iung, B.; Baron, G.; Butchart, E.G.; Delahaye, F.; Gohlke-Bärwolf, C.; Levang, O.W.; Vahanian, A. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 2003, 24, 1231–1243. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.C.; Joag, V.R.; Gotlieb, A.I. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 2007, 171, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Anousakis-Vlachochristou, N.; Athanasiadou, D.; Carneiro, K.; Toutouzas, K. Focusing on the Native Matrix Proteins in Calcific Aortic Valve Stenosis. J. Am. Coll. Cardiol. Basic Trans. Sci. 2023, 8, 1028–1039. [Google Scholar] [CrossRef]
- Abe, J.; Berk, B.C. Novel mechanisms of endothelial mechanotransduction. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2378–2386. [Google Scholar] [CrossRef]
- Deng, X.S.; Meng, X.; Fullerton, D.; Stone, M.; Jaggers, J. Complement Upregulates Runx-2 to Induce Profibrogenic Change in Aortic Valve Interstitial Cells. Ann. Thorac. Surg. 2021, 112, 1962–1972. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Zhu, H.; Cheng, Z.; Hu, X.; Yu, X.; Li, J.; Liu, H.; Tang, P.; Zhang, Y.; Xiong, X.; et al. PCSK9, a novel immune and ferroptosis related gene in abdominal aortic aneurysm neck. Sci. Rep. 2023, 13, 6054. [Google Scholar] [CrossRef] [PubMed]
- Vaturi, M.; Perl, L.; Leshem-Lev, D.; Dadush, O.; Bental, T.; Shapira, Y.; Yedidya, I.; Greenberg, G.; Kornowski, R.; Sagie, A.; et al. Circulating endothelial progenitor cells in patients with dysfunctional versus normally functioning congenitally bicuspid aortic valves. Am. J. Cardiol. 2011, 108, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Oostveen, R.F.; Kaiser, Y.; Stroes, E.S.G.; Verberne, H.J. Molecular Imaging of Aortic Valve Stenosis with Positron Emission Tomography. Pharmaceuticals 2022, 15, 812. [Google Scholar] [CrossRef]
- Chan, K.L.; Teo, K.; Dumesnil, J.G.; Ni, A.; Tam, J.; ASTRONOMER Investigators. Effect of Lipid lowering with rosuvastatin on progression of aortic stenosis: Results of the aortic stenosis progression observation: Measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation 2010, 121, 306–314. [Google Scholar] [CrossRef]
- Thanassoulis, G.; Campbell, C.Y.; Owens, D.S.; Smith, J.G.; Smith, A.V.; Peloso, G.M.; Kerr, K.F.; Pechlivanis, S.; Budoff, M.J.; Harris, T.B.; et al. Genetic associations with valvular calcification and aortic stenosis. N. Engl. J. Med. 2013, 368, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Tsamoulis, D.; Siountri, I.; Rallidis, L. Lipoprotein(a): Its Association with Calcific Aortic Valve Stenosis, the Emerging RNA-Related Treatments and the Hope for a New Era in “Treating” Aortic Valve Calcification. J. Cardiovasc. Dev. Dis. 2023, 23, 96. [Google Scholar] [CrossRef]
- O’Brien, K.D.; Probstfield, J.L.; Caulfield, M.T.; Nasir, K.; Takasu, J.; Shavelle, D.M.; Wu, A.H.; Zhao, X.Q.; Budoff, M.J. Angiotensin-converting enzyme inhibitors and change in aortic valve calcium. Arch. Intern. Med. 2005, 165, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Pernigo, M.; Bergamini, C.; Bonapace, S.; Lipari, P.; Valbusa, F.; Bertolini, L.; Zenari, L.; Pichiri, I.; Dauriz, M.; et al. Heart valve calcification in patients with type 2 diabetes and nonalcoholic fatty liver disease. Metabolism 2015, 64, 879–887. [Google Scholar] [CrossRef]
- Marquis-Gravel, G.; Redfors, B.; Leon, M.B.; Généreux, P. Medical Treatment of Aortic Stenosis. Circulation 2016, 134, 1766–1784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Miller, V.M.; Miller, J.D. Influences of Sex and Estrogen in Arterial and Valvular Calcification. Front. Endocrinol. 2019, 10, 622. [Google Scholar] [CrossRef] [PubMed]
