The Limitation of HLA Diversity as a Risk Factor for Pediatric-Onset Autoimmune Rheumatic Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Approval
2.2. Study Population
2.3. Diagnostic Criteria
2.4. HLA Typing
2.5. Statistical Analysis
3. Results
3.1. Demographics and Clinical Parameters
3.2. LoHLAD in Cases vs. Controls
3.3. Cumulative Effect of LoHLAD (“Dose–Response Effect”)
3.4. LoHLAD in Specific Pediatric-Onset Autoimmune Rheumatic Diseases
3.5. LoHLAD-Based Models
3.6. Allele-Based Models
3.7. Composite Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossjohn, J.; Gras, S.; Miles, J.J.; Turner, S.J.; Godfrey, D.I.; McCluskey, J. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 2015, 33, 169–200. [Google Scholar] [CrossRef] [PubMed]
- The MHC sequencing consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature 1999, 401, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Sewell, A.K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 2012, 12, 669–677. [Google Scholar] [CrossRef]
- Penn, D.J.; Damjanovich, K.; Potts, W.K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl. Acad. Sci. USA 2002, 99, 11260–11264. [Google Scholar] [CrossRef] [PubMed]
- Carrington, M.; Nelson, G.W.; Martin, M.P.; Kissner, T.; Vlahov, D.; Goedert, J.J.; Kaslow, R.; Buchbinder, S.; Hoots, K.; O’Brien, S.J. HLA and HIV-1: Heterozygote advantage and B*35-Cw*04 disadvantage. Science 1999, 283, 1748–1752. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Petersen, J.; Rossjohn, J.; Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 2018, 18, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Logunova, N.N.; Viret, C.; Pobezinsky, L.A.; Miller, S.A.; Kazansky, D.B.; Sundberg, J.P.; Chervonsky, A.V. Restricted MHC-peptide repertoire predisposes to autoimmunity. J. Exp. Med. 2005, 202, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Shiina, T.; Hosomichi, K.; Inoko, H.; Kulski, J.K. The HLA genomic loci map: Expression, interaction, diversity and disease. J. Hum. Genet. 2009, 54, 15–39. [Google Scholar] [CrossRef]
- Trowsdale, J.; Knight, J.C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genom. Hum. Genet. 2013, 14, 301–323. [Google Scholar] [CrossRef] [PubMed]
- Bodis, G.; Toth, V.; Schwarting, A. Role of Human Leukocyte Antigens (HLA) in Autoimmune Diseases. Rheumatol. Ther. 2018, 5, 5–20. [Google Scholar] [CrossRef]
- Miyadera, H.; Tokunaga, K. Associations of human leukocyte antigens with autoimmune diseases: Challenges in identifying the mechanism. J. Hum. Genet. 2015, 60, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Arnett, F.C., Jr.; Schacter, B.Z.; Hochberg, M.C.; Hsu, S.H.; Bias, W.B. Homozygosity for HLA-B27. Impact on rheumatic disease expression in two families. Arthritis Rheum. 1977, 20, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Lauter, S.A.; Vasey, F.B.; Espinoza, L.R.; Bombardier, C.; Osterland, C.K. Homozygosity for HLA-B27 in psoriatic arthritis and spondylitis. Arthritis Rheum. 1977, 20, 1569–1570. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Kushner, I.; Braun, W.E.; Zachary, A.A.; Steinberg, A.G. HLA--B27 homozygosity in ankylosing spondylitis: Relationship to risk and severity. Tissue Antigens 1978, 11, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.G.; Hick, H.M.; Dick, W.C. Ankylosing spondylitis—The role of HLA-B27 homozygosity. Tissue Antigens 1979, 14, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Mehra, N.K.; Malaviya, A.N. HLA-B27 homozygosity in seronegative spondyloarthropathies. Ann. Intern. Med. 1983, 98, 676. [Google Scholar] [CrossRef] [PubMed]
