Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge
Abstract
:1. Introduction
2. Methods
2.1. Subjects and Study Design
2.2. Study-Related Procedures
2.3. Spirometry
2.4. Impulse Oscillometry (IOS)
2.5. Methacholine (and Histamine) Bronchoprovocation Test
2.6. Allergen Bronchoprovocation Test
2.7. Statistical Analysis
3. Results
3.1. Subjects
3.2. Methacholine/Histamine Challenge
3.3. Inhaled Allergen Challenge
4. Correlations
5. Discussion
5.1. Summary of Study Findings
5.2. Comparison with Existing Literature
5.3. Strengths and Limitations
5.4. Clinical Implications and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usmani, O.S.; Barnes, P.J. Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann. Med. 2012, 44, 146–156. [Google Scholar] [CrossRef] [PubMed]
- van der Wiel, E.; ten Hacken, N.H.; Postma, D.S.; van den Berge, M. Small-airways dysfunction associates with respiratory symptoms and clinical features of asthma: A systematic review. J. Allergy Clin. Immunol. 2013, 131, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, C.; Hauber, H.P.; Gotfried, M.; Newman, K.; Dhanda, R.; Servi, R.J.; Ludwig, M.S.; Hamid, Q. Evidence of remodeling in peripheral airways of patients with mild to moderate asthma: Effect of hydrofluoroalkane-flunisolide. J. Allergy Clin. Immunol. 2005, 116, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Dolhnikoff, M.; da Silva, L.F.; de Araujo, B.B.; Gomes, H.A.; Fernezlian, S.; Mulder, A.; Lindeman, J.H.; Mauad, T. The outer wall of small airways is a major site of remodeling in fatal asthma. J. Allergy Clin. Immunol. 2009, 123, 1090–1097.e1. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Duraikannu, C.; Thouseef, M.J.; Lipworth, B. Impaired Respiratory System Resistance and Reactance Are Associated with Bronchial Wall Thickening in Persistent Asthma. J. Allergy Clin. Immunol. Pract. 2023, 11, 1459–1462.e3. [Google Scholar] [CrossRef]
- Postma, D.S.; Brightling, C.; Fabbri, L.; van der Molen, T.; Nicolini, G.; Papi, A.; Rabe, K.F.; Siddiqui, S.; Singh, D.; Berge, M.v.D.; et al. Unmet needs for the assessment of small airways dysfunction in asthma: Introduction to the ATLANTIS study. Eur. Respir. J. 2015, 45, 1534–1538. [Google Scholar] [CrossRef]
- Ducharme, F.M.; Chan, R. Oscillometry in the diagnosis, assessment, and monitoring of asthma in children and adults: Review article. Ann. Allergy Asthma Immunol. 2024; ahead of print. [Google Scholar] [CrossRef]
- Cockcroft, D.W. Direct challenge tests: Airway hyperresponsiveness in asthma: Its measurement and clinical significance. Chest 2010, 138 (Suppl. S2), 18s–24s. [Google Scholar] [CrossRef]
- James, A.; Ryan, G. Testing airway responsiveness using inhaled methacholine or histamine. Respirology 1997, 2, 97–105. [Google Scholar] [CrossRef]
- Yoon, J.W.; Shin, Y.H.; Jee, H.M.; Chang, S.J.; Baek, J.H.; Choi, S.H.; Kim, H.Y.; Han, M.Y. Useful marker of oscillatory lung function in methacholine challenge test-comparison of reactance and resistance with dose-response slope. Pediatr. Pulmonol. 2014, 49, 521–528. [Google Scholar] [CrossRef]