- Clavel, M.A.; Malouf, J.; Michelena, H.I.; Suri, R.M.; Jaffe, A.S.; Mahoney, D.W.; Enriquez-Sarano, M. B-type natriuretic peptide clinical activation in aortic stenosis: Impact on long-term survival. J. Am. Coll. Cardiol. 2014, 63, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- Augustine, D.X.; Coates-Bradshaw, L.D.; Willis, J.; Harkness, A.; Ring, L.; Grapsa, J.; Coghlan, G.; Kaye, N.; Oxborough, D.; Robinson, S.; et al. Echocardiographic assessment of pulmonary hypertension: A guideline protocol from the British Society of Echocardiography. Echo Res. Pract. 2018, 5, G11–G24. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Chen, H.; Li, H. Prognostic Value of Global Longitudinal Strain in Asymptomatic Aortic Stenosis: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 778027. [Google Scholar] [CrossRef]
- Garcia, J.; Markl, M.; Schnell, S.; Allen, B.; Entezari, P.; Mahadevia, R.; Chris Malaisrie, S.; Pibarot, P.; Carr, J.; Barker, A.J. Evaluation of aortic stenosis severity using 4D flow jet shear layer detection for the measurement of valve effective orifice area. Magn. Reson. Imaging 2014, 32, 891–898. [Google Scholar] [CrossRef]
- Saikrishnan, N.; Kumar, G.; Sawaya, F.J.; Lerakis, S.; Yoganathan, A.P. Accurate assessment of aortic stenosis: A review of diagnostic modalities and hemodynamics. Circulation 2014, 129, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, J.; Janiec, M.; Bergdahl, I.A.; Holmgren, A.; Hultdin, J.; Johansson, B.; Näslund, U.; Siegbahn, A.; Fall, T.; Söderberg, S. Proteomic Biomarkers for Incident Aortic Stenosis Requiring Valvular Replacement. Circulation 2018, 138, 590–599. [Google Scholar] [CrossRef]
- Toutouzas, K.; Stathogiannis, K.; Latsios, G.; Synetos, A.; Drakopoulou, M.; Penesopoulou, V.; Michelongona, A.; Tsiamis, E.; Tousoulis, D. Biomarkers in Aortic Valve Stenosis and their Clinical Significance in Transcatheter Aortic Valve Implantation. Curr. Med. Chem. 2019, 26, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Steadman, C.D.; Ray, S.; Ng, L.L.; McCann, G.P. Natriuretic peptides in common valvular heart disease. JACC 2010, 55, 2034–2048. [Google Scholar] [CrossRef]
- Köhler, W.M.; Freitag-Wolf, S.; Lambers, M.; Lutz, M.; Niemann, P.M.; Petzina, R.; Lutter, G.; Bramlage, P.; Frey, N.; Frank, D. Preprocedural but not periprocedural high-sensitive Troponin T (hsTNT) levels predict outcome in patients undergoing transcatheter aortic valve implantation (TAVI). Cardiovasc. Ther. 2016, 34, 385–396. [Google Scholar] [CrossRef]
- Harrison, D.; Griendling, K.K.; Landmesser, U.; Hornig, B.; Drexler, H. Role of oxidative stress in atherosclerosis. Am. J. Cardiol. 2003, 91, 7A–11A. [Google Scholar] [CrossRef]
- Pascual-Figal, D.A.; Januzzi, J.L. The biology of ST2: The International ST2 Consensus Panel. Am. J. Cardiol. 2015, 115 (Suppl. S7), 3B–7B. [Google Scholar] [CrossRef] [PubMed]
- Capoulade, R.; Mahmut, A.; Tastet, L.; Arsenault, M.; Bédard, É.; Dumesnil, J.G.; Després, J.-P.; Larose, É.; Arsenault, B.J.; Bossé, Y.; et al. Impact of plasma Lp-PLA2 activity on the progression of aortic stenosis: The PROGRESSA study. JACC Cardiovasc. Imaging 2015, 8, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Kapelouzou, A.; Tsourelis, L.; Kaklamanis, L.; Degiannis, D.; Kogerakis, N.; Cokkinos, D.V. Serum and tissue biomarkers in aortic stenosis. Glob. Cardiol. Sci. Pract. 2015, 2015, 49. [Google Scholar] [CrossRef] [PubMed]
- Vidula, M.K.; Orlenko, A.; Zhao, L.; Salvador, L.; Small, A.M.; Horton, E.; Cohen, J.B.; Adusumalli, S.; Denduluri, S.; Kobayashi, T.; et al. Plasma biomarkers associated with adverse outcomes in patients with calcific aortic stenosis. Eur. J. Heart Fail. 2021, 23, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- Oury, C.; Servais, L.; Bouznad, N.; Hego, A.; Nchimi, A.; Lancellotti, P. MicroRNAs in valvular heart diseases: Potential role as markers and actors of valvular and cardiac remodeling. Int. J. Mol. Sci. 2016, 17, 1120. [Google Scholar] [CrossRef] [PubMed]