- Vannas, A.; Karjalainen, K. Homozygosity of HLA-B27 antigen in the recipient and susceptibility to the corneal allograft reaction. Graefes Arch. Clin. Exp. Ophthalmol. 1984, 221, 272–275. [Google Scholar] [CrossRef]
- Kvien, T.K.; Moller, P.; Dale, K. Juvenile ankylosing spondylitis and HLA B27 homozygosity. Scand. J. Rheumatol. 1985, 14, 47–50. [Google Scholar] [CrossRef]
- Jaakkola, E.; Herzberg, I.; Laiho, K.; Barnardo, M.C.; Pointon, J.J.; Kauppi, M.; Kaarela, K.; Tuomilehto-Wolf, E.; Tuomilehto, J.; Wordsworth, B.P.; et al. Finnish HLA studies confirm the increased risk conferred by HLA-B27 homozygosity in ankylosing spondylitis. Ann. Rheum. Dis. 2006, 65, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.J.; Na, K.S.; Lee, H.J.; Lee, B.; Kim, T.H. HLA-B27 homozygosity has no influence on clinical manifestations and functional disability in ankylosing spondylitis. Clin. Exp. Rheumatol. 2009, 27, 574–579. [Google Scholar] [PubMed]
- Kim, T.J.; Sung, I.H.; Lee, S.; Joo, K.B.; Choi, J.H.; Park, D.J.; Park, Y.W.; Lee, S.S.; Kim, T.H. HLA-B27 homozygosity has no influence on radiographic damage in ankylosing spondylitis: Observation Study of Korean spondyloArthropathy Registry (OSKAR) data. Jt. Bone Spine 2013, 80, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.M.; et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar] [PubMed]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Ozen, S.; Pistorio, A.; Iusan, S.M.; Bakkaloglu, A.; Herlin, T.; Brik, R.; Buoncompagni, A.; Lazar, C.; Bilge, I.; Uziel, Y.; et al. EULAR/PRINTO/PRES criteria for Henoch-Schonlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann. Rheum. Dis. 2010, 69, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Kone-Paut, I.; Shahram, F.; Darce-Bello, M.; Cantarini, L.; Cimaz, R.; Gattorno, M.; Anton, J.; Hofer, M.; Chkirate, B.; Bouayed, K.; et al. Consensus classification criteria for paediatric Behcet’s disease from a prospective observational cohort: PEDBD. Ann. Rheum. Dis. 2016, 75, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, I.E.; Tjarnlund, A.; Bottai, M.; Werth, V.P.; Pilkington, C.; Visser, M.; Alfredsson, L.; Amato, A.A.; Barohn, R.J.; Liang, M.H.; et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann. Rheum. Dis. 2017, 76, 1955–1964. [Google Scholar] [CrossRef]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjogren’s syndrome: A consensus and data-driven methodology involving three international patient cohorts. Ann. Rheum. Dis. 2017, 76, 9–16. [Google Scholar] [CrossRef]
- Zulian, F.; Woo, P.; Athreya, B.H.; Laxer, R.M.; Medsger, T.A., Jr.; Lehman, T.J.; Cerinic, M.M.; Martini, G.; Ravelli, A.; Russo, R.; et al. The Pediatric Rheumatology European Society/American College of Rheumatology/European League against Rheumatism provisional classification criteria for juvenile systemic sclerosis. Arthritis Rheum. 2007, 57, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Kotsch, K.; Blasczyk, R. The noncoding regions of HLA-DRB uncover interlineage recombinations as a mechanism of HLA diversification. J. Immunol. 2000, 165, 5664–5670. [Google Scholar] [CrossRef]