- Schulze, J.; Smith, H.-J.; Fuchs, J.; Herrmann, E.; Dressler, M.; Rose, M.A.; Zielen, S. Methacholine challenge in young children as evaluated by spirometry and impulse oscillometry. Respir. Med. 2012, 106, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Sheen, Y.H.; Kim, M.A.; Baek, J.H.; Baek, H.S.; Lee, S.J.; Yoon, J.W.; Rha, Y.H.; Han, M.Y. Clinical Implications of Oscillatory Lung Function during Methacholine Bronchoprovocation Testing of Preschool Children. BioMed Res. Int. 2017, 2017, 9460190. [Google Scholar] [CrossRef]
- Diamant, Z.; Gauvreau, G.M.; Cockcroft, D.W.; Boulet, L.P.; Sterk, P.J.; de Jongh, F.H.; Dahlén, B.; O’Byrne, P.M. Inhaled allergen bronchoprovocation tests. J. Allergy Clin. Immunol. 2013, 132, 1045–1055.e6. [Google Scholar] [CrossRef]
- Gauvreau, G.M.; Davis, B.E.; Scadding, G.; Boulet, L.-P.; Bjermer, L.; Chaker, A.; Cockcroft, D.W.; Dahlén, B.; Fokkens, W.; Hellings, P.; et al. Allergen provocation tests in respiratory research: Building on 50 years of experience. Eur. Respir. J. 2022, 60, 2102782. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; Dolovich, J.; Hargreave, F.E. Late asthmatic responses. Am. Rev. Respir. Dis. 1987, 136, 740–751. [Google Scholar] [CrossRef]
- Zhu, Y.; Esnault, S.; Ge, Y.; Jarjour, N.N.; Brasier, A.R. Airway fibrin formation cascade in allergic asthma exacerbation: Implications for inflammation and remodeling. Clin. Proteom. 2022, 19, 15. [Google Scholar] [CrossRef]
- Metzger, W.J.; Nugent, K.; Richerson, H.B. Site of airflow obstruction during early and late phase asthmatic responses to allergen bronchoprovocation. Chest 1985, 88, 369–375. [Google Scholar] [CrossRef]
- Stenberg, H.; Diamant, Z.; Ankerst, J.; Bjermer, L.; Tufvesson, E. Small airway involvement in the late allergic response in asthma. Clin. Exp. Allergy 2017, 47, 1555–1565. [Google Scholar] [CrossRef]
- Boulet, L.P.; Cote, A.; Abd-Elaziz, K.; Gauvreau, G.; Diamant, Z. Allergen bronchoprovocation test: An important research tool supporting precision medicine. Curr. Opin. Pulm. Med. 2021, 27, 15–22. [Google Scholar] [CrossRef]
- Contoli, M.; Santus, P.; Papi, A. Small airway disease in asthma: Pathophysiological and diagnostic considerations. Curr. Opin. Pulm. Med. 2015, 21, 68–73. [Google Scholar] [CrossRef]
- Donohue, P.A.; Kaminsky, D.A. The role of oscillometry in asthma. Curr. Opin. Pulm. Med. 2024, 30, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Kleinhendler, E.; Rosman, M.; Fireman, E.; Freund, O.; Gershman, I.; Pumin, I.; Perluk, T.; Tiran, B.; Unterman, A.; Bar-Shai, A. Impulse Oscillometry as an Alternative Lung Function Test for Hospitalized Adults. Respir. Care 2024, 69, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2018. Available online: www.ginasthma.org (accessed on 12 January 2024).