- Bernava, G.; Fermi, E.; Gelpi, G.; Rizzi, S.; Benettin, D.; Barbuto, M.; Romagnoni, C.; Ventrella, D.; Palmieri, M.C.; Agrifoglio, M.; et al. Lithotripsy of Calcified Aortic Valve Leaflets by a Novel Ultrasound Transcatheter-Based Device. Front. Cardiovasc. Med. 2022, 9, 850393. [Google Scholar] [CrossRef]
- Halapas, A.; Kapelouzou, A.; Chrissoheris, M.; Pattakos, G.; Cokkinos, D.V.; Spargias, K. The effect of Remote Ischemic Preconditioning (RIPC) on myocardial injury and inflammation in patients with severe aortic valve stenosis undergoing Transcatheter Aortic Valve Replacement (TAVΙ). Hellenic, J. Cardiol. 2021, 62, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Deftereos, S.G.; Beerkens, F.J.; Shah, B.; Giannopoulos, G.; Vrachatis, D.A.; Giotaki, S.G.; Siasos, G.; Nicolas, J.; Arnott, C.; Patel, S.; et al. Colchicine in Cardiovascular Disease: In-Depth Review. Circulation 2022, 145, 61–78. [Google Scholar]
- Carabello, B.A. The SEAS Trial. Curr Cardiol Rep. 2010, 12, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart, J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Curini, L.; Pesce, M. Shockwaves delivery for aortic valve therapy-Realistic perspective for clinical translation? Front. Cardiovasc. Med. 2023, 10, 1160833. [Google Scholar] [CrossRef]
- Mancusi, C.; de Simone, G.; Brguljan Hitij, J.; Sudano, I.; Mahfoud, F.; Parati, G.; Kahan, T.; Barbato, E.; A Pierard, L.; Garbi, M.; et al. Management of patients with combined arterial hypertension and aortic valve stenosis: A consensus document from the Council on Hypertension and Council on Valvular Heart Disease of the European Society of Cardiology, the European Association of Cardiovascular Imaging (EACVI), and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Albu, A.; Para, I.; Bidian, C. Arterial stiffness in aortic stenosis—Complex clinical and prognostic implications. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2022, 166, 369–379. [Google Scholar] [CrossRef]
- Salaun, E.; Mahjoub, H.; Dahou, A.; Mathieu, P.; Larose, É.; Després, J.-P.; Rodés-Cabau, J.; Arsenault, B.J.; Puri, R.; Clavel, M.-A.; et al. Hemodynamic Deterioration of Surgically Implanted Bioprosthetic Aortic Valves. J. Am. Coll. Cardiol. 2018, 72, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Milosavljevic, M.N.; Stefanovic, S.M.; Pejcic, A.V. Potential Novel RNA-Targeting Agents for Effective Lipoprotein(a) Lowering: A Systematic Assessment of the Evidence from Completed and Ongoing Developmental Clinical Trials. J. Cardiovasc. Pharmacol. 2023, 82, 1–12. [Google Scholar] [CrossRef]
- Chen, A.; Lan, Z.; Li, L.; Xie, L.; Liu, X.; Yang, X.; Wang, S.; Liang, Q.; Dong, Q.; Feng, L.; et al. Sodium-glucose cotransporter 2 inhibitor canagliflozin alleviates vascular calcification through suppression of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome. Cardiovasc. Res. 2023, 119, 2368–2381. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Lee, S.; Kim, S.M.; Lee, E.J.; Lee, S.R.; Kim, D.H.; Jang, J.Y.; Kang, S.W.; Lee, K.U.; Chang, E.J.; et al. Dipeptidyl Peptidase-4 Induces Aortic Valve Calcification by Inhibiting Insulin-Like Growth Factor-1 Signaling in Valvular Interstitial Cells. Circulation 2017, 135, 1935–1950. [Google Scholar] [CrossRef]
- Paolisso, P.; Belmonte, M.; Gallinoro, E.; Scarsini, R.; Bergamaschi, L.; Portolan, L.; Armillotta, M.; Esposito, G.; Moscarella, E.; Benfari, G.; et al. SGLT2-inhibitors in diabetic patients with severe aortic stenosis and cardiac damage undergoing transcatheter aortic valve implantation (TAVI). Cardiovasc. Diabetol. 2025, 24, 14. [Google Scholar] [CrossRef] [PubMed]