- Lee, Y.H.; Bang, H.; Kim, D.J. How to Establish Clinical Prediction Models. Endocrinol. Metab. 2016, 31, 38–44. [Google Scholar] [CrossRef]
- Korthauer, K.; Kimes, P.K.; Duvallet, C.; Reyes, A.; Subramanian, A.; Teng, M.; Shukla, C.; Alm, E.J.; Hicks, S.C. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 2019, 20, 118. [Google Scholar] [CrossRef]
- Fernandez-Vina, M.A.; Gao, X.J.; Moraes, M.E.; Moraes, J.R.; Salatiel, I.; Miller, S.; Tsai, J.; Sun, Y.P.; An, J.B.; Layrisse, Z.; et al. Alleles at four HLA class II loci determined by oligonucleotide hybridization and their associations in five ethnic groups. Immunogenetics 1991, 34, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Smerdel, A.; Ploski, R.; Flato, B.; Musiej-Nowakowska, E.; Thorsby, E.; Forre, O. Juvenile idiopathic arthritis (JIA) is primarily associated with HLA-DR8 but not DQ4 on the DR8-DQ4 haplotype. Ann. Rheum. Dis. 2002, 61, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Gudjonsson, J.E.; Karason, A.; Antonsdottir, A.; Runarsdottir, E.H.; Hauksson, V.B.; Upmanyu, R.; Gulcher, J.; Stefansson, K.; Valdimarsson, H. Psoriasis patients who are homozygous for the HLA-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis compared with Cw6 heterozygotes. Br. J. Dermatol. 2003, 148, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Weyand, C.M.; Xie, C.; Goronzy, J.J. Homozygosity for the HLA-DRB1 allele selects for extraarticular manifestations in rheumatoid arthritis. J. Clin. Investig. 1992, 89, 2033–2039. [Google Scholar] [CrossRef]
- Turesson, C.; Jacobsson, L.; Bergstrom, U.; Truedsson, L.; Sturfelt, G. Predictors of extra-articular manifestations in rheumatoid arthritis. Scand. J. Rheumatol. 2000, 29, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Turesson, C.; Schaid, D.J.; Weyand, C.M.; Jacobsson, L.T.; Goronzy, J.J.; Petersson, I.F.; Sturfelt, G.; Nyhall-Wahlin, B.M.; Truedsson, L.; Dechant, S.A.; et al. The impact of HLA-DRB1 genes on extra-articular disease manifestations in rheumatoid arthritis. Arthritis Res. Ther. 2005, 7, R1386–R1393. [Google Scholar] [CrossRef]
- Yang, H.C.; Chang, L.C.; Liang, Y.J.; Lin, C.H.; Wang, P.L. A genome-wide homozygosity association study identifies runs of homozygosity associated with rheumatoid arthritis in the human major histocompatibility complex. PLoS ONE 2012, 7, e34840. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.H.C.; Muniz, J.G.; Oliveira, R.P.; Sdepanian, V.L. Celiac Disease in Brazilian First-degree Relatives: The Odds Are Five Times Greater for HLA DQ2 Homozygous. J. Pediatr. Gastroenterol. Nutr. 2019, 68, e77–e80. [Google Scholar] [CrossRef] [PubMed]
- Al-Toma, A.; Goerres, M.S.; Meijer, J.W.; Pena, A.S.; Crusius, J.B.; Mulder, C.J. Human leukocyte antigen-DQ2 homozygosity and the development of refractory celiac disease and enteropathy-associated T-cell lymphoma. Clin. Gastroenterol. Hepatol. 2006, 4, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Lee, H.S.; Aronsson, C.A.; Hagopian, W.A.; Koletzko, S.; Rewers, M.J.; Eisenbarth, G.S.; Bingley, P.J.; Bonifacio, E.; Simell, V.; et al. Risk of pediatric celiac disease according to HLA haplotype and country. N. Engl. J. Med. 2014, 371, 42–49. [Google Scholar] [CrossRef]