- Miller, M.R.; Hankinson, J.A.T.S.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Oostveen, E.; MacLeod, D.; Lorino, H.; Farré, R.; Hantos, Z.; Desager, K.; Marchal, F.; ERS Task Force on Respiratory Impedance Measurements. The forced oscillation technique in clinical practice: Methodology, recommendations and future developments. Eur. Respir. J. 2003, 22, 1026–1041. [Google Scholar] [CrossRef]
- Chan, R.; Lipworth, B. Identifying poorer asthma control using oscillometry ratios. J. Allergy Clin. Immunol. Pract. 2024, 12, 506–508.e1. [Google Scholar] [CrossRef]
- Coates, A.L.; Wanger, J.; Cockcroft, D.W.; Culver, B.H.; Force, T.B.T.T.; Carlsen, K.-H.; Diamant, Z.; Gauvreau, G.; Hall, G.L.; Hallstrand, T.S.; et al. ERS technical standard on bronchial challenge testing: General considerations and performance of methacholine challenge tests. Eur. Respir. J. 2017, 49, 1601526. [Google Scholar] [CrossRef]
- Sterk, P.J.; Fabbri, L.M.; Quanjer, P.H.; Cockcroft, D.W.; O’Byrne, P.M.; Anderson, S.D.; Juniper, E.F.; Malo, J.L. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur. Respir. J. 1993, 6 (Suppl. S16), 53–83. [Google Scholar] [CrossRef]
- Juniper, E.F.; Frith, P.A.; Dunnett, C.; Cockcroft, D.W.; Hargreave, F.E. Reproducibility and comparison of responses to inhaled histamine and methacholine. Thorax 1978, 33, 705–710. [Google Scholar] [CrossRef]
- Davis, B.E.; Cockcroft, D.W. Calculation of provocative concentration causing a 20% fall in FEV1: Comparison of lowest vs highest post-challenge FEV1. Chest 2000, 117, 881–883. [Google Scholar] [CrossRef]
- Galant, S.P.; Komarow, H.D.; Shin, H.-W.; Siddiqui, S.; Lipworth, B.J. The case for impulse oscillometry in the management of asthma in children and adults. Ann. Allergy Asthma Immunol. 2017, 118, 664–671. [Google Scholar] [CrossRef]
- Ravensberg, A.J.; Van Rensen, E.L.J.; Grootendorst, D.C.; De Kluijver, J.; Diamant, Z.; Ricciardolo, F.L.M.; Sterk, P.J. Validated safety predictions of airway responses to house dust mite in asthma. Clin. Exp. Allergy 2007, 37, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, D.; Murdock, K.; Kirby, J.; Hargreave, F. Prediction of airway responsiveness to allergen from skin sensitivity to allergen and airway responsiveness to histamine. Am. Rev. Respir. Dis. 1987, 135, 264–267. [Google Scholar] [PubMed]
- Meijer, G.G.; Postma, D.S.; Mulder, P.G.; van Aalderen, W.M. Long-term circadian effects of salmeterol in asthmatic children treated with inhaled corticosteroids. Am. J. Respir. Crit. Care Med. 1995, 152 Pt 1, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Barkas, G.I.; Daniil, Z.; Kotsiou, O.S. The Role of Small Airway Disease in Pulmonary Fibrotic Diseases. J. Pers. Med. 2023, 13, 1600. [Google Scholar] [CrossRef]
- Tota, M.; Łacwik, J.; Laska, J.; Sędek, Ł.; Gomulka, K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023, 12, 1326. [Google Scholar] [CrossRef]
- Naji, N.; Keung, E.; Kane, J.; Watson, R.M.; Killian, K.J.; Gauvreau, G.M. Comparison of changes in lung function measured by plethymography and IOS after bronchoprovocation. Respir. Med. 2013, 107, 503–510. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; Inman, M.D. Airway hyperresponsiveness. Chest 2003, 123 (Suppl. S3), 411S–416S. [Google Scholar] [CrossRef]