- Dhayni, K.; Chabry, Y.; Hénaut, L.; Avondo, C.; Boudot, C.; Ouled-Haddou, H.; Bennis, Y. Aortic valve calcification is promoted by interleukin-8 and restricted through antagonizing CXC motif chemokine receptor 2. Cardiovasc. Res. 2023, 119, 2355–2367. [Google Scholar] [CrossRef] [PubMed]
- Kapelouzou, A.; Geronikolou, S.; Lidoriki, I.; Kontogiannis, C.; Kaklamanis, L.; Tsourelis, L.; Cokkinos, D.V. Tissue and Serum Biomarkers in Degenerative Aortic Stenosis-Insights into Pathogenesis, Prevention and Therapy. Biology 2023, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wang, M.; Liu, T.; Lei, Y.; Miao, Q.; Li, Q.; Wang, H.; Zhang, G.; Hou, Y.; Chang, X. Carbonic Anhydrase 1-Mediated Calcification Is Associated with Atherosclerosis, and Methazolamide Alleviates Its Pathogenesis. Front. Pharmacol. 2019, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Baran, J.; Niewiara, Ł.; Podolec, J.; Siedliński, M.; Józefczuk, E.; Bernacik, A.; Badacz, R.; Przewłocki, T.; Pieniążek, P.; Żmudka, K.; et al. Serum and Vascular Stiffness Biomarkers Associated with the Severity of Degenerative Aortic Valve Stenosis and Cardiovascular Outcomes. J. Cardiovasc. Dev. Dis. 2022, 9, 193. [Google Scholar] [CrossRef]
- Leskelä, H.V.; Vuolteenaho, O.; Koivula, M.K.; Taskinen, P.; Ruskoaho, H.; Peltonen, T.; Lehenkari, P. Tezosentan inhibits uptake of proinflammatory endothelin-1 in stenotic aortic valves. J. Heart Valve Dis. 2012, 21, 23–30. [Google Scholar] [PubMed]
- Trimaille, A.; Hmadeh, S.; Matsushita, K.; Marchandot, B.; Kauffenstein, G.; Morel, O. Aortic stenosis and the haemostatic system. Cardiovasc. Res. 2023, 119, 1310–1323. [Google Scholar] [CrossRef] [PubMed]
- Koos, R.; Mahnken, A.; Mühlenbruch, G. Relation of oral anticoagulation to cardiac valvular and coronary calcium assessed by multislice spiral computed tomography. Am. J. Cardiol. 2005, 96, 747–749. [Google Scholar] [CrossRef] [PubMed]
- Di Lullo, L.; Lavalle, C.; Magnocavallo, M.; Mariani, M.V.; Della Rocca, D.G.; Severino, P.; Di Iorio, B.R.; Russo, D.; Summaria, F.; Forleo, G.B.; et al. New evidence of direct oral anticoagulation therapy on cardiac valve calcifications, renal preservation and inflammatory modulation. Int. J. Cardiol. 2021, 345, 90–97. [Google Scholar] [CrossRef]
- Heitmeier, S.; Visser, M.; Tersteegen, A.; Dietze-Torres, J.; Glunz, J.; Gerdes, C.; Laux, V.; Stampfuss, J.; Roehrig, S. Pharmacological profile of asundexian, a novel, orally bioavailable inhibitor of factor Xia. J. Thromb. Haemost. 2022, 20, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Synetos, A.; Toutouzas, T.; Drakopoulou, M.; Koutagiar, I.; Benetos, G.; Kotronias, R.; Anousakis-Vlachochristou, N.; Latsios, G.; Karanasos, A.; Agrogiannis, G.; et al. Inhibition of aortic valve calcification by local delivery of zoledronic acid-an experimental study. J. Cardiovasc. Transl. Res. 2018, 11, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Spargias, K.; Milewski, K.; Debinski, M.; Buszman, P.P.; Cokkinos, D.V.; Pogge, R.; Buszman, P. Drug delivery at the aortic valve tissues of healthy domestic pigs with a Paclitaxel-eluting valvuloplasty balloon. J. Interv. Cardiol. 2009, 22, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Pawade, T.A.; Doris, M.K.; Bing, R.; White, A.C.; Forsyth, L.; Evans, E.; Graham, C.; Williams, M.C.; van Beek, E.J.; Fletcher, A.; et al. Effect of Denosumab or Alendronic Acid on the Progression of Aortic Stenosis: A Double-Blind Randomized Controlled Trial. Circulation 2021, 143, 2418–2427. [Google Scholar] [CrossRef]
- Wilimski, R.; Budzianowski, J.; Łomiak, M.; Olasińska-Wiśniewska, A.; Pieniak, K.; Jędrzejczyk, S.; Domaszk, O.; Chudzik, M.; Filipiak, K.J.; Hiczkiewicz, J.; et al. Extracellular Vesicles to Predict Outcomes After Transcatheter Aortic Valve Implantation—A Prospective, Multicenter Cohort Study. J. Cardiovasc. Transl. Res. 2024, 17, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Bosse, Y.; Mathieu, P.; Pibarot, P. Genomics: The next step to elucidate the etiology of calcific aortic valve stenosis. J. Am. Coll. Cardiol. 2008, 51, 1327–1336. [Google Scholar] [CrossRef]