- Ho, W.L.; Lu, M.Y.; Hu, F.C.; Lee, C.C.; Huang, L.M.; Jou, S.T.; Lin, D.T.; Lin, K.H. Clinical features and major histocompatibility complex genes as potential susceptibility factors in pediatric immune thrombocytopenia. J. Formos. Med. Assoc. 2012, 111, 370–379. [Google Scholar] [CrossRef]
- Ma, Y.; Su, H.; Yuksel, M.; Longhi, M.S.; McPhail, M.J.; Wang, P.; Bansal, S.; Wong, G.W.; Graham, J.; Yang, L.; et al. Human Leukocyte Antigen Profile Predicts Severity of Autoimmune Liver Disease in Children of European Ancestry. Hepatology 2021, 74, 2032–2046. [Google Scholar] [CrossRef] [PubMed]
- Clemente, M.G.; Frau, F.; Bernasconi, M.; Macis, M.D.; Cicotto, L.; Pilleri, G.; De Virgiliis, S.; Castiglia, P.; Farci, P. Distinctive HLA-II association with primary biliary cholangitis on the Island of Sardinia. United Eur. Gastroenterol. J. 2017, 5, 527–531. [Google Scholar] [CrossRef]
- Junge, N.; Tiedau, M.; Verboom, M.; Hallensleben, M.; Blasczyk, R.; Schlue, J.; Goldschmidt, I.; Pfister, E.D.; Baumann, U. Human leucocyte antigens and pediatric autoimmune liver disease: Diagnosis and prognosis. Eur. J. Pediatr. 2016, 175, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Su, H.; Underhill, J.; Blackmore, L.J.; Longhi, M.S.; Grammatikopoulos, T.; Okokon, E.V.; Davies, E.T.; Vergani, D.; Mieli-Vergani, G.; et al. Autoantibody and human leukocyte antigen profiles in children with autoimmune liver disease and their first-degree relatives. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Bhanusali, D.G.; Sachdev, A.; Rahmanian, A.; Gerlach, J.A.; Tong, J.C.; Seiffert-Sinha, K.; Sinha, A.A. HLA-E*0103X is associated with susceptibility to Pemphigus vulgaris. Exp. Dermatol. 2013, 22, 108–112. [Google Scholar] [CrossRef]
- Altun, E.; Yayli, S.; Toraman, B.; Arica, D.A.; Kalay, E.; Selcuk, L.B.; Bahadir, S. HLA-E*0101/0103X is Associated with Susceptibility to Pemphigus Vulgaris: A Case-control Study. Acta Dermatovenerol. Croat. 2017, 25, 189–194. [Google Scholar]
- Sadovnick, A.D. Genetic background of multiple sclerosis. Autoimmun. Rev. 2012, 11, 163–166. [Google Scholar] [CrossRef]
- Derhaag, P.J.; van der Horst, A.R.; de Waal, L.P.; Feltkamp, T.E. HLA-B27+ acute anterior uveitis and other antigens of the major histocompatibility complex. Investig. Ophthalmol. Vis. Sci. 1989, 30, 2160–2164. [Google Scholar]
- Bajor, J.; Szakacs, Z.; Juhasz, M.; Papp, M.; Kocsis, D.; Szegedi, E.; Foldi, I.; Farkas, N.; Hegyi, P.; Vincze, A. HLA-DQ2 homozygosis increases tTGA levels at diagnosis but does not influence the clinical phenotype of coeliac disease: A multicentre study. Int. J. Immunogenet. 2019, 46, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ortiz, E.; Montraveta, M.; Cabre, E.; Herrero-Mata, M.J.; Pujol-Borrell, R.; Palou, E.; Faner, R. HLA-DQ2/DQ8 and HLA-DQB1*02 homozygosity typing by real-time polymerase chain reaction for the assessment of celiac disease genetic risk: Evaluation of a Spanish celiac population. Tissue Antigens 2014, 84, 545–553. [Google Scholar] [CrossRef]