- Gauvreau, G.M.; Watson, R.M.; O’Byrne, P.M. Kinetics of allergen-induced airway eosinophilic cytokine production and airway inflammation. Am. J. Respir. Crit. Care Med. 1999, 160, 640–647. [Google Scholar] [CrossRef]
- Busse, W.W. The relationship of airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: Its measurement and clinical significance. Chest 2010, 138 (Suppl. S2), 4S–10S. [Google Scholar] [CrossRef]
- Kuo, C.R.; Jabbal, S.; Lipworth, B. Is small airways dysfunction related to asthma control and type 2 inflammation? Ann. Allergy Asthma Immunol. 2018, 121, 631–632. [Google Scholar] [CrossRef]
- Zuiker, R.G.; Tribouley, C.; Diamant, Z.; Boot, J.D.; Cohen, A.F.; Van Dyck, K.; De Lepeleire, I.; Rivas, V.M.; Malkov, V.A.; Burggraaf, J.; et al. Sputum RNA signature in allergic asthmatics following allergen bronchoprovocation test. Eur. Clin. Respir. J. 2016, 3, 31324. [Google Scholar] [CrossRef] [PubMed]
- Fahy, J.V.; Fleming, H.E.; Wong, H.H.; Liu, J.T.; Su, J.Q.; Reimann, J.; Fick, R.B., Jr.; Boushey, H.A. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am. J. Respir. Crit. Care Med. 1997, 155, 1828–1834. [Google Scholar] [CrossRef]
- Busse, W.W.; Melén, E.; Menzies-Gow, A.N. Holy Grail: The journey towards disease modification in asthma. Eur. Respir. Rev. 2022, 31, 210183. [Google Scholar] [CrossRef]
- Van Rensen, E.L.; Evertse, C.E.; Van Schadewijk, W.A.; Van Wijngaarden, S.; Ayre, G.; Mauad, T.; Hiemstra, P.S.; Sterk, P.J.; Rabe, K.F. Eosinophils in bronchial mucosa of asthmatics after allergen challenge: Effect of anti-IgE treatment. Allergy 2009, 64, 72–80. [Google Scholar] [CrossRef]
- Chan, R.; Kuo, C.R.; Lipworth, B. Real-life small airway outcomes in severe asthma patients receiving biologic therapies. J. Allergy Clin. Immunol. Pract. 2021, 9, 2907–2909. [Google Scholar] [CrossRef]
- Qin, R.; An, J.; Xie, J.; Huang, R.; Xie, Y.; He, L.; Xv, H.; Qian, G.; Li, J. FEF25–75% Is a More Sensitive Measure Reflecting Airway Dysfunction in Patients with Asthma: A Comparison Study Using FEF25–75% and FEV1. J. Allergy Clin. Immunol. Pract. 2021, 9, 3649–3659.e6. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Weiner, D.J.; Pretto, J.J.; Brazzale, D.J.; Boros, P.W. Measurement of FEF25–75% and FEF75% does not contribute to clinical decision making. Eur. Respir. J. 2014, 43, 1051–1058. [Google Scholar] [CrossRef]
- Gauvreau, G.M.; O’Byrne, P.M.; Boulet, L.P.; Wang, Y.; Cockcroft, D.; Bigler, J.; FitzGerald, J.M.; Boedigheimer, M.; Davis, B.E.; Dias, C.; et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 2014, 370, 2102–2110. [Google Scholar] [CrossRef]
- Diver, S.; Khalfaoui, L.; Emson, C.; Wenzel, S.E.; Menzies-Gow, A.; Wechsler, M.E.; Johnston, J.; Molfino, N.; Parnes, J.R.; Megally, A.; et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2021, 9, 1299–1312. [Google Scholar] [CrossRef]
- Chan, R.; Lipworth, B.J. Impact of Biologic Therapy on the Small Airways Asthma Phenotype. Lung 2022, 200, 691–696. [Google Scholar] [CrossRef]
- Diamant, Z.; van Maaren, M.; Muraro, A.; Jesenak, M.; Striz, I. Allergen immunotherapy for allergic asthma: The future seems bright. Respir. Med. 2023, 210, 107125. [Google Scholar] [CrossRef] [PubMed]