- Yeghiazaryan, K.; Skowasch, D.; Bauriedel, G.; Schild, H.H.; Golubnitschaja, O. Degenerative valve disease and bioprostheses: Risk assessment, predictive diagnosis, personalized treatments. EPMA J. 2011, 2, 91–105. [Google Scholar] [CrossRef] [PubMed]
Imaging Modality | Advantages | Limitations |
---|---|---|
Echocardiography | Main imaging method used to guide AVR Most widely used in clinical practice No radiation exposure Relatively inexpensive | Measures dependent upon LV flow Poor progression to noise ratio Relatively large patient sample sizes required to demonstrate a treatment effect |
CT Aortic Valve | Favorable progression to noise ratio Flow independent measurements Relatively small patient sample sizes required to demonstrate a treatment effect | Radiation exposure Ignores the contribution of fibrosis to AS severity and progression |
Contrast CT Angiography | Widely available at most centers Flow independent measurements Assesses the burden of both valve calcification and fibrosis | Time consuming image analysis methodology Radiation exposure Requires contrast administration |
PET/CT | Assessment of calcification activity High reproducible As an assessment of disease activity may change more quickly than structural or hemodynamic assessments | Available at specialized centers and relatively expensive Radiation exposure Ignores the contribution of fibrosis to AS severity and progression |
Biomarker, BMs | Role | References |
---|---|---|
BNP/NT-pro-BNP | BNP is strong predictor of mortality. | [17,24] |
Cardiac Troponins | Baseline troponins are predictive of worse outcome in patients with severe AS. | [25] |
Inflammatory BMs | Inflammatory BMs have been positively associated with calcification process. | [33,34] |
Oxidative Stress BMs | Oxidative BMs are increased in AS and predictive of worse outcome, including higher mortality post TAVR. | [26,29] |
Galectin-3 | Galectin-3 has been shown to be an independent predictor of mortality. | [22] |
Soluble ST2 | sST2 is strong predictor of mortality post AVR. | [27] |
Lp(a) | High Lp(a) levels are associated with mineralization and calcification process in aortic valve. | [11,12] |
Micro RNA | miR-133a predicts the extent of regression of LV hypertrophy post SAVR, miR-21 is associated with LV fibrosis, and miR-210 is associated with mortality in moderate or severe AS. | [31] |
vWF | AS triggers vWF inactivation. Proportional to AS severity, plasma levels and function of vWF are reduced, which may result in significant bleeding. | [32] |
TLRs | TLRs are increased in AS, providing a clue for anti-inflammatory therapy. | [33,34] |
PCSK9 | PCSK9 is increased both in the stenotic valve tissue and serum, providing insight for possible therapeutic options. | [7,22,35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halapas, A.; Cokkinos, D.V. Aortic Stenosis Prevention: Is a New Cardiovascular Disease Paradigm Coming of Age? J. Clin. Med. 2025, 14, 903. https://doi.org/10.3390/jcm14030903
Halapas A, Cokkinos DV. Aortic Stenosis Prevention: Is a New Cardiovascular Disease Paradigm Coming of Age? Journal of Clinical Medicine. 2025; 14(3):903. https://doi.org/10.3390/jcm14030903
Chicago/Turabian StyleHalapas, Antonios, and Dennis V. Cokkinos. 2025. "Aortic Stenosis Prevention: Is a New Cardiovascular Disease Paradigm Coming of Age?" Journal of Clinical Medicine 14, no. 3: 903. https://doi.org/10.3390/jcm14030903
APA StyleHalapas, A., & Cokkinos, D. V. (2025). Aortic Stenosis Prevention: Is a New Cardiovascular Disease Paradigm Coming of Age? Journal of Clinical Medicine, 14(3), 903. https://doi.org/10.3390/jcm14030903