- Ploski, R.; Ek, J.; Thorsby, E.; Sollid, L.M. On the HLA-DQ(alpha 1*0501, beta 1*0201)-associated susceptibility in celiac disease: A possible gene dosage effect of DQB1*0201. Tissue Antigens 1993, 41, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.M.; Gandolfi, L.; Pratesi, R.; Uenishi, R.H.; de Almeida, F.C.; Selleski, N.; Nobrega, Y.K. Presence of DQ2.2 Associated with DQ2.5 Increases the Risk for Celiac Disease. Autoimmune Dis. 2016, 2016, 5409653. [Google Scholar] [CrossRef]
- Cabrera, C.M.; Mendez-Lopez, I.M.; Caballero, A. Risk variation in celiac disease in a population from Southern Spain: Evaluating the influence of the DQB1*02:02 allele frequency. Scand. J. Gastroenterol. 2018, 53, 266–272. [Google Scholar] [CrossRef]
- van Belzen, M.J.; Koeleman, B.P.; Crusius, J.B.; Meijer, J.W.; Bardoel, A.F.; Pearson, P.L.; Sandkuijl, L.A.; Houwen, R.H.; Wijmenga, C. Defining the contribution of the HLA region to cis DQ2-positive coeliac disease patients. Genes Immun. 2004, 5, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, O.; Noble, J.A.; Bailey, J.A.; Lernmark, A.; Marsh, P.; Andersson Svard, A.; Bearoff, F.; Blankenhorn, E.P.; Mordes, J.P.; Better Diabetes Diagnosis Study Group. Genetic Variation Within the HLA-DRA1 Gene Modulates Susceptibility to Type 1 Diabetes in HLA-DR3 Homozygotes. Diabetes 2019, 68, 1523–1527. [Google Scholar] [CrossRef] [PubMed]
- Eerligh, P.; van Lummel, M.; Zaldumbide, A.; Moustakas, A.K.; Duinkerken, G.; Bondinas, G.; Koeleman, B.P.; Papadopoulos, G.K.; Roep, B.O. Functional consequences of HLA-DQ8 homozygosity versus heterozygosity for islet autoimmunity in type 1 diabetes. Genes Immun. 2011, 12, 415–427. [Google Scholar] [CrossRef]
- Koeleman, B.P.; Lie, B.A.; Undlien, D.E.; Dudbridge, F.; Thorsby, E.; de Vries, R.R.; Cucca, F.; Roep, B.O.; Giphart, M.J.; Todd, J.A. Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease. Genes Immun. 2004, 5, 381–388. [Google Scholar] [CrossRef]
- Blomhoff, A.; Olsson, M.; Johansson, S.; Akselsen, H.E.; Pociot, F.; Nerup, J.; Kockum, I.; Cambon-Thomsen, A.; Thorsby, E.; Undlien, D.E.; et al. Linkage disequilibrium and haplotype blocks in the MHC vary in an HLA haplotype specific manner assessed mainly by DRB1*03 and DRB1*04 haplotypes. Genes Immun. 2006, 7, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Doxiadis, G.G.; Hoof, I.; de Groot, N.; Bontrop, R.E. Evolution of HLA-DRB genes. Mol. Biol. Evol. 2012, 29, 3843–3853. [Google Scholar] [CrossRef] [PubMed]
- Oen, K.; Petty, R.E.; Schroeder, M.L. An association between HLA-A2 and juvenile rheumatoid arthritis in girls. J. Rheumatol. 1982, 9, 916–920. [Google Scholar]
- Smerdel, A.; Lie, B.A.; Finholt, C.; Ploski, R.; Forre, O.; Undlien, D.E.; Thorsby, E. An additional susceptibility gene for juvenile idiopathic arthritis in the HLA class I region on several DR-DQ haplotypes. Tissue Antigens 2003, 61, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Yanagimachi, M.; Miyamae, T.; Naruto, T.; Hara, T.; Kikuchi, M.; Hara, R.; Imagawa, T.; Mori, M.; Kaneko, T.; Goto, H.; et al. Association of HLA-A*02:06 and HLA-DRB1*04:05 with clinical subtypes of juvenile idiopathic arthritis. J. Hum. Genet. 2011, 56, 196–199. [Google Scholar] [CrossRef]