- Van Bever, H.P.; Stevens, W.J. Evolution of the late asthmatic reaction during immunotherapy and after stopping immunotherapy. J. Allergy Clin. Immunol. 1990, 86, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, M.B.; Löwhagen, O.; Rak, S. Allergen specific immunotherapy attenuates early and late phase reactions in lower airways of birch pollen asthmatic patients: A double blind placebo-controlled study. Allergy 2004, 59, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; Fitzgerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef]
- Chan, R.; Stewart, K.; Kuo, C.R.; Lipworth, B. Evaluation of dupilumab and benralizumab on peripheral airway resistance and reactance. Allergy 2024, 79, 2862–2864. [Google Scholar] [CrossRef]
- Mead, J. The lung’s “quiet zone”. N. Engl. J. Med. 1970, 282, 1318–1319. [Google Scholar] [CrossRef]
- Chan, R.; Misirovs, R.; Lipworth, B. Repeatability of impulse oscillometry in patients with severe asthma. Eur. Respir. J. 2022, 59, 2101679. [Google Scholar] [CrossRef]
- Chan, R.; Gochicoa-Rangel, L.; Cottini, M.; Comberiati, P.; Gaillard, E.A.; Ducharme, F.M.; Galant, S.P. Ascertainment of small airway dysfunction using oscillometry to better define asthma control and future risk: Are we ready to implement it in clinical practice? Chest, 2024; ahead of print. [Google Scholar] [CrossRef]
- Manson, M.L.; Säfholm, J.; James, A.; Johnsson, A.-K.; Bergman, P.; Al-Ameri, M.; Orre, A.-C.; Kärrman-Mårdh, C.; Dahlén, S.-E.; Adner, M. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J. Allergy Clin. Immunol. 2020, 145, 808–817.e2. [Google Scholar] [CrossRef]
- Kidney, J.C.; Boulet, L.-P.; Hargreave, F.E.; Deschesnes, F.; Swystun, V.A.; O’Byrne, P.M.; Choudry, N.; Morrisa, M.M.; Jennings, B.; Andersson, N.; et al. Evaluation of single-dose inhaled corticosteroid activity with an allergen challenge model. J. Allergy Clin. Immunol. 1997, 100, 65–70. [Google Scholar] [CrossRef]
- Foy, B.H.; Soares, M.; Bordas, R.; Richardson, M.; Bell, A.; Singapuri, A.; Hargadon, B.; Brightling, C.; Burrowes, K.; Kay, D.; et al. Lung Computational Models and the Role of the Small Airways in Asthma. Am. J. Respir. Crit. Care Med. 2019, 200, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, D.A.; Simpson, S.J.; Berger, K.I.; Calverley, P.; de Melo, P.L.; Dandurand, R.; Dellacà, R.L.; Farah, C.S.; Farré, R.; Hall, G.L.; et al. Clinical significance and applications of oscillometry. Eur. Respir. Rev. 2022, 31, 210208. [Google Scholar] [CrossRef] [PubMed]
- Cottini, M.; Lombardi, C.; Comberiati, P.; Berti, A.; Menzella, F.; Dandurand, R.J.; Diamant, Z.; Chan, R. Oscillometry-defined small airways dysfunction as a treatable trait in asthma. Ann. Allergy Asthma Immunol. 2024; ahead of print. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Colice, G.; Griffiths, J.M.; Almqvist, G.; Ponnarambil, S.; Kaur, P.; Ruberto, G.; Bowen, K.; Hellqvist, Å.; Mo, M.; et al. NAVIGATOR: A phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir. Res. 2020, 21, 266. [Google Scholar] [CrossRef]
- Gibson, P.G.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; Marks, G.B.; Baraket, M.; et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): A randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 659–668. [Google Scholar] [CrossRef]