- Rachelefsky, G.S.; Terasaki, P.I.; Katz, R.; Stiehm, E.R. Increased prevalence of W27 in juvenile rheumatoid arthritis. N. Engl. J. Med. 1974, 290, 892–893. [Google Scholar] [CrossRef]
- Burgos-Vargas, R.; Pacheco-Tena, C.; Vazquez-Mellado, J. Juvenile-onset spondyloarthropathies. Rheum. Dis. Clin. N. Am. 1997, 23, 569–598. [Google Scholar] [CrossRef]
- Thomson, W.; Donn, R. Juvenile idiopathic arthritis genetics—What’s new? What’s next? Arthritis Res. 2002, 4, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Thomson, W.; Barrett, J.H.; Donn, R.; Pepper, L.; Kennedy, L.J.; Ollier, W.E.; Silman, A.J.; Woo, P.; Southwood, T. Juvenile idiopathic arthritis classified by the ILAR criteria: HLA associations in UK patients. Rheumatology 2002, 41, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, A.; Martini, A. Juvenile idiopathic arthritis. Lancet 2007, 369, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Berntson, L.; Damgard, M.; Andersson-Gare, B.; Herlin, T.; Nielsen, S.; Nordal, E.; Rygg, M.; Zak, M.; Fasth, A.; Nordic Paediatric Rheumatology Study Group. HLA-B27 predicts a more extended disease with increasing age at onset in boys with juvenile idiopathic arthritis. J. Rheumatol. 2008, 35, 2055–2061. [Google Scholar] [CrossRef] [PubMed]
- Stanevicha, V.; Eglite, J.; Zavadska, D.; Sochnevs, A.; Lazareva, A.; Guseinova, D.; Shantere, R.; Gardovska, D. HLA B27 allele types in homogeneous groups of juvenile idiopathic arthritis patients in Latvia. Pediatr. Rheumatol. Online J. 2010, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Zuber, Z.; Turowska-Heydel, D.; Sobczyk, M.; Chudek, J. Prevalence of HLA-B27 antigen in patients with juvenile idiopathic arthritis. Reumatologia 2015, 53, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Hollenbach, J.A.; Thompson, S.D.; Bugawan, T.L.; Ryan, M.; Sudman, M.; Marion, M.; Langefeld, C.D.; Thomson, G.; Erlich, H.A.; Glass, D.N. Juvenile idiopathic arthritis and HLA class I and class II interactions and age-at-onset effects. Arthritis Rheum. 2010, 62, 1781–1791. [Google Scholar] [CrossRef]
- Silva-Ramirez, B.; Cerda-Flores, R.M.; Rubio-Perez, N.; Vargas-Alarcon, G.; Perez-Hernandez, N.; Granados-Arriola, J.; Burgos-Vargas, R. Association of HLA DRB1 alleles with juvenile idiopathic arthritis in Mexicans. Clin. Exp. Rheumatol. 2010, 28, 124–127. [Google Scholar] [PubMed]
- De Silvestri, A.; Capittini, C.; Poddighe, D.; Marseglia, G.L.; Mascaretti, L.; Bevilacqua, E.; Scotti, V.; Rebuffi, C.; Pasi, A.; Martinetti, M.; et al. HLA-DRB1 alleles and juvenile idiopathic arthritis: Diagnostic clues emerging from a meta-analysis. Autoimmun. Rev. 2017, 16, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
Controls | Cases | OR [95%CI] | p | |
---|---|---|---|---|
Age (years), x̄ ± SD (IQR) | 13.5 ± 3.8 (4.8) | 12.7 ± 3.9 (5.4) | N/A | 0.029 |
Sex, no. (%) | 1.61 [0.98, 2.66] | 0.069 | ||
Female | 108/134 (80.6) | 201/279 (72) | ||
Male | 26/134 (19.4) | 78/279 (28) | ||
Race, no. (%) | N/A | 0.127 | ||
White | 104/134 (87.4) | 199/279 (81.2) | ||
American Indian or Alaska Native | 9/134 (7.6) | 34/279 (13.9) | ||
Black, Asian, Native Hawaiian or | 6/134 (5) | 12/279 (4.9) | ||
Other Pacific Islander | ||||
Multiracial or N/D | 15/134 (11.2) | 34/279 (12.2) | ||
Ethnicity, no. (%) | 0.97 [0.63, 1.49] | 0.912 | ||
Hispanic | 77/127 (60.6) | 164/267 (61.4) | ||
Non-Hispanic | 50/127 (39.4) | 103/267 (38.6) | ||
Family history of autoimmunity, no. (%) | 2.00 [1.30, 3.10] | 0.002 | ||
No | 57/133 (42.9) | 73/268 (27.2) | ||
Yes | 76/133 (57.1) | 195/268 (72.8) |
LoHLAD | Cases, n (%) | Controls, n (%) | OR [95%CI] | p |
---|---|---|---|---|
Any locus | 184 (65.95) | 41 (30.60) | 4.39 [2.82, 6.84] | <0.0001 |
Class I | 54 (19.35) | 14 (10.45) | 2.06 [1.10, 3.86] | 0.031 |
Class II | 152 (54.48) | 27 (20.15) | 4.74 [2.92, 7.69] | <0.0001 |
A | 41 (14.70) | 14 (10.45) | 1.48 [0.78, 2.81] | 0.320 |
B | 17 (6.09) | 1 (0.75) | 8.63 [1.14, 65.55] | 0.016 |
DQB1 | 32 (11.47) | 5 (3.73) | 3.34 [1.27, 8.78] | 0.016 |
DRB1 | 10 (3.58) | 2 (1.49) | 2.45 [0.53, 11.36] | 0.352 |
DRB3/4/5 | 133 (47.67) | 22 (16.42) | 4.64 [2.77, 7.75] | <0.0001 |
Number of Loci | Cases, n (%) | Controls, n (%) | OR [95%CI] | p |
---|---|---|---|---|
0 | 95 (34.05) | 93 (69.40) | N/A | N/A |
1 | 151 (54.12) | 38 (28.36) | 3.89 [2.47, 6.14] | <0.0001 |
2 | 20 (7.17) | 3 (2.24) | 6.53 [1.88, 22.70] | 0.0007 |
3 | 10 (3.58) | 0 (0) | N/A | N/A |
4 | 2 (0.72) | 0 (0) | N/A | N/A |
5 | 1 (0.36) | 0 (0) | N/A | N/A |
≥2 | 33 (11.83) | 3 (2.24) | 10.77 [3.19, 36.33] | <0.0001 |
LoHLAD, n (%) | OR [95%CI] | p | |
---|---|---|---|
Controls (n = 134) | 41 (30.6) | N/A | N/A |
JIA (n = 134) | 98 (73.1) | 6.18 [3.63, 10.49] | <0.0001 |
SLE (n = 43) | 26 (60.5) | 3.47 [1.70, 7.08] | 0.002 |
Chronic idiopathic uveitis (n = 31) | 23 (74.2) | 6.52 [2.69, 15.79] | <0.0001 |
MCTD / UCTD (n = 20) | 14 (70) | 5.29 [1.90, 14.74] | 0.007 |
LoS (n = 16) | 7 (43.8) | 1.76 [0.62, 5.06] | 0.664 |
Vasculitis (n = 14) | 7 (50) | 2.27 [0.75, 6.88] | 0.362 |
JDM (n = 12) | 3 (25) | 0.76 [0.20, 2.94] | 1.000 |
SS (n = 6) | 4 (66.7) | 4.54 [0.80, 25.76] | 0.280 |
SSc (n = 3) | 2 (66.7) | 4.54 [0.40, 51.45] | 0.618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalampokis, I.; Wong, C.S.; Ma, J.; Smith, L.M.; Masten, B.J.; Chabot-Richards, D.; Pisetsky, D.S. The Limitation of HLA Diversity as a Risk Factor for Pediatric-Onset Autoimmune Rheumatic Disease. J. Clin. Med. 2025, 14, 916. https://doi.org/10.3390/jcm14030916
Kalampokis I, Wong CS, Ma J, Smith LM, Masten BJ, Chabot-Richards D, Pisetsky DS. The Limitation of HLA Diversity as a Risk Factor for Pediatric-Onset Autoimmune Rheumatic Disease. Journal of Clinical Medicine. 2025; 14(3):916. https://doi.org/10.3390/jcm14030916
Chicago/Turabian StyleKalampokis, Ioannis, Craig S. Wong, Jihyun Ma, Lynette M. Smith, Barbara J. Masten, Devon Chabot-Richards, and David S. Pisetsky. 2025. "The Limitation of HLA Diversity as a Risk Factor for Pediatric-Onset Autoimmune Rheumatic Disease" Journal of Clinical Medicine 14, no. 3: 916. https://doi.org/10.3390/jcm14030916
APA StyleKalampokis, I., Wong, C. S., Ma, J., Smith, L. M., Masten, B. J., Chabot-Richards, D., & Pisetsky, D. S. (2025). The Limitation of HLA Diversity as a Risk Factor for Pediatric-Onset Autoimmune Rheumatic Disease. Journal of Clinical Medicine, 14(3), 916. https://doi.org/10.3390/jcm14030916