Mono-Responders (n = 11) | Dual Responders (n = 36) | p Value | |
---|---|---|---|
Age (y) | 28 (19–51) | 26 (18–52) | 0.58 |
Sex, F/M (% female) | 5/6 (45%) | 22/14 (61%) | 0.57 |
BMI (kg/m2) | 22.8 (21.7–31.2) | 24.4 (17.8–31.7) | 0.98 |
FEV1 (L) | 3.63 (2.74–4.92) 3.59 (2.69–5.02) | 3.32 (2.48–4.87) 3.30 (2.25–4.77) | 0.11 0.09 |
FEV1 (% predicted) | 94 (83–108) 92 (84–106) | 90 (71–125) 90 (68–121) | 0.23 0.22 |
FEV1/FVC ratio | 0.78 (0.60–0.93) 0.72 (0.65–0.92) | 0.76 (0.59–0.90) 0.79 (0.57–0.91) | 0.61 0.78 |
Rrs5 (kPa/L/s) | 0.27 (0.17–0.41) 0.30 (0.18–0.45) | 0.36 (0.21–0.66) 0.32 (0.20–0.57) | 0.012 0.16 |
Rrs5-20 (kPa/L/s) | 0.050 (0.000–0.110) 0.040 (0.000–0.130) | 0.070 (−0.040–0.180) 0.050 (−0.020–0.210) | 0.092 0.55 |
Rrs5-20/Rrs5 ratio (%) | 0.171 (0.000–0.268) 0.133 (0.000–0.323) | 0.187 (−0.191–0.405) 0.158 (−0.083–0.429) | 0.182 0.87 |
Xrs5 (kPa/L/s) | −0.090 (−0.160; −0.060) −0.090 (−0.170; 0.030) | −0.120 (−0.230; −0.040) −0.110 (−0.220; −0.040) | 0.123 0.22 |
AX (kPa/L) | 0.230 (0.130–0.99) 0.270 (0.040–1.150) | 0.611 (0.050–2.51) 0.340 (0.050–2.440) | 0.088 0.30 |
Fres (Hz) | 11.03 (9.25–22.67) 12.67 (2.62–20.74) | 15.34 (7.30–25.98) 14.90 (7.30–25.73) | 0.27 0.42 |
PBE (cells/µL) | 281 (203–504) | 320 (150–976) | 0.74 |
Methacholine/histamine PC20 (mg/mL) | 2.15 (0.53–11.29) | 0.84 (0.07–7.51) | 0.036 |
Meth/Hista vs. 0–3 h Post-HDM | Meth/Hista vs. 3–8 h Post-HDM | 0–3 h Post-HDM vs. 3–8 h Post-HDM | |
---|---|---|---|
FEV1 | −0.085, p = 0.571 | 0.207, p = 0.164 | 0.275, p = 0.062 |
Rrs5 | 0.528, p < 0.001 | 0.309, p = 0.041 | 0.279, p = 0.060 |
Rrs5-20 | 0.634, p < 0.001 | 0.490, p < 0.001 | 0.754, p < 0.001 |
Rrs5-20/Rrs5 | 0.583, p < 0.001 | 0.517, p < 0.001 | 0.899, p < 0.001 |
Xrs5 | 0.550, p = <0.001 | 0.060, p = 0.703 | 0.255, p = 0.090 |
AX | 0.644, p < 0.001 | 0.379, p = 0.011 | 0.582, p < 0.001 |
Fres | 0.732, p < 0.001 | 0.493, p < 0.001 | 0.637, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stenberg, H.; Chan, R.; Abd-Elaziz, K.; Pelgröm, A.; Lammering, K.; Kuijper-De Haan, G.; Weersink, E.; Lutter, R.; Zwinderman, A.H.; de Jongh, F.; et al. Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge. J. Clin. Med. 2025, 14, 906. https://doi.org/10.3390/jcm14030906
Stenberg H, Chan R, Abd-Elaziz K, Pelgröm A, Lammering K, Kuijper-De Haan G, Weersink E, Lutter R, Zwinderman AH, de Jongh F, et al. Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge. Journal of Clinical Medicine. 2025; 14(3):906. https://doi.org/10.3390/jcm14030906
Chicago/Turabian StyleStenberg, Henning, Rory Chan, Khalid Abd-Elaziz, Arjen Pelgröm, Karin Lammering, Gerda Kuijper-De Haan, Els Weersink, René Lutter, Aeilko H. Zwinderman, Frans de Jongh, and et al. 2025. "Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge" Journal of Clinical Medicine 14, no. 3: 906. https://doi.org/10.3390/jcm14030906
APA StyleStenberg, H., Chan, R., Abd-Elaziz, K., Pelgröm, A., Lammering, K., Kuijper-De Haan, G., Weersink, E., Lutter, R., Zwinderman, A. H., de Jongh, F., & Diamant, Z. (2025). Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge. Journal of Clinical Medicine, 14(3), 906. https://doi.org/10.3390/jcm14030906